
1

Vol.:(0123456789)

Scientific Reports | (2023) 13:20174 | https://doi.org/10.1038/s41598-023-47354-8

www.nature.com/scientificreports

Efficient end‑to‑end long‑read
sequence mapping using
minimap2‑fpga integrated
with hardware accelerated chaining
Kisaru Liyanage 1,2,3, Hiruna Samarakoon 1,2,3, Sri Parameswaran 4 &
Hasindu Gamaarachchi 1,2,3*

minimap2 is the gold-standard software for reference-based sequence mapping in third-generation
long-read sequencing. While minimap2 is relatively fast, further speedup is desirable, especially
when processing a multitude of large datasets. In this work, we present minimap2-fpga, a hardware-
accelerated version of minimap2 that speeds up the mapping process by integrating an FPGA kernel
optimised for chaining. Integrating the FPGA kernel into minimap2 posed significant challenges
that we solved by accurately predicting the processing time on hardware while considering data
transfer overheads, mitigating hardware scheduling overheads in a multi-threaded environment, and
optimizing memory management for processing large realistic datasets. We demonstrate speed-ups in
end-to-end run-time for data from both Oxford Nanopore Technologies (ONT) and Pacific Biosciences
(PacBio). minimap2-fpga is up to 79% and 53% faster than minimap2 for ∼ 30× ONT and ∼ 50× PacBio
datasets respectively, when mapping without base-level alignment. When mapping with base-level
alignment, minimap2-fpga is up to 62% and 10% faster than minimap2 for ∼ 30× ONT and ∼ 50×
PacBio datasets respectively. The accuracy is near-identical to that of original minimap2 for both
ONT and PacBio data, when mapping both with and without base-level alignment. minimap2-fpga is
supported on Intel FPGA-based systems (evaluations performed on an on-premise system) and Xilinx
FPGA-based systems (evaluations performed on a cloud system). We also provide a well-documented
library for the FPGA-accelerated chaining kernel to be used by future researchers developing sequence
alignment software with limited hardware background.

Third-generation long-read sequencing has gained significant popularity in the last few years and was recently
acclaimed as the Method of the Year 20221. In numerous long-read sequence analysis pipelines, minimap22 is
used as the gold standard tool for sequence mapping/alignment. Notably, minimap22 is the preferred choice for
sequence mapping in pipelines offered by leading third-generation sequencing companies, such as ONT (Guppy
aligner) and PacBio (pbmm2). Due to minimap2’s ubiquitous use, several previous studies have attempted to
accelerate minimap23–6. However, most of these efforts have focused on optimising isolated parts of minimap2 in
a quarantined environment (not end-to-end integrated), with the only exception being CPU-based optimisations
(using Intel AVX-512 instructions) by Kalikar et al.3.

End-to-end integration of optimisations back into bioinformatics software is crucial to harness the full poten-
tial of these optimisations in a practical and realistic manner. In fact, only a complete end-to-end integration
can warrant that any optimisation results in a truly useful and efficient bioinformatics workflow. Integrated
accelerations ensure that the performance gains in individual components seamlessly translate into overall
improvements in the software run-time, ultimately expediting the processing and enhancing the efficiency of
bioinformatics workflows. In this paper, we present minimap2-fpga, a Field Programmable Gate Array (FPGA)
based hardware-accelerated version of minimap2 that is end-to-end integrated. minimap2-fpga speeds up the
mapping process of the widely used and routinely performed bioinformatics workflow - reference-based sequence

OPEN

1School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia. 2Genomics
Pillar, Garvan Institute of Medical Research, Sydney, NSW, Australia. 3Centre for Population Genomics, Garvan
Institute of Medical Research and Murdoch Children’s Research Institute, Melbourne, Australia. 4School of
Electrical and Information Engineering, University of Sydney, Sydney, NSW, Australia. *email: h.gamaarachchi@
garvan.org.au

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-47354-8&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2023) 13:20174 | https://doi.org/10.1038/s41598-023-47354-8

www.nature.com/scientificreports/

mapping. minimap2-fpga supports mapping reads from both ONT and PacBio (though giving a higher speed-up
for ONT read mapping).

The acceleration of the chaining step within minimap2 has been explored in numerous previous studies, given
its status as a key computational bottleneck within the software3–6. Sadasivan et al.4 used GPUs for accelerat-
ing this chaining step. Guo et al.5 accelerated the chaining step using FPGA, mainly targeting the read overlap
mapping functionality in minimap2. Our previous work6 accelerated chaining using FPGAs targeting human
reference-based mapping functionality in minimap2. These three works that use loosely coupled accelerator
platforms (GPUs, FPGAs), only accelerate chaining in isolation and end-to-end integration is not performed
with minimap2, thus limiting their practical utility. In contrast, Kalikar et al.3 use tightly coupled AVX-512 vector
extensions available in modern Intel CPUs to accelerate chaining and integrate the acceleration to minimap2.

The isolated chaining step accelerator in our previous work6 combined a pipelined and parallel FPGA-based
hardware architecture with a multi-threaded software execution of the chaining step computation. The system
was able to split chaining tasks between CPU (multi-threaded) and FPGA (multi-kernel) platforms efficiently
and process them in parallel to speed up the computation. Moreover, we demonstrated its capability to effectively
process large-scale and realistic datasets frequently encountered in bioinformatics workflows. In this work, we
integrate our previous FPGA-based hardware architecture6 into minimap2 to enable end-to-end program execu-
tion, while exposing the accelerated chaining kernel as a well-documented software library.

Integrating the FPGA kernel into minimap2 posed significant challenges when compared to designing the
FPGA core presented in our prior work6. While data transfer overhead was previously considered6, the integration
process exposed additional scheduling overheads when working with the multi-threaded execution environment
in minimap2, resulting in marginal end-to-end speedup. In this paper, we present optimisation techniques for the
splitting of chaining computations between the hardware accelerator and the CPU, while efficiently scheduling
hardware-chosen computations on the accelerator, to achieve further acceleration.

We also discuss an unexpected caveat that arose when integrating the design, impacting final mapping accu-
racy, a factor not apparent in isolated testing environments. We detail how the FPGA design was modified to
mitigate this issue. We believe that our findings will prove valuable for other bioinformatics tools requiring
heterogeneous computing accelerations, emphasising the importance of integrating accelerated kernels back
into software workflows. Our work highlights the potential for disruptive challenges which arise when integrat-
ing isolated acceleration of a single algorithm in a complex software environment, underpinning the need for
end-to-end system integration.

