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In Situ Deposition of Drug and Gene Nanoparticles 
on a Patterned Supramolecular Hydrogel 
to Construct a Directionally Osteochondral Plug

Jiawei Kang1, Yaping Li2,3, Yating Qin2,3, Zhongming Huang4, Yifan Wu1, Long Sun5, 
Cong Wang1, Wei Wang2,3 *, Gang Feng1 *, Yiying Qi1 *

HIGHLIGHTS

• A multifactorial and oriented scaffolds was constructed to stimulate osteochondral regeneration.

• This is the first demonstration that both drug and gene nanoparticles were spatially deposited on a patterned film through metal-ligand 
interactions.

• For the first time, film-rolling approach was employed to construct osteochondral plug to mimick the Haversian canal structure of 
natural bone.

ABSTRACT The integrated repair of bone and cartilage boasts 
advantages for osteochondral restoration such as a long-term repair 
effect and less deterioration compared to repairing cartilage alone. 
Constructing multifactorial, spatially oriented scaffolds to stimu-
late osteochondral regeneration, has immense significance. Herein, 
targeted drugs, namely kartogenin@polydopamine (KGN@PDA) 
nanoparticles for cartilage repair and miRNA@calcium phosphate 
(miRNA@CaP) NPs for bone regeneration, were in situ depos-
ited on a patterned supramolecular-assembled 2-ureido-4 [lH]-
pyrimidinone (UPy) modified gelation hydrogel film, facilitated 
by the dynamic and responsive coordination and complexation of 
metal ions and their ligands. This hydrogel film can be rolled into a 
cylindrical plug, mimicking the Haversian canal structure of natural 
bone. The resultant hydrogel demonstrates stable mechanical prop-
erties, a self-healing ability, a high capability for reactive oxygen species capture, and controlled release of KGN and miR-26a. In vitro, 
KGN@PDA and miRNA@CaP promote chondrogenic and osteogenic differentiation of mesenchymal stem cells via the JNK/RUNX1 and 
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GSK-3β/β-catenin pathways, respectively. In vivo, the osteochondral plug exhibits optimal subchondral bone and cartilage regeneration, 
evidenced by a significant increase in glycosaminoglycan and collagen accumulation in specific zones, along with the successful integration 
of neocartilage with subchondral bone. This biomaterial delivery approach represents a significant toward improved osteochondral repair.

KEYWORDS Osteochondral regeneration; Oriented hydrogel; Kartogenin; miRNA-26a

1 Introduction

Osteochondral regeneration involving both bone and car-
tilage tissues is a pressing issue in clinical situations. The 
concurrent regeneration of bone and cartilage is challeng-
ing to achieve due to their disparate nature. The vertical 
integration of neocartilage with subchondral bone and the 
subsequent construction of the subchondral bone are crucial 
for mitigating tissue deterioration [1]. Many studies in the 
literature primarily focused on cartilage scaffolds for osteo-
chondral tissue engineering, but often neglected the need 
for subchondral bone regeneration [2]. The development of 
engineered scaffolds that mimicing both cartilage and bone, 
incorporating distinct growth factors for their concurrent 
regeneration, remains a significant obstacle in osteochondral 
tissue engineering [3, 4].

The key to achieving high-quality repair lies on construct-
ing an osteochondral scaffold with a biomimetic hierarchy of 
the native tissue, including both the articular cartilage and 
subchondral bone, and biological functionality. Numerous 
techniques have been developed to fabricate bilayer or mul-
tilayer osteochondral scaffolds, such as sequential layering 
of slurry or hydrogel solutions, 3D printing, electrospin-
ning, microfluidic-based methods, magnetic field control, 
and buoyancy-driven approach [4]. An exemplar of this 
is an injectable and 3D-printable bilayered osteochondral 
hydrogel, developed based on a compositional gradient of 
methacrylated sodium alginate, gelatin methacryloyl, and 
β-tricalcium phosphate (β-TCP), along with the biochemi-
cal gradient of kartogenin (KGN) in the two well-integrated 
zones of chondral layer hydrogel and osseous layer hydrogel. 
This has been designed to promote osteochondral regenera-
tion [5]. However, all these methods involve complex multi-
step manufacturing processes that impeding their practi-
cal applications. Drawing inspiration from the Haversian 
canal structure of natural bone, a conventional film-rolling 
approach can be employed to fabricate a well-designed oste-
ochondral scaffold.

Due to the distinct heterogeneity of cartilage and bone, 
different stimulating factors need to be spatially loaded 
into various parts of the scaffold and responsively released 
in a sustained manner for osteochondral repair. A number 
of researchers have discovered various approaches to load 
drug/gene nanoparticles in various types of scaffolds. A case 
in point, the dominantly used drug-eluting stents shows a 
promising potential by loading various drugs in the stents 
to regulate macrophage polarization, reduce local inflamma-
tion, and promote tissue repair [6, 7]. Due to the dynamic 
and reversible property, physical affinity is a much more 
powerful approach to load drugs within scaffolds than that 
achieved by physical adsorption and covalent crosslinking 
[8]. The gene-activated surface coating is recently explored 
as a strategy to design smart biomaterials for tissue engi-
neering. Husteden et al. incorporated DNA/lipid-nanopar-
ticles (lipoplexes) into collagen I/chondroitin sulfate poly-
electrolyte multilayers, fabricated through a layer-by-layer 
assembly on a bone scaffold to effectively promote bone 
regeneration [9]. Metal-ligand interaction is one of the most 
prevailing strategies to integrate the stimulated factors in 
scaffolds. Yang et al. developed a stepwise metal-catechol 
surface chemistry strategy, leading to a stable nitric oxide 
(NO) generating rate and a high heparin conjugation on the 
cardiovascular stents [10]. We believe that by optimizing 
metal ions and their ligands, different types of drugs/genes 
can be spatially tethered on a patterned film through an 
in situ metal-ion-assisted deposit approach.

