Table 4.
Sub-validity analyses for vertical jump types based on Hedge’s g values.
| Study | Hedge’s g | Standard error | Variance | Lower limit | Upper limit | Z-value | p-value | Relative weight (%) | |
|---|---|---|---|---|---|---|---|---|---|
| Random | Fixed | ||||||||
| Sub-analysis for countermovement jump (CMJ) | |||||||||
| Bishop et al. (2022a) | 0.000 | 0.268 | 0.072 | – 0.53 | 0.53 | 0.00 | 1.000 | 5.79 | 3.04 |
| Bogataj et al. (2020a) | – 0.049 | 0.150 | 0.023 | – 0.34 | 0.24 | – 0.33 | 0.742 | 8.49 | 9.71 |
| Bogataj et al. (2020b) | – 0.028 | 0.144 | 0.021 | – 0.31 | 0.25 | – 0.20 | 0.845 | 8.64 | 10.59 |
| Carlos–Vivas et al. (2018) | 0.011 | 0.157 | 0.025 | – 0.30 | 0.32 | 0.07 | 0.946 | 8.31 | 8.84 |
| Chow et al. (2023) | – 0.394 | 0.183 | 0.034 | – 0.75 | –0.03 | – 2.15 | 0.032 | 7.69 | 6.52 |
| Cruvinel-Cabral et al. (2018) | 0.027 | 0.219 | 0.048 | – 0.40 | 0.46 | 0.13 | 0.901 | 6.85 | 4.57 |
| Driller et al. (2017) | 0.103 | 0.180 | 0.032 | – 0.25 | 0.46 | 0.57 | 0.567 | 7.76 | 6.75 |
| Gallardo-Fuentes et al. (2016) | – 0.005 | 0.216 | 0.047 | – 0.43 | 0.42 | – 0.02 | 0.981 | 6.91 | 4.68 |
| Gür and Ayan, (2023) | – 0.034 | 0.144 | 0.021 | – 0.32 | 0.25 | – 0.24 | 0.813 | 8.64 | 10.59 |
| Patiño-Palma et al. (2022) | 0.498 | 0.131 | 0.017 | 0.24 | 0.76 | 3.80 | 0.000 | 8.94 | 12.71 |
| Soares et al. (2023) | – 0.042 | 0.216 | 0.047 | – 0.466 | 0.382 | – 0.195 | 0.845 | 6.91 | 4.68 |
| Stanton et al. (2017) | 0.026 | 0.259 | 0.067 | – 0.482 | 0.534 | 0.099 | 0.921 | 5.97 | 3.26 |
| Yingling et al. (2018) | – 0.666 | 0.125 | 0.016 | – 0.911 | –0.422 | – 5.342 | 0.000 | 9.09 | 14.07 |
| Fixed effect model | – 0.060 | 0.047 | 0.002 | – 0.151 | 0.032 | – 1.276 | 0.202 | ||
| Random effect model | – 0.047 | 0.095 | 0.009 | – 0.233 | 0.139 | – 0.494 | 0.622 | ||
| Sub-analysis for squat jump (SQJ) | |||||||||
| Bogataj et al. (2020a) | – 0.064 | 0.211 | 0.045 | – 0.48 | 0.35 | – 0.30 | 0.760 | 32.83 | 32.83 |
| Bogataj et al. (2020b) | 0.023 | 0.202 | 0.041 | – 0.37 | 0.42 | 0.11 | 0.909 | 35.78 | 35.78 |
| Gallardo-Fuentes et al. (2016) | – 0.022 | 0.216 | 0.047 | – 0.45 | 0.40 | – 0.10 | 0.917 | 31.38 | 31.38 |
| Fixed effect model | – 0.020 | 0.121 | 0.015 | – 0.257 | 0.217 | – 0.165 | 0.869 | ||
| Random effect model | – 0.020 | 0.121 | 0.015 | – 0.257 | 0.217 | – 0.165 | 0.869 | ||
| Sub-analysis for drop jump (DJ) | |||||||||
| Barbalho et al. (2021) | – 0.028 | 0.410 | 0.168 | – 0.83 | 0.78 | – 0.07 | 0.945 | 10.50 | 10.50 |
| Gallardo-Fuentes et al. (2016) | 0.000 | 0.216 | 0.047 | – 0.42 | 0.42 | 0.00 | 1.000 | 37.79 | 37.79 |
| Haynes et al. (2019) | – 0.019 | 0.264 | 0.069 | – 0.54 | 0.50 | – 0.07 | 0.943 | 25.43 | 25.43 |
| Stanton et al. (2017) | – 0.102 | 0.259 | 0.067 | – 0.61 | 0.41 | – 0.39 | 0.695 | 26.28 | 26.28 |
| Fixed effect model | – 0.034 | 0.133 | 0.018 | – 0.295 | 0.226 | – 0.259 | 0.795 | ||
| Random effect model | – 0.034 | 0.133 | 0.018 | – 0.295 | 0.226 | – 0.259 | 0.795 | ||