Our end-to-end integrated minimap2-fpga requires a heterogeneous computing system that contains a CPU
connected to an FPGA through PCI-Express. FPGA from the mainstream FPGA vendors Xilinx (now under
AMD) and Intel (former Altera) are supported. Further, we have ensured that our implementation works on
both locally set up (on-premises) computing systems and the systems available on the cloud (Amazon AWS and
Intel DevCloud). minimap2-fpga is available at https://​github.​com/​kisar​ur/​minim​ap2-​fpga and the accelerated
chaining library called chain-fpga is available at https://​github.​com/​kisar​ur/​chain-​fpga.

Results
minimap2‑fpga and chain‑fpga
minimap2-fpga is an FPGA-accelerated version of the minimap2 software designed for reference-based sequence
mapping. minimap2-fpga can be run using the same commands as the original minimap2 software. The reposi-
tory has separate branches for different FPGA platforms. The xilinx branch of the repository contains the source
code for Xilinx FPGA, while the intel branch contains the source code for Intel FPGA. Despite being developed
using platform-agnostic OpenCL, the build workflows and HLS pragmas used to generate efficient hardware
differed between the two platforms, resulting in the need for separate branches. To enhance user convenience,
we provide binaries for two platforms: 1. Intel Arria 10GX FPGA and 2. Xilinx UltraScale+ VU9P based FPGA
available on cloud AWS EC2 F1 instances. An example of how a user can set up and execute minimap2-fpga on
an AWS cloud (f1.2xlarge instance loaded with FPGA Developer AMI Version 1.12.1) is as below:

chain-fpga is the isolated library API for the FPGA-based chaining which could be used in various bioin-
formatics tool development where chaining is a critical computational hotspot (e.g., sigmap7). This library API
offers an easy-to-use interface for integrating the chaining accelerator into other bioinformatics tools without
requiring expertise in custom hardware development. Similar to the minimap2-fpga repository, this repository

https://github.com/kisarur/minimap2-fpga
https://github.com/kisarur/chain-fpga

3

Vol.:(0123456789)

Scientific Reports | (2023) 13:20174 | https://doi.org/10.1038/s41598-023-47354-8

www.nature.com/scientificreports/

also contains two separate branches for Xilinx and Intel FPGA, along with pre-compiled binaries. The following
are the three key API functions supported by the library API:

Performance comparison
The end-to-end run time of minimap2-fpga was benchmarked on a cloud Xilinx FPGA system and an on-
premises Intel FPGA system. To represent realistic workloads, two large and complete datasets were employed
for the benchmarks: a ∼ 30× ONT human dataset with a size of 176 GB and a ∼ 50× PacBio CCS human data-
set with a size of 311 GB (see Materials and Methods). This intentional selection distinguishes our work from
previous hardware-accelerated systems, which only performed benchmarks on small datasets , possibly due to
challenges in managing memory effectively. For example, FPGA based minimap2’s chaining step acceleration by
Guo et al.5 has been benchmarked against a 4.6 GB sized Caenorhabditis Elegans dataset and as we have shown
in our prior work6, the maximum human dataset size it could support was 32 GB. We compared the run time
of minimap2-fpga with the original minimap2 software in two different modes for each system and dataset: one
with base-level alignment enabled (w/alignment) and the other without (w/o alignment).

For nanopore data (Fig. 1a), minimap2-fpga is 79% faster than minimap2 on the on-premise Intel FPGA
system and 72% faster than minimap2 on the cloud Xilinx FPGA system when mapping without base-level
alignment. When mapping with base-level alignment enabled, minimap2-fpga shows a speedup of 62% and 40%
on the on-premise and cloud systems, respectively. On PacBio data (Fig. 1b), minimap2-fpga is 53% faster than
minimap2 on the on-premise Intel FPGA-based system and 31% faster on the cloud Xilinx FPGA-based system
when mapping without base-level alignment. With base-level alignment enabled, minimap2-fpga shows a speedup
of 10% and 7% on the on-premise Intel and cloud Xilinx systems, respectively. It should be noted that these
speed-ups represent end-to-end run-time improvements of minimap2-fpga over minimap2 under multi-threaded
executions. minimap2-fpga’s end-to-end run-time includes all overheads due to the hardware accelerator (e.g.,
initialisation, data transfer between the host and the device, hardware scheduling, etc.), in addition to all steps
from reading the genomic reads from the disk to writing the alignment results to the disk.

The variation in performance improvement across different datasets and modes can be attributed to the
proportion of time spent on chaining (i.e. “mm_chain_dp” function which is the FPGA-accelerated compo-
nent), out of the total execution time (Fig. 1c). For nanopore data, original minimap2 spends 67% of its time
on chaining when performed without base-level alignment (Fig. 1c), and this is reduced to 34% after FPGA
acceleration (Fig. 1d). When nanopore data is processed with base-level alignment, the chaining component on
original minimap2 takes up 50% of the total time, but this drops to 17% after being accelerated on FPGA. For
PacBio data, the original minimap2 spends 71% of its total execution time on chaining when mapping without
base-level alignment, which is reduced to 40% after FPGA acceleration. When PacBio data is processed with
base-level alignment, minimap2 spends only 19% of its total execution time on chaining, which is reduced to
4% after being accelerated on FPGA.

Accuracy evaluation
The accuracy evaluation of the final mappings was performed using two methods; 1. reference software (mini-
map2) independent method that uses simulated reads where the exact mapping location is known; 2. reference
software (minimap2) dependent method that considers real reads mapped using original minimap2 to be the
truth set.

Using simulated reads

For nanopore reads, the accuracy of minimap2-fpga is near-identical to the accuracy of original minimap2 for
both with base-level alignment (Fig. 1e) and without base-level alignment (Fig. 1f), on both computer systems
(Intel FPGA and Xilinx FPGA systems), as demonstrated by the accuracy curves overlapping one another.
The minuscule differences in the accuracy are highlighted in bold in Table 1. The top half of Table 1 contains
the accuracy evaluation for sequence mapping with base-level alignment enabled and the bottom half is for
sequence mapping without base-level alignment. In Table 1, the first column shows the mapping quality threshold
(MAPQ_T). For each system in Table 1, the corresponding first column gives the number of reads mapped with
MAPQ>=MAPQ_T and the second column gives the number of wrong mappings included in those mappings.
Based on data in Table 1, error rate of mapped reads (accumulative number of wrong mappings/accumulative
number of mapped reads) and the fraction of mapped reads (accumulative number of mapped reads/total
number of mapped reads) were calculated (Supplementary Table S1) and plotted (Fig. 1e and f). In Fig. 1e and f,

4

Vol:.(1234567890)

Scientific Reports | (2023) 13:20174 | https://doi.org/10.1038/s41598-023-47354-8

www.nature.com/scientificreports/

0
10
20
30
40
50
60
70
80
90

100

w/o alignment w/ alignment w/o alignment w/ alignment

oiBcaPTNO

%
 C

PU
 T

im
e

mm_chain_dp ksw_extd2_sse41 rs_sort_128x

collect_seed_hits mm_idx_get others

0
10
20
30
40
50
60
70
80
90

100

w/o alignment w/ alignment w/o alignment w/ alignment

oiBcaPTNO
%

 C
PU

 T
im

e

mm_chain_dp ksw_extd2_sse41 rs_sort_128x

collect_seed_hits mm_idx_get others

27
8.