Nanoparticles (NPs) refer to submicron particles with 
sizes ranging from 1 to 100 nm. Nanoparticles as carriers 
can be incorporated into the surface or matrix of drugs to 
protect them from enzymatic degradation, improve their 
permeability to the cartilage matrix, and regulate drug 
pharmacokinetics, which is beneficial for balancing the 
efficacy and toxicity of therapeutic compounds [11]. In 
this work, as shown in Fig. 1, we adopted an in situ depo-
sition strategy to achieve a spatial distribution of drug NPs 
and gene miRNA@CaP NPs on a patterned hydrogel film. 



Nano-Micro Lett. (2024) 16:18 Page 3 of 19 18

1 3

Initially, a patterned supramolecular-assembled 2-ureido-4 
[lH]-pyrimidinone (UPy) modified gelation (GTU) hydro-
gel film was fabricated by enhancing solidification with 
 Fe3+. KGN, a non-protein small chondrogenesis molecule 
[12–14], was encapsulated by polydopamine (PDA) to form 
KGN@PDA NPs, which were anchored in the cartilage 
layer to promote cartilage repair. KGN has been associ-
ated with effective results in tissue repair and regenera-
tion in various studies, including cartilage regeneration 
[15], cartilage protection [16], tendon-bone healing [17], 
wound healing [18], and limb development [19]. Simulta-
neously, miRNA-26a (miR-26a), a promoter of osteogenic 
differentiation of mesenchymal stem cells (MSCs) [20, 21], 
was co-deposited with calcium phosphate (CaP) to create 
miRNA@CaP NPs, which were immobilized in the bone 
layer to facilitate bone regeneration. miR-26a plays a cru-
cial role in other biological functions, such as regulating 
diabetes mellitus-related bone metabolism [22], reducing 
inflammatory responses [23] and promoting angiogenesis 
[24, 25]. The complexation effect of the catechol group 
and iron ion allows the KGN@PDA NPs to dynamically 

anchor onto the surface of the GTU-Fe hydrogel, while 
the coordination between the calcium ion and the carboxyl 
group of gelatin facilitates the immobilization of miRNA@
CaP on the GTU-Fe hydrogel. Subsequently, the resulting 
hydrogel film was rolled into a cylindrical plug to mimic 
the Haversian canal structure of natural bone. This direc-
tionally bionic hydrogel scaffold is capable of controlled 
in situ release of KGN in the upper layer for cartilage repair 
and miR-26a in the bottom layer for subchondral regen-
eration. This novel design, combining dual-targeting bio-
active factors with a longitudinally oriented structure to 
mimic osteochondral tissue, holds great clinical potential 
for effective cartilage and subchondral bone regeneration.

2  Experimental Section

2.1  Preparation of KGN@PDA and miRNA@CaP NPs

KGN@PDA NPs were fabricated using a typical reprecipi-
tation method, as described in our previous reports [26]. 

Fig. 1  Schematic illustrating the design of oriented GTU-Fe/KGN@PDA/miRNA@CaP hydrogel for repairing osteochondral defects. A The 
fabrication process of oriented GTU-Fe/KGN@PDA/miRNA@CaP hydrogel film; B Schematic construct to repair osteochondral defects



 Nano-Micro Lett. (2024) 16:1818 Page 4 of 19

https://doi.org/10.1007/s40820-023-01228-w© The authors

Specifically, 100 μL of a 5 mg  mL−1 KGN solution in dime-
thyl sulfoxide was added dropwise to 5 mL of water, form-
ing a KGN NP aqueous dispersion. Subsequently, dopamine 
(6 mg) was dissolved in 5 mL of buffer solution (pH 8.5). An 
equal volume of the KGN NP aqueous dispersion was then 
added, and the self-polymerization of dopamine was allowed 
to proceed under stirring for 24 h. The resulting suspension 
was centrifuged at 12,000 rpm and rinsed three times with 
50 mL of deionized water to obtain the KGN@PDA NPs.

miRNA@CaP NPs were fabricated as previously reported 
[27]. Briefly, miR-26a was added to a 7 mM  CaCl2 solution, 
which was then mixed with an equal volume of a 4.2 mM 
 Na2HPO4 solution to produce miRNA@CaP NPs, with 
 Na3Cit used as a stabilizer.

2.2  Preparation of GTU Hydrogel

Gelatin-UPy was used as the matrix to in  situ load the 
resulting NPs. Gelatin-UPy was synthesized through a 
typical two-step method as per previous reports [28]. The 
GTU-Fe hydrogel was prepared by mixing a GTU solution 
(20 wt%) with a  FeCl3 solution (12 mM). This mixture was 
then homogenized using a vortex at 3000 rpm for 10 s. The 
resulting hydrogel precursor solution was poured into a cus-
tomized mold (Fig. S1) and left for 24 h, then removed from 
the mold to acquire the patterned hydrogel film. Gelatin-Fe 
hydrogel was also prepared following the same procedure, 
except that gelatin was used to replace gelatin-UPy, which 
is referred to as G-Fe.

2.3  Characterization of Samples

The resulting NPs were characterized using dynamic light 
scattering (DLS; Nano ZS; Malvern Instruments, Malvern, 
UK), a high-resolution transmission electron microscope 
(HRTEM; JEM-2100F; JEOL, Tokyo, Japan), a field-
emission scanning electron microscope (SEM; Gemini 
SEM 300; Zeiss, Jena, Germany), and X-ray diffraction 
(XRD; D8-Advance; Bruker, Fällanden, Switzerland). The 
mechanical properties of the hydrogels were characterized 
by a rheometer (DHR-2; TA, USA) and a computerized 
electronic universal testing machine (UTM2102; SUNS, 
Shenzhen, China).

