Skip to main content
. 2023 Nov 2;5:1249258. doi: 10.3389/fdgth.2023.1249258

Table 5.

Performance metrics, including confidence intervals for area under the receiver operater characteristics curve (ROC-AUC), for all long-term hospitalization models comparing models trained on either danish trauma dataset (DTD), the American trauma quality Improvement program dataset (TQIPD) or a mixed traning dataset consisting of a random forest-selected subset of TQIPD and DTD training data (mixed). Neural network with transfer learning was retrained on DTD.

Model Training data set ROC-AUC Lower CI ROC-AUC Upper CI ROC-AUC Precision Recall F1 score
Random forest DTD 0.885 0.849 0.921 0.817 0.958 0.882
TQIPD 0.860 0.820 0.900 0.840 0.930 0.883
Mixed 0.884 0.848 0.920 0.858 0.898 0.877
AdaBoost DTD 0.890 0.855 0.925 0.863 0.935 0.897
TQIPD 0.885 0.849 0.921 0.834 0.935 0.822
Mixed 0.884 0.848 0.920 0.858 0.898 0.877
XGBoost DTD 0.865 0.825 0.904 0.820 0.953 0.882
TQIPD 0.866 0.826 0.905 0.801 0.935 0.863
Mixed 0.865 0.826 0.905 0.855 0.930 0.891
Explainable boosting machine DTD 0.883 0.847 0.919 0.885 0.898 0.891
TQIPD 0.880 0.843 0.917 0.869 0.893 0.881
Mixed 0.877 0.839 0.914 0.844 0.907 0.874
Neural network DTD 0.857 0.817 0.898 0.853 0.916 0.883
TQIPD 0.888 0.852 0.923 0.810 0.953 0.876
Mixed 0.875 0.837 0.913 0.831 0.935 0.88
Neural network (Transfer learning) TQIPD/DTD 0.879 0.842 0.916 0.813 0.949 0.876
Mixed/DTD 0.874 0.836 0.912 0.830 0.930 0.877