2

40
0.

2

39
0.

2

62
5.

4

15
5

24
7.

2

22
7.

2

44
6

0

100

200

300

400

500

600

700

w/o alignment w/ alignment w/o alignment w/ alignment

Intel FPGA-based Xilinx FPGA-based

Ti
m

e
(m

in
s)

minimap2 minimap2-fpga

15
9.

4

56
4.

7

20
7.

1

11
93

.8

10
4.

5

51
5

15
8

11
12

0

200

400

600

800

1000

1200

1400

w/o alignment w/ alignment w/o alignment w/ alignment

Intel FPGA-based Xilinx FPGA-based

Ti
m

e
(m

in
s)

minimap2 minimap2-fpga

10-6 10-5 10-4 10-3 10-2
Error rate of mapped reads

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

Fr
ac

�o
n

of
 m

ap
pe

d
re

ad
s

minimap2
minimap2-fpga (Intel FPGA-based)
minimap2-fpga (Xilinx FPGA-based)

10 -6 10 -5 10 -4 10 -3 10 -2
Error rate of mapped reads

0.97

0.975

0.98

0.985

0.99

0.995

1

Fr
ac

�o
n

of
 m

ap
pe

d
re

ad
s

minimap2
minimap2-fpga (Intel FPGA-based)
minimap2-fpga (Xilinx FPGA-based)

c d

e f

a b

Figure 1.   Run-time performance, function-level profiling and accuracy comparisons of minimap2 vs.
minimap2-fpga. (a) Run-time performance results of original minimap2 vs. minimap2-fpga for ONT ∼ 30×
dataset. (b) Run-time performance results of original minimap2 vs. minimap2-fpga for PacBio ∼ 50× dataset. (c)
Function-level profiling results of original minimap2. Profiling was done with the Perf profiler8 on Intel FPGA-
based system for subsets of ONT and PacBio datasets. (d) Function-level profiling results of minimap2-fpga.
Profiling was done with the Perf profiler8 on Intel FPGA-based system for subsets of ONT and PacBio datasets.
(e) Accuracy comparison performed with simulated ONT reads for original minimap2 vs. minimap2-fpga
with base-level alignment (raw values in Table 1, plotted data points in Supplementary Table S1). (f) Accuracy
comparison performed with simulated ONT reads for original minimap2 vs. minimap2-fpga without base-level
alignment (raw values in Table 1, plotted data points in Supplementary Table S1).

5

Vol.:(0123456789)

Scientific Reports | (2023) 13:20174 | https://doi.org/10.1038/s41598-023-47354-8

www.nature.com/scientificreports/

the horizontal axis show the error rate of mapped reads and the vertical axis show the fraction of mapped reads
corresponding to the error rate.

Similar to nanopore reads, the accuracy for PacBio reads from minimap2-fpga is also near-identical to that
of original minimap2 (Table 2, which has the same structure as Table 1 explained in the previous paragraph).
The mapping quality (MAPQ) score distribution for PacBio reads had only 3 distinct values for both with and
without base-level alignment. For both with and without base-level alignment, the number of reads mapped with
MAPQ>=MAPQ_T by minimap2-fpga, is equal to or even slightly higher than that of minimap2. The number
of unmapped reads was the same on both minimap2 and minimap2-fpga.

Using real reads
For the ∼ 30× ONT dataset, 23,228 out of 9,083,052 reads were unmapped in both versions of minimap2 (mini-
map2 and minimap2-fpga) on both Intel FPGA-based system and the Xilinx FPGA-based system (Table 3). On

Table 1.   Accuracy comparison with ONT simulated reads.Significant values are in bold. Differences are
highlighted in bold.

MAPQ_T

minimap2

minimap2-fpga

Intel FPGA-based system Xilinx FPGA-based system

No. reads with MAPQ >=
MAPQ_T No. wrong mappings

No. reads with MAPQ >=
MAPQ_T No. wrong mappings

No. reads with MAPQ >=
MAPQ_T No. wrong mappings

With base-level alignment

60 960462 0 960470 0 960464 0

59 10210 1 10213 1 10209 1

38 20705 1 20694 1 20704 1

8 1477 1 1477 1 1477 1

5 492 2 492 2 492 2

4 492 1 492 1 492 1

3 546 5 544 5 544 5

2 568 2 570 2 570 2

1 2730 456 2730 456 2730 456

0 2198 1241 2198 1241 2198 1241

Unmapped 120 120 120

Without base-level alignment

60 970514 0 970515 0 970516 0

22 16981 1 16981 1 16979 1

6 1193 1 1194 1 1195 1

5 1176 3 1177 3 1177 3

4 1107 1 1106 1 1104 1

3 1131 9 1130 9 1130 8

2 1223 10 1222 10 1222 10

1 1525 22 1525 22 1525 22

0 5030 1985 5030 1985 5032 1985

Table 2.   Accuracy comparison with PacBio simulated reads. Differences are highlighted in bold.

MAPQ_T

minimap2

minimap2-fpga

Intel FPGA-based system Xilinx FPGA-based system

No. reads with MAPQ >=
MAPQ_T No. wrong mappings

No. reads with MAPQ >=
MAPQ_T No. wrong mappings

No. reads with MAPQ >=
MAPQ_T No. wrong mappings

With base-level alignment

60 1167692 0 1167691 0 1167691 0

1 1499 70 1500 70 1500 70

0 961 549 961 549 961 549

Unmapped 64 64 64

Without base-level alignment

60 1164914 0 1166460 0 1166460 0

1 1549 1

0 3738 795 3741 793 3741 792

6

Vol:.(1234567890)

Scientific Reports | (2023) 13:20174 | https://doi.org/10.1038/s41598-023-47354-8

www.nature.com/scientificreports/

the Intel FPGA-based system, 9,045,287 mappings were the same in both versions of minimap2, making the
output similarity between the two versions 99.58%. On the Xilinx FPGA-based system, 9,053,718 mappings
were the same in both versions of minimap2, making the output similarity between the two versions 99.68%.