3  Results and Discussion

3.1  Properties of KGN@PDA and miRNA@CaP NPs

As shown in Fig. 2A, the synthesis of KGN@PDA involves 
two stages. First, the KGN core is prepared via a repre-
cipitation method. Specifically, a solution of KGN/DMSO 
(1 mL) is gradually added to deionized water (100 mL) 
while stirring vigorously. Due to the abrupt change in 
solvent properties, KGN molecules can aggregate via 
hydrophobic effects and precipitate to form KGN NPs. 
Subsequently, the PDA shell is applied to coat the KGN 
NPs. As shown in Fig. 2B, the KGN NPs have an average 
size of about 95.4 nm, while KGN@PDA NPs have an 
average size of approximately 288.4 nm, suggesting that 
multiple KGN particles might form a single KGN@PDA 
particle. The zeta potential of KGN is - 22.0 mV, whereas 
the potential of KGN@PDA is -63.3 mV. The HRTEM 
image clearly shows that KGN@PDA NPs have a spherical 
morphology with a diameter of around 200-300 nm. Irreg-
ular sheet-like structures can be seen assembled together 
on the KGN@PDA surface when observed by SEM, these 
structures consist of spherical KGN coated by PDA. As 
illustrated in Fig. 2F, the elements C, O, and N in KGN@
PDA are evenly distributed. It has been found that catechol 
groups on PDA can further complex with iron ions [26]. 
Therefore, KGN@PDA can be complexed with GTU-Fe 
hydrogel for in situ deposition on the hydrogel in subse-
quent studies.

As shown in Fig. 2G, miRNA@CaP was fabricated 
using a typical calcium phosphate co-precipitation tech-
nique. miR-26a has an average hydrodynamic diameter of 
12.3 nm and a zeta potential of -42.2 mV, while miRNA@
CaP has an average hydrodynamic diameter of 170.7 nm 
and a zeta potential of -1.64 mV (Fig. 2H, I). The XRD 
pattern of the miRNA@CaP nanocomposite exhibits a 
broad band at approximately 20=25° (Fig. 2J), suggesting 
a lack of long-range periodicity and excluding the pres-
ence of other CaP crystalline phases. The nanostructure 
and crystallization pattern of miRNA@CaP were char-
acterized by HRTEM in combination with selected area 
electron diffraction (SAED) (Fig. 2K). The SAED pat-
terns do not show the characteristic dot or ring patterns 
of crystal structures, indicating the amorphous nature of 
miRNA@CaP. HRTEM, and SEM images clearly show 
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that miRNA@CaP NPs have an irregular spherical shape. 
As demonstrated in Fig. 2M, miR-26a-derived nitrogen 
is mainly distributed in the center of miRNA@CaP com-
plexes, whereas calcium and phosphorus are located 
along the periphery of NPs in the elemental mapping. 
Concurrently, the interaction between calcium ions and 
the hydroxyl and carboxyl groups of the GTU-Fe hydro-
gel enables miRNA@CaP to be deposited in situ on the 
hydrogel pattern, leading to a mineralized hydrogel in 
subsequent steps.

3.2  Properties of GTU‑Fe/KGN@PDA/miRNA@CaP 
Hydrogel

As demonstrated in Fig. S2-S4, the UPy-NCO, GTU, and 
supramolecular GTU-Fe hydrogel were synthesized, and 
the chemical structure was confirmed by 1H-NMR, UV-vis 
and FTIR. The resulted GTU hydrogel shows a porous mor-
phology as the conventional gelatin scaffolds. As shown in 
Fig. 3, the physical double-network GTU-Fe hydrogel with 
robust viscoelasticity, rapid self-healing, and near-infrared 

Fig. 2  Preparation and characterizations of KGN@PDA and miRNA@CaP NPs. A Schematic diagram of the preparation of KGN@PDA. B, C 
Size distribution and zeta potential of KGN and KGN@PDA. D, E Morphology of KGN@PDA observed by TEM and SEM. F Elemental dis-
tribution of KGN@PDA. G Schematic diagram of the preparation of miRNA@CaP. H, I Size distribution and zeta potential of miRNA@CaP. 
J XRD pattern of miRNA@CaP. K TEM images and SAED pattern of miRNA@CaP. L Morphology of miRNA@CaP observed by SEM. M 
Elemental distribution of miRNA@CaP
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Fig. 3  Characterizations of GTU-Fe/KGN@PDA/miRNA@CaP. A, B Photograph of GTU-Fe and GTU-Fe/KGN@PDA/miRNA@CaP hydro-
gel scaffold. C GTU-Fe/KGN@PDA/miRNA@CaP hydrogel scaffold recovered completely under compression. D Micro-CT scan images of the 
hydrogels. F, G Morphology of GTU-Fe/KGN@PDA/miRNA@CaP hydrogel scaffold. H Total survey scans of XPS spectra. I Ca 2p and P 2p 
spectrum of GTU-Fe/miRNA@CaP. J Fe 2p spectra of GTU-Fe hydrogel and GTU-Fe/KGN@PDA. K O 1s spectra of GTU-Fe hydrogel, GTU-
Fe/KGN@PDA and GTU-Fe/miRNA@CaP
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(NIR) stimulus responsiveness was synthesized to serve as 
the matrix for loading drug/gene NPs. The graft rate can 
be effectively controlled by the feeding ratio of gelatin and 
UPy-NCO, with a moderate graft rate of 6.12% chosen for 
further studies. The resulting GTU-Fe hydrogel can with-
stand knotting and stretching (Fig. 3A) due to the stable 
physical double-network crosslinking. As demonstrated 
in Fig. S5A, the G’ and G’’ of the GTU-Fe hydrogel are 
significantly higher than those of other hydrogels owing to 
the superimposition effect of the quadruple hydrogen bond 
between UPy molecules and the complexation of iron and 
carboxyl groups. The values of G’ and G’’ remain stable 
within a strain range of 0.1-300% and a shear rate range 
of 0.1-10 Hz, indicating mechanical stability of the GTU-
Fe hydrogel. Interestingly, the GTU-Fe hydrogel exhibits a 
self-healing property. As depicted in Fig. S5C, the hydrogel 
network is immediately restored to its original state when 
a strain of 1% or 1,000% is applied), suggesting that the 
hydrogel remains stable under dynamic conditions.

