Skip to main content
. 2023 Nov 17;13:20117. doi: 10.1038/s41598-023-47398-w

Table 2.

Results on the COCO test-val2017.

Method Average precision (%)
Size AP50 AP50:95 AP75 APS APM APL
RetinaNet13 500 53.1 34.4 36.8 14.7 38.5 49.1
SSD12 512 48.5 28.8 30.3 10.9 31.8 43.5
CornerNet26 512 57.8 40.5 45.3 20.8 44.8 56.7
CenterNet27 512 62.4 44.9 48.1 25.6 47.4 57.4
YOLOv315 608 57.9 33.0 34.3 18.3 35.4 41.9
ASFF33 608 63.0 42.4 47.4 25.5 45.7 52.3
Efficientdet32 896 65.0 45.8 49.3 26.6 49.4 59.8
FCOS28 800×1024 64.1 44.7 48.4 27.6 47.5 55.6
DETR-DC5-R10130 800×1333 64.7 44.9 47.7 23.7 49.5 62.3
YOLOv417 512 64.9 45.4 48.7 23.0 50.7 62.7
Ours 512 65.4 45.6 48.9 25.4 51.0 62.0
ViDT-tiny31 800×1333 64.5 44.8 48.7 25.9 47.6 62.1
ViDT-base31 800×1333 69.4 49.2 53.1 30.6 52.6 66.9
YOLOv8-S21 640 61.8 44.9
YOLOv8-L21 640 69.8 52.9

The proposed method achieved the best detection results on AP50, which refers to the mean average precision (mAP) for intersection over union (IoU) value thresholds equal to 0.5. AP50:95, AP75, APS, APM and APL refer to the average mAP across value of IoU thresholds (i.e., AP50:95 refers to the average of 10 mAP across IoU thresholds). Bold-italic, italic and boldfaced values represent the best, second-best, and third-best results in each column, respectively.