For the ∼ 50× PacBio dataset, 62,461 and 62,492 out of 11,714,594 reads were unmapped in both versions
of minimap2 on Intel FPGA-based system and the Xilinx FPGA-based system, respectively. On the Intel FPGA-
based system, 11,625,209 mappings were the same in both versions of minimap2, making the output similarity
between the two versions 99.24%. On the Xilinx FPGA-based system, 11,635,943 mappings were the same in
both versions of minimap2, making the output similarity between the two versions 99.33%.

The output similarity between minimap2 and minimap2-fpga is higher on the Xilinx FPGA-based system
than on the Intel FPGA-based system due to the higher maximum loop trip count (H=1024 vs H=512) possible
on Xilinx FPGA-based system (detailed in Materials and Methods).

Energy‑delay product comparison
To evaluate the energy efficiency of our proposed work, we estimated the energy-delay product (Materials and
Methods, Supplementary Note 5) of both minimap2 and minimap2-fpga on the cloud Xilinx FPGA-based system
using the ∼ 30× ONT and ∼ 50× PacBio datasets. For the ONT dataset, minimap2-fpga demonstrates a 67.13%
reduction in the energy-delay product compared to minimap2 when mapping without base-level alignment;
and, 46.55% when mapping with base-level alignment. For the PacBio dataset, these values were 54.85% and
5.53%, respectively.

Discussion
Previous acceleration work
Second-generation sequence analysis has been extensively optimized through various approaches, including
CPU-based optimizations9,10, GPU-based optimizations11 and FPGA-based optimizations12,13 and custom MPSoC
designs14. FPGA-based accelerations include a work12 that achieves a speedup over second-generation sequence
analysis tool - Bowtie15 in both single-core and 16-core performance, a work16 that accelerates BWA-SW aligner17,
and an end-to-end integrated tool13 with output accuracy comparable to BWA-MEM18. The survey by Ng et al.19
assesses the performance of FPGA-based acceleration work for second-generation sequence analysis under four
main categories: pairwise sequence alignment, database search, multiple sequence alignment, and mapping. The
survey by Salamat and Rosing20 explores the FPGA-based accelerations of various DNA alignment algorithms,
including Smith-Waterman, hash-table-based algorithms, and BWT with FM-index, among others. Commercial
FPGA-based solutions, such as the DRAGEN system accompanying Illumina sequencers, have also emerged,
benefiting from prior academic works in this field.

The emergence of third-generation sequencing, which offers massive throughput and ultra-long reads, has
amplified the need for accelerated sequence analysis. CPU-based optimizations for third-generation sequence
analysis include the acceleration of base-level alignment of minimap2 on three processors21, multi-stage accel-
eration of minimap2 on modern CPUs with Intel AVX-512 instructions3. GPU-based optimizations include the
acceleration of adaptive banded event alignment in ONT raw signal analysis22 and acceleration of chaining step
of minimap24. FPGA-based solutions include acceleration of the base-calling task in Oxford Nanopore sequence
analysis23, an integration24 of the GACT-X aligner architecture25 with minimap2, acceleration of minimap2’s
chaining step5,6 and acceleration of selective genome sequencing26.

Challenges in hardware‑software integration
Accelerating an isolated section of a large software tool on hardware accelerator platforms is commonly seen in
the domain of hardware acceleration. However, integrating such accelerators with the rest of the software tools
is less common and can pose significant challenges. A naive integration could diminish the astounding speed-
up gained by the accelerator alone for the isolated portion of the software tool, and in some cases, even slow
it down. Overcoming these challenges is necessary to achieve a speed-up in the end-to-end time. However, in
the bioinformatics domain, integrating such accelerators with the software tool is crucial to provide a complete
genomics analysis flow that can run with the accelerated tool.

minimap2-fpga is an end-to-end FPGA accelerated version for the gold-standard third-generation genom-
ics sequence alignment tool minimap2. This integration resulted in a significant speed-up in the end-to-end

Table 3.   Accuracy comparison with real reads.

Intel FPGA-based
System

Xilinx FPGA-based
System

ONT PacBio ONT PacBio

Total reads 90,83,052 1,17,14,594 90,83,052 1,17,14,594

Unmapped in both 23,228 62,461 23,228 62,492

Same 90,45,287 1,16,25,209 90,53,718 1,16,35,943

Mismatches 14,535 26,883 6106 16,159

Exclusively aligned by minimap2 2 10 0 0

Exclusively aligned by minimap2-fpga 0 31 0 0

Same % 99.58 99.24 99.68 99.33

7

Vol.:(0123456789)

Scientific Reports | (2023) 13:20174 | https://doi.org/10.1038/s41598-023-47354-8

www.nature.com/scientificreports/

time of the tool, while preserving the accuracy of the final output. Achieving this speed-up while maintaining
accuracy required careful fine-tuning of all stages of the hardware-software processing pipeline, which involved
addressing several engineering challenges. To enhance the accuracy of the final output while staying within the
FPGA’s logic resource constraints, we made novel architectural changes to our previous hardware accelerator
for isolated chaining6. We also created linear-regression based models to predict the time taken for each chain-
ing task on hardware and software, allowing for more intelligent task-splitting decisions. To optimize access
to a smaller number of hardware accelerator units from a larger number of software threads, we developed a
scheduling mechanism.

OpenCL for accelerating bioinformatics kernels
We utilized OpenCL High-Level Synthesis (HLS) instead of a Hardware Descriptive Language (HDL) such as
Verilog or VHDL for hardware accelerator implementation. HLS allowed for the accelerator to be designed using
a high-level language similar to the C programming language, with the HLS compiler being considerably guided
manually by appropriate compiler directives to generate the desired hardware. While using HDL instead of HLS
could have improved the performance and FPGA resource usage of the accelerator by allowing for fine-tuning
and optimization at a finer granularity, using HLS provided greater flexibility in making changes to an already
designed hardware with significantly less development time. For instance, when the chaining step accelerator in
this work needed to be modified from the previous version6 to the current version to improve the accuracy of the
output it generates, the changes could be implemented (after the architectural changes were decided at a higher
level) with relatively lesser time and effort. If this were to be done with HDL, it would require significantly more
time and effort to implement, verify and debug the additional features added to the accelerator. This is particularly
beneficial for bioinformatics software like minimap2, which is fast-evolving and requires quick implementation
of future algorithm changes in the hardware.