As shown in Fig. 3B, the GTU-Fe hydrogel, due to its 
unique design, aesthetic configuration, and easy operation, 
can be molded into various patterns and then rolled into 
a cylindrical hydrogel scaffold. This scaffold can instantly 
recover to its original shape upon removal of the external 
compression force (Fig. 3C and Movie S1). It also possesses 
a compressive strength of 2.59 MPa (Fig. S6A) and excellent 
fatigue resistance to cyclic compression tests (Fig. S6B). The 
self-healing property of the GTU-Fe hydrogel was confirmed 
by a mechanical test. As shown in Fig. S6C, the GTU-Fe 
hydrogel exhibits a rapid self-healing response after being 
cut into small fragments. The tensile strength of the GTU-Fe 
hydrogel returns to its initial value after healing (Fig. S6D).

As illustrated in Fig. 3D, a micro-CT scan was used 
to examine the groove structure of the resulting hydro-
gel. The grooves in the hydrogel film act as reservoirs to 
separately hold KGN@PDA and miRNA@CaP. GTU-
Fe hydrogel exhibited excellent adhesion property and 
NIR-assisted roll-film capability (Fig. S7). A cylindrical 
scaffold was effectively formed by rolling the patterned 
GTU-Fe hydrogel film into an osteochondral plug irra-
diated by NIR for 3 min. The EDS spectrum confirmed 
that the hydrogel pattern consisted of a gully structure 
(Fig. 3E). The SEM images (Fig. 3F, G) reveal that the 
surface of the GTU-Fe hydrogel is covered with uniformly 
sized NPs. The EDS spectrum validates that KGN@PDA 
and miRNA@CaP are deposited in situ onto the hydrogel 

surface (Fig. S8A). The full survey scans of the XPS spec-
tra are presented in Fig. 3F.

New peaks for calcium (Ca 2p) and phosphorus (P 2p) 
appear alongside four intense peaks (O 1s, N 1s, C 1s 
and Fe 2p), indicating successful integration of miRNA@
CaP onto the surface (Fig. 3H, I). Owing to the complexa-
tion with phenolic hydroxyl groups, the binding energy of 
iron (Fe) increases, as presented in Fig. 3J. As shown in 
Fig. 3K, the binding energy of C-OH is 531.10 eV in the 
GTU-Fe sample, but increases to 531.73 eV after loading 
KGN@PDA. This shift signifies a decrease in the den-
sity of the electron cloud around C-OH due to the compl-
exation of  Fe3+ with C-OH. The binding energy of C=O 
increases from 532.18 to 532.40 eV in GTU-Fe/miRNA@
CaP. The lone pair electrons of oxygen (O) in the carbonyl 
group interact with  Ca2+, resulting in a decrease in the 
density of the electron cloud around C-OH. These obser-
vations suggest that the carbonyl groups play a coordinat-
ing role with  Ca2+ to form coordination compounds in 
the GTU-Fe hydrogel. The XPS data confirm that KGN@
PDA and miRNA@CaP are spatially deposited in situ on 
the patterned hydrogel.

Numerous free radicals such as reactive oxygen species 
(ROS) are often concentrated at the site of cartilage-bone 
defects, inflicting substantial damage to the lesion area [29]. 
Excessive accumulation of ROS in wound tissue has been 
proven to promote the expression of pro-inflammatory fac-
tors, restricted angiogenesis, and disrupted collagen depo-
sition [30]. Exceptional free radical scavenging ability can 
reduce inflammation reactions during in vivo application. 
Here, we used DPPH, ABTS, and PTIO· to assess the capac-
ity of the hydrogel scaffold to scavenge free radicals. As 
shown in Fig. S9, the GTU-Fe/KGN@PDA/miRNA@CaP 
hydrogel scaffold can capture 91% of DPPH within 60 min, 
39% of ABTS within 6 min, and 16% of PTIO· within 
120 min. The introduction of PDA enhanced the free radical 
scavenging ability of the GTU-Fe/KGN@PDA/miRNA@
CaP hydrogel scaffold, thereby reducing the in vivo inflam-
matory response. The observed differences result from the 
varied types of free radicals used in the characterization 
methods. DPPH and ABTS are nitrogen-based free radicals, 
while PTIO· is an oxygen-based free radical, which better 
represents the ROS in organisms and exhibited the high-
est biological correlation. The hydrogel scaffold displayed 
strong ROS scavenging ability based on the PTIO· method 
results (Fig. S9).
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As depicted in Fig. S10, on the first day, the cumulative 
release rate rapidly increases with incubation time and slows 
significantly over the next 7 days. After 7 days of incubation, 
96% of KGN had diffused from the dialysis bag into the PBS 
solution. Both KGN and miR-26a demonstrated the same 
drug release pattern. The cumulative release rate of miR-26a 
was fast on the first day and reached approximately 55% after 
7 days of incubation (Fig. S10).

3.3  Effect of KGN and miR‑26a on MSCs/
Chondrocytes

Cell growth curves indicated that a time-dependent growth 
of MSCs over 1 and 3 days of culture. The viability of cells 
showed significant differences between MSCs treated with 
and without KGN or miR-26a (p<0.05). MSCs treated with 
KGN at 100 nM showed higer level of proliferation, than 
that of MSCs treated with KGN at concentrations of 25, 
50, 200, and 400 nM in day 1. (p<0.05) (Fig. S11), similar 
trends were observed in chondrocytes (Fig. S12). Chondro-
cytes treated with miR-26a at 50 nM showed significantly 
better proliferation than those treated with miR-26a at con-
centrations of 12.5, 25, 100, and 200 nM in day 1 (p<0.05) 
(Fig. S12), but MSCs treated by miR-26a with different con-
centration did not indicate distinct statistical differences at 
the same time (Fig. S11). Similar trends were observed in 
chondrocytes. Therefore, we opted to use 100 nM of KGN 
and 50 nM of miR-26a for subsequent migration and dif-
ferentiation studies.