Future work
Once the chaining step of minimap2 is accelerated by ∼ 4× (on average) in this work, the other sections of the tool
such as ksw_extd2_sse41, rs_sort_128x have now become the hotspots (see Fig. 1d). To get even better improve-
ments in the tool’s end-to-end time, future research can design hardware accelerators for these sections as well
and integrate the accelerators into the rest of the software using the same techniques discussed in this work. In
addition to creating specialized hardware, some work3,27 have already improved the software performance of core
algorithms used in these remaining hotspots and such work can also be integrated into our work to get better
performance improvements in end-to-end time. Furthermore, for sequence analysis applications such as selective
sequencing, which sequences specific regions or targets of interest within the genome, minimap2 is employed
without base-level alignment (e.g. readfish28). minimap2-fpga, which offers higher speed-ups for mapping tasks
that do not require base-level alignment, can be used as a replacement for minimap2 to achieve speed-ups in
such selective sequencing applications.

Materials and methods
Computer systems and datasets
To evaluate the performance and accuracy with real sequencing data, two publicly available datasets were used:
a NA12878 sample sequenced on an ONT PromethION sequencer (SRA Accession no. SRX11368472, 9.1M
reads, 93.4 Gigabases29); and an HG002/NA24385 sample sequenced on a PacBio Sequel II (15+20 kb CCS, SRA
Accession no. PRJNA586863, 11.7M reads, 166.2 Gigabases30). To evaluate accuracy using simulated sequencing
data: 1 million synthetic ONT long reads were simulated from hg38 human reference genome using squigulator31
(ONT raw signal data in BLOW5 format32) followed by buttery-eel33 (basecall signal data); and, ∼ 1.2 million
synthetic PacBio CCS reads were simulated using pbsim34 from hg38 reference.

The on-premise Intel FPGA-based system used for performance and accuracy benchmarking was a het-
erogeneous computing system comprised of a 20-core Intel Xeon Gold 6148 CPU (2.40 GHz) with 754 GB of
RAM and an Intel Programmable Acceleration Card (Intel Arria 10 GX 1150 FPGA) with 8 GB DDR4 onboard
memory. The cloud Xilinx FPGA-based system was an Amazon EC2 F1 instance (f1.2xlarge) with 8 vCPUs, 122
GiB instance memory and a Xilinx UltraScale+ VU9P based FPGA device.

Performance, accuracy and energy‑delay product evaluation
To compare the runtime performance of minimap2 and minimap2-fpga, the ∼ 30× ONT and the ∼ 50× PacBio
datasets were mapped against hg38 human reference genome using minimap2-fpga and minimap2, with and
without base-level alignment. Both minimap2 and minimap2-fpga were run with 8 CPU threads, on both cloud
Xilinx FPGA system and on-premise Intel FPGA system (Supplementary Note 4).

To evaluate accuracy using simulated sequencing data, the generated simulated reads were mapped to the
hg38 human reference genome using minimap2-fpga and minimap2, with and without base-level alignment. The
outputs from both the computer systems were then evaluated using the mapeval utility in paftools scripts available
under the minimap2 repository. For real data (ONT ∼ 30× and the PacBio ∼ 50× datasets), the mapping output
generated by original minimap2 (with base-level alignment) software was considered the truth-set. The output
generated by minimap2-fpga (with base-level alignment) for real data was compared against the truth-set using
a SAM comparison utility35 (Supplementary Note 4).

To evaluate the energy efficiency of minimap2-fpga and minimap2, the energy-delay product
( EDP = Energy × Runtime where Energy = Power × Runtime ) was estimated on the cloud Xilinx FPGA-based
system, for both ∼ 30× ONT and ∼ 50× PacBio datasets (Supplementary Note 5). The FPGA power consump-
tion was measured using the fpga-describe-local-image -S 0 -M command36 available on the Amazon EC2 F1

8

Vol:.(1234567890)

Scientific Reports | (2023) 13:20174 | https://doi.org/10.1038/s41598-023-47354-8

www.nature.com/scientificreports/

instances. Due to the unavailability of a dedicated measurement method for the Intel Xeon E5-2686 v4 CPU on
the cloud Xilinx FPGA-based system, the CPU power consumption was estimated by scaling the thermal design
power (TDP) by the CPU core utilisation of minimap2-fpga and minimap2 (Supplementary Note 5). Note that
the energy estimation was only conducted for the cloud Xilinx FPGA-based system, as we did not have root
permission for the on-premise Intel FPGA-based system.

minimap2‑fpga development, optimisation and integration
minimap2-fpga was implemented using C/C++ and OpenCL framework. To accelerate the compute-intensive
chaining step, minimap2-fpga utilizes either the custom FPGA-based hardware accelerator (implemented using
OpenCL HLS, extending our previous work6) or the CPU-based software implementation, based on the predicted
hardware/software execution times of each chaining task. To schedule chaining tasks on hardware while mini-
mising the waiting times to access hardware accelerator kernels, an optimized scheduling algorithm has been
introduced. Memory management in minimap2-fpga has been optimised for handling large realistic datasets in
reference-based sequence mapping efficiently.

CPU‑FPGA heterogeneous system architecture
The proposed hardware-software heterogeneous system running minimap2-fpga is a host-device architecture
interconnected through a PCI Express (PCIe) interface (Fig. 2a). The host component contains a multi-core
CPU, capable of running software with parallel threads. The device contains an FPGA, configured with multiple
hardware kernels, each capable of processing a separate chaining task (a detailed view of a hardware kernel is
available in Supplementary Fig. S2). Note that the number of hardware kernels that can be configured on the

Th
re

ad
 Y

 Ttotal

Tsoftware

PCIe

D
R

A
M

C
ha

in
in

g
D

at
a

PCIe

D
R

A
M

C
ha

in
in

g
D

at
a

FPGA

Kernel N
...

CPU

C
or

e
Y

C
or

e
1

...

Chaining Compute

K
ernel 1

Scores FIFO

Anchors FIFO

Host for minimap2-fpga software

Device for hardware-accelerated
chaining

Th
re

ad
 1

Th
re

ad
 t

Find Thardware,Tsoftware

i = 0

i < N

Find Twait on Queue i

^ ?
 Thardware

Ttotal = Twait + Thardware

^ ?

i += 1

Linear Regression
Models

Software chaining on
Thread t

Enqueue chaining task
into Queue i

Hardware chaining on
Kernel i when ready

... ...

Yes

No

No

No

Yes

Yes

minimap2-fpga multi-
threaded execution

Hardware/software execution of a chaining task

 Tsoftware

a b

Ke
rn

el
 1

Ke
rn

el
N... ...

Hardware kernels
on FPGA

Hardware kernel access
queues in software

Q
ue

ue
N

Q
ue

ue 1

Figure 2.   Overall system architecture and the execution flow of minimap2-fpga (a) Architecture of the CPU-
FPGA heterogeneous system running minimap2-fpga. The multi-core CPU (Core 1, ..., Y), within the host,
handles software executions, while the FPGA, within the device, hosts multiple hardware kernels (Kernel
1, ..., N) designed for hardware-accelerated chaining. They are connected via PCI Express for host-device
communication. (b) Overall execution flow of hardware-software integrated minimap2-fpga. Multiple threads
(upto Y) are launched by the CPU when minimap2-fpga starts. When a thread reaches the chaining stage,
the chaining task is processed either on FPGA as hardware or on the same CPU thread as software, based
on predicted execution and wait times. As a thread (denoted as t) reaches a point requiring the execution
of a chaining task, it predicts the time needed for this task to complete on both hardware ( Thardware ) and
software ( Tsoftware ). If Tsoftware ≤ Thardware , the chaining task is executed on the same thread t as software. If
Thardware < Tsoftware , minimap2-fpga attempts to schedule the task on one of the N available hardware kernels,
taking into account the wait time ( Twait ) associated with accessing each hardware kernel. It searches for a kernel
where the total processing time on hardware ( Ttotal = Twait + Thardware ) is less than Tsoftware , and if such a
kernel is found, the chaining task is queued into the hardware access queue specific to that kernel (queue i)
and later processed on the corresponding hardware kernel (kernel i) once the kernel is ready. If not, the task
proceeds as software execution on the same thread t. This prediction-based dynamic hardware scheduling
approach optimizes the utilization of smaller number of hardware kernels (N) from a higher number of software
threads (upto Y) while ensuring efficient multi-threaded performance.

9

Vol.:(0123456789)

Scientific Reports | (2023) 13:20174 | https://doi.org/10.1038/s41598-023-47354-8

www.nature.com/scientificreports/

FPGA (N) is usually less than the number of cores available in a CPU (Y) of a typical high-performance comput-
ing (HPC) system. When a chaining task necessitates hardware processing, input/output data associated with the
respective chaining task is transferred between the host’s DRAM and the device’s DRAM via the PCIe interface
utilizing Direct Memory Access (DMA) techniques facilitated by the OpenCL framework.

Hardware accelerator development and optimisation
Intel Arria 10 GX FPGA Acceleration Stack 1.2.1 (with Intel FPGA SDK for OpenCL 19.4 and Intel Quartus
Prime Pro 19.2) was used for hardware accelerator development on the on-premise Intel FPGA-based system
(Supplementary Note 1). On the cloud Xilinx FPGA system, AWS EC2 FPGA Development Kit with Xilinx Vitis
v2021.2 was used for the hardware accelerator development. For Xilinx FPGA, the OpenCL HLS pragmas used
in the Intel FPGA hardware accelerator implementation had to be converted to supported Xilinx OpenCL HLS
pragmas. Due to the lack of a pragma in Xilinx OpenCL HLS for data prefetching from global memory to local
memory (lines 10-11 in Supplementary Algorithm 1), this prefetching was manually implemented.

We enhanced our previous hardware accelerator6, to achieve a level of accuracy in the final mapping output
that is comparable to that from the original minimap2 software. When we naively integrated our previous hard-
ware accelerator6 to minimap2, the end-to-end accuracy was considerably lower in comparison to the original
minimap2 (Supplementary Fig. S1). Further investigation revealed that setting a maximum loop trip count in
the chaining algorithm to 64 was the culprit (H=64 in line 17 of Supplementary Algorithm 2). To improve the
accuracy, the maximum trip count had to be increased. However, naively increasing this trip count considerably
increased the resource usage on the FPGA which resulted in a design that could not fit the available FPGA area
(in terms of the number of logic components such as LUTs, FFs and DSPs). To improve accuracy while keeping
the resource usage low, we restructured the affected inner loop into sub-partitions (detailed in Supplementary
Note 1). With this improvement to the hardware accelerator, a maximum trip count of 512 (i.e. H=512) and 1024
(i.e. H=1024) were achieved on the Intel FPGA and the Xilinx FPGA accelerator, respectively. A single hardware
kernel (i.e. N=1 in Supplementary Fig. S2) was configured on both the Intel and Xilinx FPGA accelerators. The
overall accuracy is now near-identical to the original minimap2 (Fig. 1e and f).

Memory management optimisation
To efficiently handle large realistic datasets commonly encountered in reference-based sequence mapping, the
memory management in minimap2-fpga was carefully optimized. Rather than transferring the entire dataset
to the limited FPGA device DRAM upfront (as done in prior FPGA-based related work5), we adopted a more
efficient approach: transferring the data relevant to hardware-executed chaining task, task-by-task, just before
the task’s execution. By adopting this approach, we guarantee that only a manageable volume of data, which can
comfortably fit within the constraints of the FPGA device DRAM, is transferred at any given time, preventing any
potential overflows. Additionally, the task-by-task data transfer and execution approach allowed us to seamlessly
maintain compatibility with minimap2’s multi-threaded execution with minimal source code modifications.

Chaining task time predictions on hardware and software
To process chaining tasks on the FPGA-based hardware accelerator, the input chaining anchor data and the
output chaining scores need to be transferred to/from the FPGA device connected to the host CPU via PCI
Express interface. However, this data transfer incurs overhead, which is only justifiable if the execution time on
the hardware accelerator is significantly smaller than the software execution time. Therefore, chaining tasks are
processed on the FPGA-based hardware accelerator only if the total processing time (data transfer time + execu-
tion time) on hardware is smaller than the execution time on software. In this work, the hardware-software split
of chaining tasks presented in our previous work6 was optimised with a novel approach that is based on predicted
hardware/software processing times. Equation (1 and 2) depict the linear regression models formulated to predict
the processing time of a given chaining task on hardware ( Thardware ) and software ( Tsoftware ) respectively. In these
equations, n is the number of anchors and K1 , K2 , C1 , C2 are constants. More details on how the equations were
derived are in Supplementary Note 2.

The linear regression models were trained by analyzing the hardware/software execution times of a set of chain-
ing tasks measured with a representative dataset. A shell script has been provided under the minimap2-fpga
repository to execute this one-time linear regression model training process on a different dataset if deemed
necessary in future.

Hardware‑software execution of minimap2‑fpga
The overall hardware-software execution process of minimap2-fpga maintains the multi-threaded execution
framework of the original minimap2 while enhancing the chaining step through FPGA acceleration with mini-
mal interference to the multi-threaded operation (Fig. 2b). Similar to minimap2, when minimap2-fpga initiates,
multiple software threads are concurrently launched on the multi-core CPU, with each thread being assigned
a batch of DNA sequence reads for processing (Fig. 2b). More details on hardware-software integration and
hardware scheduling are in Supplementary Note 3.