The cytotoxicity and cytocompatibility of GTU-Fe/
miRNA@CaP and GTU-Fe/KGN@PDA were evaluated 
using the CCK-8 assay with MSCs and chondrocytes. Cul-
turing MSCs with the scaffolds for 1 and 3 days did not 
impact cell proliferation or viability compared to the con-
trol (Fig. S11). Similar observations were made when chon-
drocytes were cultured with the scaffolds (Fig. S12). These 
results confirm the non-cytotoxicity and good cytocompat-
ibility of the hydrogel scaffolds.

Cell migration within or into artificial wounds was 
observed over a 12h period. After 3, 6, and 12 h the closed 
areas of MSCs in the KGN and miR-26a groups were similar 
to the control group (Fig. S13), suggesting that the migration 
ability of MSCs was not significantly affected by the two 
molecules at the experimental concentrations.

The impacts of KGN@PDA and miRNA@CaP on the 
chondrogenic and osteogenic differentiation of MSCs were 
assessed using a co-culture system (Figs. 4A and S14)
KGN@PDA significantly enhanced the secretion of cartilage 
ECM, indicating chondrogenic differentiation (Fig. 4B), the 
protein expressions of Col II, Sox9, and aggrecan in MSCs 
were upregulated, concurrently, the upregulation of protein 
p-JNK and p-RUNX1 was observed, suggesting that KGN 
promotes chondrogenic differentiation through the JNK/
RUNX1 pathway (Fig. 4C).

Contrastingly, miRNA@CaP induced notable osteo-
genic differentiation of MSCs, as indicated by increased 
expression of calcium nodules, protein COL1A1, ALP and 
RUNX2 with escalating concentrations of miR-26a (25-
50 nM) (Fig. 4D, E). The downregulation of GSK-3β protein 
expression and the upregulation of p-β catenin suggest that 
miR-26a promotes osteogenic differentiation via the GSK-
3β/β-catenin pathway (Fig. 4E).

To examine the cellular uptake of miR-26a in monolayer 
culture, Cy5 was chosen as the fluorescent dye. After co-cul-
turing miRNA-Cy5@CaP with MSCs for 1 day, fluorescent 
microscopy images displayed high-intensity fluorescence 
signals within the cytoplasm (Fig. 4F). To further investigate 
whether miRNA@CaP was intracellular rather than extracel-
lular, 3D reconstruction was performed and sectional images 
were obtained (Fig. 4G). It was observed that the nucleus 
was surrounded by miR-26a, which was primarily distrib-
uted on the interior side of the cell membrane. This result 
indicates that miR-26a can be effectively transfected into 
MSCs in the early stages and uniformly distributed within 
the cytoplasm.

3.4  Microarray and Analysis

RNA microarray analysis was conducted to explore the gene 
expression profiles of MSCs treated with KGN or miR-26a. 
Selected differentially expressed genes (DEGs) underwent 
cluster analysis. After KGN treatment, the upregulation 
of COL2A1, SOX9, ACAN, and the downregulation of 
MMP23 and ADAMTS5, indicated upregulated chondro-
genic differentiation and diminished ECM degradation 
(Fig. 5A). Concurrently, the upregulation of COL1A1, ALP, 
and RUNX2 suggests miR-26a-induced osteogenic differen-
tiation (Fig. 5F). GO analysis demonstrated that collagen-
containing ECM, developmental cell growth, and negative 



Nano-Micro Lett. (2024) 16:18 Page 9 of 19 18

1 3

Fig. 4  In vitro evaluation of the effect of KGN@PDA and miRNA@CaP NPs on the chondrogenesis and osteogenesis of MSCs respectively 
and the cellular uptake of miR-26a in MSCs. A Scheme of MSCs co-culture system  with KGN@PDA or miRNA@CaP in vitro. B Chondro-
genic differentiation was stained by Alcian blue and quantitatively analyzed at day 14. Scale bar =200 m. C Western blot analysis of Aggrecan, 
COL2A1 and Sox9 expression levels in MSCs induced by KGN@PDA (50 nM, 100 nM) for 14 days and p-JNK, p-RUNX1 expression levels for 
30, 60, 120 min and quantification of protein expression. D Osteogenic differentiation was detected by Alizarin Red staining at 7 days and quan-
tification of calcium nodules. Scale bar=100 m. E Western blot analysis of COL1A1, ALP and RUNX2 expression levels in MSCs induced by 
miRNA@CaP (25 nM, 50 nM) for 7 days and GSK-3, p- catenin expression levels for 30, 60, 120 min and quantification of protein expression. 
F Laser confocal photographs of cellular uptake of miR-26a-Cy5 in MSCs (Cytoplasm: green; Nucleus: blue; Cy5: red). Scale bar=200 m. G 
Sectional images of cell in the control and experimental groups. Data are presented as mean±SD (n=3)
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Fig. 5  RNA-Seq-based transcriptome analysis of chondrogenesis or osteogenesis of MSCs in  vitro. Heatmap  cluster analysis showed rela-
tive expression levels for the differentially expressed genes treated by A KGN or F miR-26a. Gene ontology (GO) analysis for differentially 
expressed genes of MSCs transcriptome treated by B KGN or G miR-26a. Enrichment analysis of interested Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway treated by C KGN and H miR-26a. Ridgeplot of GSEA analysis treated by D KGN or I miR-26a. KEGG pathway 
interaction diagram after treated by E KGN or J miR-26a
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regulation of the apoptotic signaling pathway are involved 
in chondrogenesis (Fig. 5B). In contrast, ECM organization, 
ossification, and regulation of angiogenesis are implicated in 
osteogenesis (Fig. 5G). KEGG pathway enrichment analysis 
revealed significant enrichment of the PI3K-Akt, MAPK, 
and endocytosis pathways in both the KGN-induced chon-
drogenesis (Fig. 5C) and miR-26a-induced osteogenesis 
(Fig. 5H) groups. Gene set enrichment analysis (GSEA) 
of the KEGG pathway identified 19 pathways involved 
in chondrogenesis (Fig. 5D) and 16 pathways involved in 
osteogenesis (Fig. 5I). Pathways including the PI3K-Akt 
signaling, ECM-receptor interaction, focal adhesion, and 
regulation of the actin cytoskeleton pathways were signifi-
cantly enriched. Figure 5E, J displays the KEGG pathway 
interaction diagrams.