(1)Thardware = Tdata_transfer + Texecution = (K1 × n)+ (II × Tclock × total_subparts)+ C1

(2)Tsoftware = K2 ×

n∑

i=1

trip_counti + C2

10

Vol:.(1234567890)

Scientific Reports | (2023) 13:20174 | https://doi.org/10.1038/s41598-023-47354-8

www.nature.com/scientificreports/

Conclusion
In this work, we presented minimap2-fpga, a hardware-accelerated version of minimap2 that integrates an FPGA
kernel optimized for chaining. minimap2-fpga supports mapping DNA reads from both ONT and PacBio onto a
reference genome. For end-to-end execution, minimap2-fpga was up to 79% and 53% faster than original mini-
map2 for ONT and PacBio datasets respectively, when mapping without base-level alignment. When mapping
with base-level alignment, minimap2-fpga was up to 62% and 10% faster than minimap2 for ONT and PacBio
datasets respectively. The mapping output accuracy of minimap2-fpga was near-identical to that of minimap2.
To achieve this, we had to address several challenges including scheduling overheads in multi-threaded execu-
tion and resolve an unexpected issue that affected mapping accuracy, which only became apparent during full
integration. Our work highlights the challenges and importance of integrating accelerated kernels back into
software workflows and offers valuable insights for other bioinformatics tools requiring heterogeneous comput-
ing accelerations.

Data availibility
The experimental data used in benchmarking experiments are from publicly available datasets on NCBI Sequence
Read Archive (ONT data: SRX11368472, PacBio data: PRJNA586863). Simulated reads can be created by fol-
lowing the instructions in Supplementary Note 4.2.

Received: 31 May 2023; Accepted: 12 November 2023

References
	 1.	 Marx, V. Method of the year: Long-read sequencing. Nat. Methods 20, 6–11 (2023).
	 2.	 Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 34(18), 3094–3100. https://​doi.​org/​10.​1093/​bioin​

forma​tics/​bty191 (2018).
	 3.	 Kalikar, S., Jain, C., Vasimuddin, M. & Misra, S. Accelerating minimap2 for long-read sequencing applications on modern CPUs.

Nat. Comput. Sci. 2, 78–83. https://​doi.​org/​10.​1038/​s43588-​022-​00201-8 (2022).
	 4.	 Sadasivan, H. et al. Accelerating minimap2 for accurate long read alignment on GPUs. J. Biotechnol. Biomed. 6, 13–23 (2023).
	 5.	 Guo, L., Lau, J., Ruan, Z., Wei, P. & Cong, J. Hardware acceleration of long read pairwise overlapping in genome sequencing: A

race between FPGA and GPU. in 2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM), 127–135 (2019).

	 6.	 Liyanage, K., Gamaarachchi, H., Ragel, R. & Parameswaran, S. Cross layer design using HW/SW co-design and HLS to accelerate
chaining in genomic analysis. in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 1–1, https://​doi.​
org/​10.​1109/​TCAD.​2023.​32365​59 (2023).

	 7.	 Zhang, H. et al. Real-time mapping of nanopore raw signals. Bioinformatics 37, i477–i483 (2021).
	 8.	 perf(1) - linux manual page. https://​man7.​org/​linux/​man-​pages/​man1/​perf.1.​html. Accessed 4 April 2022.
	 9.	 Vasimuddin, M., Misra, S., Li, H. & Aluru, S. Efficient architecture-aware acceleration of bwa-mem for multicore systems. in 2019

IEEE International Parallel and Distributed Processing Symposium (IPDPS), 314–324 (IEEE, 2019).
	10.	 Gamaarachchi, H., Bayat, A., Gaeta, B. & Parameswaran, S. Cache friendly optimisation of de Bruijn graph based local re-assembly

in variant calling. IEEE/ACM Trans. Comput. Biol. Bioinf. 17, 1125–1133 (2018).
	11.	 Ahmed, N. et al. Gasal2: A GPU accelerated sequence alignment library for high-throughput NGS data. BMC Bioinform. 20, 1–20

(2019).
	12.	 Fernandez, E. B., Najjar, W. A., Lonardi, S. & Villarreal, J. Multithreaded FPGA acceleration of DNA sequence mapping. 2012 IEEE

Conference on High Performance Extreme Computing, HPEC 2012 (2012).
	13.	 Cui, X. et al. High accuracy short reads alignment using multiple hash index tables on FPGA platform. in Proceedings of 2020 IEEE

5th Information Technology and Mechatronics Engineering Conference, ITOEC 2020 567–573 (2020).
	14.	 Gnanasambandapillai, V., Bayat, A. & Parameswaran, S. MESGA: An MPSoC based embedded system solution for short read

genome alignment. in 2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC), 52–57 (IEEE, 2018).
	15.	 Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the

human genome. Genome Biol. 10, R25 (2009).
	16.	 Chen, P., Wang, C., Li, X. & Zhou, X. Accelerating the next generation long read mapping with the FPGA-based system. IEEE/

ACM Trans. Comput. Biol. Bioinf. 11, 840–852. https://​doi.​org/​10.​1109/​TCBB.​2014.​23268​76 (2014).
	17.	 Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595. https://​

doi.​org/​10.​1093/​bioin​forma​tics/​btp698 (2010).
	18.	 Li, H. Aligning sequence reads, clone sequences and assembly contigs with bwa-mem. arXiv preprint arXiv:​1303.​3997 (2013).
	19.	 Ng, H.-C., Liu, S. & Luk, W. Reconfigurable acceleration of genetic sequence alignment: A survey of two decades of efforts. in 2017

27th International Conference on Field Programmable Logic and Applications (FPL), 1–8, https://​doi.​org/​10.​23919/​FPL.​2017.​80568​
38 (2017).

	20.	 Salamat, S. & Rosing, T. Fpga acceleration of sequence alignment: A survey. arXiv:​2002.​02394 (2020).
	21.	 Feng, Z., Qiu, S., Wang, L. & Luo, Q. Accelerating long read alignment on three processors. in Proceedings of the 48th International

Conference on Parallel Processing, ICPP 2019, https://​doi.​org/​10.​1145/​33378​21.​33379​18 (Association for Computing Machinery,
New York, 2019).

	22.	 Gamaarachchi, H. et al. GPU accelerated adaptive banded event alignment for rapid comparative nanopore signal analysis. BMC
Bioinform. 21, 1–13 (2020).

	23.	 Wu, Z., Hammad, K., Ghafar-Zadeh, E. & Magierowski, S. FPGA-accelerated 3rd generation DNA sequencing. IEEE Trans. Biomed.
Circuits Syst. 14, 65–74 (2020).

	24.	 Teng, C., Achjian, R. W., Wang, J. C. & Fonseca, F. J. Adapting the GACT-X aligner to accelerate minimap2 in an FPGA cloud
instance. Appl. Sci. 13, 4385 (2023).