3.5  In Vivo Evaluation

We first evaluated the biosafety of GTU-Fe, GTU-Fe/KGN@
PDA, and GTU-Fe/miRNA@CaP through histopathological 
analysis of primary organs and the inflammatory response 
post-subcutaneous implantation. No severe inflammation 
reactions were detected in any of the groups (Fig. S15). 
Simultaneously, the biotoxicity of nanoparticles to different 
organs was studied by hematoxylin eosin (H&E) staining 
[31]. The results indicated that H&E-stained heart, liver, 
spleen, lung, and kidney samples revealed no discernible 
changes following treatment with GTU-Fe, GTU-Fe/KGN@
PDA, or GTU-Fe/miRNA@CaP (Fig. S16). Furthermore, 
blood biochemistry indicated that the hydrogel had no bio-
toxic or side effects (Fig. S17).

After a week of post-hydrogel implantation into the osteo-
chondral defects, we examined the knee joints of each rabbit. 
No obvious signs of inflammation such as redness, swell-
ing, fever, or pain were observed. Moreover, no rabbits suc-
cumbed to postoperative infection before sacrifice.

Red fluorescence in the cartilage defect zones was 
detected using a small animal in vivo fluorescence imaging 
system at 6 and 12 weeks post-implantation, confirming 
the presence of miR-26a (Fig. S18A). However, the fluo-
rescence intensity gradually weakened in a time-dependent 
manner. After performing frozen sectioning, red fluores-
cence remained visible in the defect zones under confocal 
microscopy (Fig. S18B).

Six-week post-surgery, the defects in all groups 
remained distinguishable from the surrounding tissue. 
Group I displayed unfilled defects, while Groups II and 
III showed partial filling. In Groups IV and V, the defect 
margins were obscure. However, as shown in Fig. S19, 
at 12 weeks, Group V defects were covered with shiny, 
smooth white tissue, reminiscent of articular cartilage. The 
defect size in Group I had diminished. In the remaining 
groups, the defects were also filled with smooth white tis-
sue, but the borders between the regenerated tissue and 
surrounding cartilage were evident, especially in Groups 
II and III (Fig. 6A). The macroscopic data and gradings of 
repaired articular cartilage are displayed in Fig. 6B. Group 
V scored the highest macroscopic scores at both 6 and 12 
weeks post-surgery (n = 6, p < 0.05) (Fig. 6B).

Micro-CT images were used to track the formation of 
new subchondral bone. At 6 weeks, more calcified tissue 
formed in Groups IV and V, surpassing Groups III, II, 
and I in the volume of calcified tissue (Figs. 6C and S20). 
Group I demonstrated the least subchondral BV. At 12 
weeks, Group V exhibited the most pronounced subchon-
dral bone formation, with the newly formed bone almost 
filling the entire subchondral region. The repair effect of 
Group IV also improved, albeit less than that of Group V. 
Groups II and III also revealed abundant subchondral bone 
formation, albeit significantly less than that of Groups IV 
and V. However, in Group I, scant subchondral bone was 
detectable (Figs. 6C and S20). Group V had the highest 
BV among all groups (Fig. 6D), underscoring the excellent 
osteogenic ability of miR-26a.

At 6 weeks, histological observation indicated negligi-
ble cartilage regeneration in Group I’s defect. Group II’s 
defect section was partially filled with cartilage tissue, 
but the cartilage matrix was scant. Group III’s defect con-
tained an abundant cartilage matrix. Group IV displayed 
considerable subchondral bone regeneration and a sparse 
cartilage matrix. Group V demonstrated superior subchon-
dral regeneration and cartilage regeneration. The cartilage 
matrix, indicated by Masson’s trichrome and Safranin-O 
staining, showed a small amount of collagen and GAG, 
signifying ongoing cartilage matrix production. No resid-
ual hydrogels were observed, indicating that the hydrogels 
had almost completely degraded (Fig. 6E).

At 12 weeks, Group I still had a discontinuous section, 
and the defect was filled with thin, fibrous cartilage tissue. 
Groups II and III exhibited an increased cartilage matrix. 
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Fig. 6  Macroscopic assessment of in vivo repair effect. A Gross morphology of formed tissues treated with different engineered implants after 
6 and 12 weeks. Scale bar = 4 mm. B ICRS macroscopic scores of articular cartilage for the different groups. C Representative micro-CT cor-
onal plane  images and D quantitative analysis of bone regeneration in the regenerative  osteochondral defects (BV, the bone volume). Scale 
bar = 4  mm. E Representative images of H&E, Safranine O (SO) and Masson staining of the cartilage defects at 6 and 12 weeks post-sur-
gery. Scale bar = 2 mm. F ICRS visual histological scores of repaired cartilage of the different groups. The p-value was calculated by one-way 
ANOVA test (*p < 0.05 and **p < 0.01). Data are represented as mean ± SD (n = 6)
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Subchondral bone formation improved in Group IV, and 
an abundant cartilage matrix was regenerated in Group V, 
albeit with discontinuities in the neocartilage. Group V dem-
onstrated the best cartilage regeneration, with the defects 
primarily filled with white neocartilage. This continuous 
neocartilage was similar to normal cartilage, with abundant 
cartilage matrix and collagen arrangement consistent with 
that of the normal cartilage. Complete subchondral bone 
reconstruction was observed (Fig. 6E). Group V had the 
highest ICRS scores at both 6 and 12 weeks post-surgery 
(all p < 0.05) (Fig. 6F).

Polarized light microscopy revealed an increase in col-
lagenous fiber levels from 6 to 12 weeks across all groups 
(Figs. S21 and 7A). However, at 12 weeks, the collagen-
ous fibers within the repaired tissues of Group I were dis-
organized. In Groups II and IV, the collagen fibers were 
more regular. Group III had abundant fibers, while Group 
V boasted rich and nearly vertical collagen fibers, similar 
to native cartilage. The birefringence (an indicator of col-
lagen content) of repaired cartilage was marginally weaker 
than that of the surrounding cartilage. The birefringence of 
subchondral bone in the repaired areas and adjacent tissues 
in Groups IV and V were similar (Fig. 7A).

The collagen distribution within the repaired issues is 
illustrated in Figs. S21 and 7B, C. At 12 weeks, Group I 
showed no difference of collagen distribution between the 
surface and the base zones, suggesting that only fibrous car-
tilage was formed. In Group II, collagen fibers in the surface 
zone primarily oriented between  20° and 20°, accounting 
for 34.6% of all fibers, compared to 26.4% in Group I. In 
the base zone, collagen alignment was more directed toward 
± 60°– ± 90° in Group II, reaching up to 45.4% compared 
to 42.6% in the blank group. These results improved further 
in Group III and peaked in Group V, with 44.1% and 53.0% 
of parallel collagen in the superficial zone, and 66.8% and 
68.3% in the base zone, respectively (Fig. 7B, C).

Abundant Col II staining was observed in Groups III and 
V, with the Col II level increasing from 6 to 12 weeks. In 
the control group, Col II was predominantly confined to the 
borders of host cartilage and the defect bases. Group II and 
Group IV displayed more intense Col II staining than Group 
I, particularly at the interface. Neocartilage was flawlessly 
integrated with subchondral bone in Group V. The quan-
titative analysis of positive Col II revealed that Group V 
contained significantly more Col II than the other groups 
(Fig. 7D, E).

To identify the relative expression levels of COL1A1, 
ALP, COL2A1, aggrecan, and SOX9, regenerative osteo-
chondral tissues were collected post-sacrifice and the relative 
miRNA level in each group was determined by qRT-PCR. 
Group III and V exhibited significantly higher expression 
of Col2A1, aggrecan, and SOX9 at 6 and 12 weeks than the 
other groups (all p < 0.05). Groups IV and V also showed 
higher expression of Col1A1 and ALP (Fig. S22).

3.6  Discussion

In this study, a patterned supramolecular hydrogel was fabri-
cated as the osteochondral scaffold to in situ deposit KGN@
PDA and miRNA@CaP. This hydrogel demonstrated suc-
cessful comprehensive repair of bone and cartilage, main-
taining long-term repair effects and reducing deterioration 
in vivo. These desirable outcomes were attributed to the 
stable mechanical properties, self-healing properties, high 
ROS capture ability, and controllable release of KGN and 
miR-26a. The newly formed cartilage and subchondral bone 
exhibited structural and functional similarity to native car-
tilage, indicating well-integrated tissue regeneration. This 
biomaterial-guided drug and gene delivery system [32] 
constitutes a novel approach to regulate cell behavior spa-
tiotemporally by loading different factors in specific zones 
and mimicking the natural tissue structure. Its potential 
applications extend beyond osteochondral repair, offering 
a promising solution for the repair of multiple tissue types 
in the future.

To date, numerous studies have focused on the develop-
ment of novel scaffolds that mimic the cartilage ECM [33, 
34]. Previous research has shown that oriented scaffolds 
resembling the native tissue structure have the potential to 
engineer specific tissues by enhancing cell adhesion and pro-
liferation [35, 36]. The longitudinal microtubular orientation 
of scaffolds can regulate cell migration and mass transporta-
tion, influencing the thickness and homogeneity of in vitro 
and in vivo cartilage formation [37, 38]. In our study, the 
oriented hydrogel demonstrated promise in cartilage repair, 
exhibiting increased collagen and GAG deposition compared 
to the control group. The orientation of the scaffolds effec-
tively enhanced the thickness and homogeneity of cartilage. 
The parallel orientation of microtubules facilitated efficient 
nutrient and metabolite transport to the inner part, while 
promoting homogeneous cell distribution and effective mass 
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Fig. 7  A Picrosirius red staining of regenerated tissue at 12 weeks post-surgery. Scale bar: upper, 500 µm; lower, 100 µm. B Quantitative analy-
sis of collagen fiber distribution of the repaired tissue in the surface area (upper 1/3) and base area (bottom 2/3). C Comprehensive comparison 
of collagen orientation within surface and base areas between control, GTU-Fe, GTU-Fe/KGN@PDA, GTU-Fe/miRNA@CaP, and GTU-Fe/
KGN@PDA/miRNA@CaP groups presented by polar coordinates. D Representative images of immunohistochemistry staining of Col II of the 
cartilage defects at 6 and 12 weeks post-surgery. Scale bar = 1 mm. E Quantification of Col II expression for the different groups. The p-value 
was calculated by one-way ANOVA test (*p < 0.05 and **p < 0.01). Data are represented as mean ± SD (n = 6)
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transportation, resulting in simultaneous cartilage formation 
in both outer and inner parts; this contributed to the regen-
eration of thick and homogeneous cartilage.