	25.	 Turakhia, Y., Goenka, S. D., Bejerano, G. & Dally, W. J. Darwin-wga: A co-processor provides increased sensitivity in whole genome
alignments with high speedup. in 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA),
359–372, https://​doi.​org/​10.​1109/​HPCA.​2019.​00050 (2019).

	26.	 Shih, P. J., Saadat, H., Parameswaran, S. & Gamaarachchi, H. Efficient real-time selective genome sequencing on resource-con-
strained devices. arXiv preprint arXiv:​2211.​07340 (2022).

	27.	 Obeya, O., Kahssay, E., Fan, E. & Shun, J. Theoretically-efficient and practical parallel in-place radix sorting. in The 31st ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’19, 213-224, https://​doi.​org/​10.​1145/​33231​65.​33231​98 (Associa-
tion for Computing Machinery, New York, 2019).

https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1038/s43588-022-00201-8
https://doi.org/10.1109/TCAD.2023.3236559
https://doi.org/10.1109/TCAD.2023.3236559
https://man7.org/linux/man-pages/man1/perf.1.html
https://doi.org/10.1109/TCBB.2014.2326876
https://doi.org/10.1093/bioinformatics/btp698
https://doi.org/10.1093/bioinformatics/btp698
http://arxiv.org/abs/1303.3997
https://doi.org/10.23919/FPL.2017.8056838
https://doi.org/10.23919/FPL.2017.8056838
http://arxiv.org/abs/2002.02394
https://doi.org/10.1145/3337821.3337918
https://doi.org/10.1109/HPCA.2019.00050
http://arxiv.org/abs/2211.07340
https://doi.org/10.1145/3323165.3323198

11

Vol.:(0123456789)

Scientific Reports | (2023) 13:20174 | https://doi.org/10.1038/s41598-023-47354-8

www.nature.com/scientificreports/

	28.	 Payne, A. et al. Readfish enables targeted nanopore sequencing of gigabase-sized genomes. Nat. Biotechnol. 39, 442–450. https://​
doi.​org/​10.​1038/​s41587-​020-​00746-x (2021).

	29.	 Gamaarachchi, H. et al. Fast nanopore sequencing data analysis with SLOW5. Nat. Biotechnol. 40(7), 1026–1029 (2022).
	30.	 Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53. https://​doi.​org/​10.​1126/​scien​ce.​abj69​87 (2022).
	31.	 Gamaarachchi, H., Ferguson, J. M., Samarakoon, H., Liyanage, K. & Deveson, I. W. Squigulator: Simulation of nanopore sequenc-

ing signal data with tunable noise parameters. bioRxivhttps://​doi.​org/​10.​1101/​2023.​05.​09.​539953 (2023).
	32.	 Gamaarachchi, H. et al. Fast nanopore sequencing data analysis with SLOW5. Nat. Biotechnol. 40, 1026–1029 (2022).
	33.	 Samarakoon, H., Ferguson, J. M., Gamaarachchi, H. & Deveson, I. W. Accelerated nanopore basecalling with SLOW5 data format.

bioRxivhttps://​doi.​org/​10.​1101/​2023.​02.​06.​527365 (2023).
	34.	 Ono, Y., Asai, K. & Hamada, M. PBSIM: PacBio reads simulator-toward accurate genome assembly. Bioinformatics 29, 119–121.

https://​doi.​org/​10.​1093/​bioin​forma​tics/​bts649 (2012).
	35.	 Gamaarachchi, H., Parameswaran, S. & Smith, M. A. Featherweight long read alignment using partitioned reference indexes. Sci.

Rep. 9, 4318. https://​doi.​org/​10.​1038/​s41598-​019-​40739-8 (2019).
	36.	 aws-fpga/hdk/docs/afi_power.md at master · aws/aws-fpga · github. https://​github.​com/​aws/​aws-​fpga/​blob/​master/​hdk/​docs/​afi_​

power.​md. Accessed 31 Oct 2023.

Acknowledgements
We thank D. Lin and W. Kaplan for providing exceptional technical assistance to leverage the institution’s pow-
erful computing resources, particularly the Intel FPGA-equipped systems, in unique and innovative ways. K.L.
is supported by Australian Government Research Training Program (RTP) Scholarship. H.G. is supported by
Australian Research Council DECRA Fellowship DE230100178. This research was supported (partially) by the
Australian Government through the Australian Research Council’s Discovery Projects funding scheme (project
DP230100651). The views expressed herein are those of the authors and are not necessarily those of the Austral-
ian Government or the Australian Research Council.

Author contributions
K.L. conducted the hardware/software development/optimisations and experiments under the supervision of
H.G. and S.P. H.S. contributed to modifying the hardware to enhance accuracy and collaborated on software
development. K.L. and H.G. wrote the manuscript with input from H.S. and S.P.

Competing interests 
H.G., has previously received travel and accommodation expenses to speak at Oxford Nanopore Technologies
conferences. H.G. has had paid consultant roles with Sequin PTY LTD. The authors declare no other competing
financial or non-financial interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​023-​47354-8.

Correspondence and requests for materials should be addressed to H.G.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

https://doi.org/10.1038/s41587-020-00746-x
https://doi.org/10.1038/s41587-020-00746-x
https://doi.org/10.1126/science.abj6987
https://doi.org/10.1101/2023.05.09.539953
https://doi.org/10.1101/2023.02.06.527365
https://doi.org/10.1093/bioinformatics/bts649
https://doi.org/10.1038/s41598-019-40739-8
https://github.com/aws/aws-fpga/blob/master/hdk/docs/afi_power.md
https://github.com/aws/aws-fpga/blob/master/hdk/docs/afi_power.md
https://doi.org/10.1038/s41598-023-47354-8
https://doi.org/10.1038/s41598-023-47354-8
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Efficient end-to-end long-read sequence mapping using minimap2-fpga integrated with hardware accelerated chaining
	Results
	minimap2-fpga and chain-fpga
	Performance comparison
	Accuracy evaluation
	Using simulated reads
	Using real reads

	Energy-delay product comparison

	Discussion
	Previous acceleration work
	Challenges in hardware-software integration
	OpenCL for accelerating bioinformatics kernels
	Future work

	Materials and methods
	Computer systems and datasets
	Performance, accuracy and energy-delay product evaluation
	minimap2-fpga development, optimisation and integration
	CPU-FPGA heterogeneous system architecture
	Hardware accelerator development and optimisation
	Memory management optimisation
	Chaining task time predictions on hardware and software
	Hardware-software execution of minimap2-fpga

	Conclusion
	References
	Acknowledgements