KGN is a non-protein small molecule known for induc-
ing chondrogenic differentiation. While direct injection of 
KGN resulted in significant improvement in tissue repair 
for cartilage defects [39], in vivo studies have demonstrated 
that sustained delivery systems using small molecule therapy 
have greater potential for cartilage regeneration [13] and even 
for treating osteoarthritis (OA) [16]. In our study, Group III 
exhibited abundant GAG and Col II content in the cartilage 
defects. KGN preconditioning likely enhanced the chondro-
genic differentiation of MSCs by promoting their commitment 
to a precartilaginous stage through enhanced JNK phosphoryl-
ation and suppressed β-catenin signaling [40]. The sustained 
release of KGN from the hydrogels not only promoted chon-
drogenic differentiation of MSCs, but also significantly inhib-
ited hypertrophy, as reported previously [41]. The long-term 
release of KGN efficiently and persistently activated multiple 
genes and signaling pathways, promoting chondrogenesis and 
resulting in regenerated tissues with well-matched histomor-
phology and biomechanical performance. Additionally, KGN 
protected the expression of cartilage matrix components such 
as Col II and aggrecan in IL-1β-stimulated chondrocytes, indi-
cating its potential to promote cartilage matrix synthesis in an 
inflammatory environment [42].

Previous studies reported abnormal expression of certain 
miRNAs (miR-133, miR-135, miR-138, miR-637, and miR-
26a) during osteogenic differentiation of MSCs, suggest-
ing their involvement in bone repair [43, 44]. Li et al. [21] 
investigated the delivery of MSCs transfected with miR-26a-
loaded hydrogel in a mouse calvarial defect model, dem-
onstrating the bone repair-promoting effects of miR-26a, 
which regulates angiogenesis-osteogenesis coupling. The 
interconnectivity between vasculature formation and bone 
regeneration deserves increasing attention in tissue engineer-
ing [45]. The use of 3D hybrid nanofiber aerogels loaded 
with miR-26a also had enhanced the healing of cranial bone 
defects [46]. Local administration of miR-26a-5p was found 
to accelerate femur fracture healing in mice [47]. Consist-
ent with previous studies [48], our results demonstrated that 
delivery of miR-26a led to reduced expression of GSK-3β, 
further confirming its osteogenic role in vitro. The cumula-
tive release rate of miR-26a was approximately 55% after 
7 days of incubation, enhancing osteogenesis through the 
downregulation of GSK-3β. miR-26a targets and inhibits 

GSK-3β, thereby promoting osteogenic differentiation [49, 
50]. Moreover, upregulating the expression of miR-26a has 
been shown to attenuate cartilage injury, stimulate chondro-
cyte proliferation, and inhibit apoptosis in rats with rheuma-
toid arthritis (RA) [51]. miR-26a has also been demonstrated 
to increase vascularization and coordinate the coupling of 
angiogenesis and osteogenesis, which is crucial for neo-bone 
maturation [46]. miR-26a actively participates in the osteo-
genic differentiation of MSCs, enhancing ALP expression 
[52, 53]. The evaluation of these scaffold-based miR-26a 
applications to enhance bone formation in vivo is commonly 
performed through micro-CT analysis, which assesses bone 
bridging, new BV, as well as bone area and mineral density, 
as shown in Fig. 6 [54]. The reconstruction of subchondral 
bone was significantly improved in the GTU-Fe/miRNA@
CaP group.

Stable bone ingrowth at the bottom (bone side) of the 
implant is crucial for providing appropriate mechanical sup-
port to the developing overlying cartilage. The capacity of 
articular cartilage to heal when separated from the subchon-
dral bone is limited. In cases of delaminated cartilage in the 
knee joint, even without a transchondral or flap tear, it has 
been recommended that the cartilage be debrided as it will 
not reattach to its bony bed [55]. Previous studies have also 
emphasized the importance of healthy subchondral bone in 
articular cartilage repair [56], which aligns with the findings 
of the present study.

Given the positive effects of KGN on cartilage and miR-
26a on bone, our results indicate that the delivery of KGN 
and miR-26a yielded a better approximation of the nor-
mal zonal collagen network and subchondral regeneration 
compared to the other groups. The restored collagen fibrils 
induced by KGN treatment, mimicking the primary verti-
cal orientation in the base zone of normal cartilage, may 
significantly enhance tissue stiffness and protect the solid 
matrix against large distortions and strains at the subchon-
dral junction [57]. This effect could potentially contribute 
to the persistent and enhanced repair of cartilaginous tis-
sue. Histological observations and quantification of GAG 
and Col II content confirmed significantly higher deposition 
in Group V compared to the other groups, supporting the 
gene expression findings. Group V demonstrated improved 
quality of repaired cartilage, as evidenced by histological 
staining, and better subchondral bone reconstruction as 
assessed by micro-CT. The histological staining of Group 
V revealed more hyaline-like cartilage in terms of ECM, 
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cartilage lacuna, and type II collagen [58]. Visual evalua-
tion of collagen orientation and distribution indicated bet-
ter alignment and distribution of collagen fibers, primar-
ily directed toward the subchondral bone plate in the basal 
zone of Group V compared to the other groups. Moreover, 
Group V exhibited a significantly larger area of cartilage 
and subchondral regeneration compared to the other groups. 
Collectively, these findings demonstrate that KGN/miR-26a 
treatment via oriented hydrogel-guided delivery significantly 
improved major parameters of stratified zonal in situ chon-
drogenesis and osteogenesis.

4  Conclusions

In this study, we drew inspiration from the natural Haversian 
canal structure of bone and employed a film-rolling approach 
to fabricate an oriented osteochondral scaffold hydrogel. A 
significant innovation was the in situ deposition of both 
KGN and miR-26a on a patterned hydrogel matrix through 
dynamic and responsive coordination complexation between 
metal ions and their ligands. Our meticulously designed 
osteochondral plug exhibited remarkable capacity to pro-
mote the restoration of osteochondral defects in a rabbit 
model, leading to the successful integration of neocartilage 
with the subchondral bone. This biomaterial-guided delivery 
approach represents a significant advance toward enhancing 
osteochondral repair and achieving seamless integration in 
the near future.
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