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Abstract
Background: Ceftolozane/Tazobactam is a β-lactam/β-lactamase inhibitor combination with 
a high range of efficacy and broad-spectrum action against multidrug-resistant bacterial 
strains.
Objectives: The present study aimed to analyze the in vitro activity of Ceftolozane/Tazobactam 
against extended-spectrum β-lactamases (ESBLs)-producing Escherichia coli (ESBLs-EC) and 
Klebsiella pneumonia (ESBLs-KP) in the published literature to provide international data on 
the antimicrobial stewardship programs.
Design: Systematic review and meta-analysis.
Methods: A systematic literature search was conducted on the Web of Science, Embase, 
PubMed, Scopus, and Google Scholar electronic databases from the beginning of databases to 
December 2022 to cover all published articles relevant to our scope.
Results: At last, 31 publications that met our inclusion criteria were selected for data 
extraction and analysis by Comprehensive Meta-Analysis Software. The pooled prevalence of 
Ceftolozane/Tazobactam susceptibility for ESBLs-EC and ESBLs-KP was estimated at 91.3% 
[95% confidence interval (CI): 90.1–92.5%] and 65.6% (95% CI: 60.8–70.2%), respectively. 
There was significant heterogeneity among the 31 studies for ESBLs-EC (χ2 = 91.621; 
p < 0.001; I2 = 67.256%) and ESBLs-KP (χ2 = 348.72; p < 0.001; I2 = 91.4%). Most clinical isolates 
of ESBLs-EC had MIC50 and MIC90 at a concentration of 0.5 and 2 µg/mL [minimum inhibitory 
concentration (MIC) at which 50% and 90% of isolates were inhibited], respectively. In contrast, 
most clinical isolates of ESBLs-KP had MIC50 and MIC90 at a concentration of 1 and 32 µg/mL, 
respectively.
Conclusion: Based on the meta-analysis results, Ceftolozane/Tazobactam has a more 
promising in vitro antibacterial activity against ESBLs-EC isolates from different clinical 
sources than ESBLs-KP isolates. Therefore, Ceftolozane/Tazobactam can be a useful 
therapeutic drug as an alternative to carbapenems. Randomized clinical trials are needed to 
provide clinical evidence to support these observations.
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Introduction
Extended-spectrum β-lactamases (ESBLs)-
producing Enterobacterales with two predominant 
pathogens, ESBLs-producing Escherichia coli 
(ESBLs-EC) and ESBLs-producing Klebsiella pneu-
moniae (ESBLs-KP), cause infections in both com-
munity and hospitalized patients have become a 
global health problem with high morbidity and 
mortality rates worldwide.1–3 Infections caused by 
ESBLs-producing Enterobacterales than compara-
ble infections caused by non-ESBLs-producing 
bacteria are associated with lower therapeutic 
response, longer hospital stays, and more significant 
costs.4,5 Carbapenems are widely recommended as 
a first-line drugs for treating serious invasive 
ESBLs-EC and ESBLs-KP infections.6 However, 
the increase in carbapenems’ use leads to the expan-
sion of carbapenem-resistant and Carbapenemase-
producing Enterobacterales. Therefore, for 
carbapenems conservative usage, it is necessary to 
use alternatives to carbapenems such as β-lactam/β-
lactamase inhibitors to treat infections caused by 
ESBLs-producing Enterobacterales.4,5

Ceftolozane/Tazobactam is a β-lactam/β-lactamase 
inhibitor combination with a broad range of efficacy. 
It is active against Pseudomonas aeruginosa, many 
multidrug-resistant strains, and most ESBLs-
producing Enterobacterales strains. The United 
States Food and Drug Administration approved 
Ceftolozane/Tazobactam in December 2014 for the 
treatment of complicated intra-abdominal infec-
tions, complicated urinary tract infections, and acute 
pyelonephritis.2,7,8 Tazobactam, an inhibitor of most 
class A and some class C β-lactamases, broadens the 
in vitro coverage of Ceftolozane to improve the sen-
sitivity of ESBLs-producing Enterobacterales.8,9

This study aimed to evaluate the in vitro efficacy 
of Ceftolozane/Tazobactam as a β-lactam combi-
nation agent against ESBLs-producing E. coli and 
K. pneumonia based on the published literature.

Materials and methods

Search strategies
A systematic review was performed using the 
Preferred Reporting Items for Systematic Reviews 
and Meta-Analysis recommendations. This  
systematic review included searching various elec-
tronic bibliographic databases such as Web of 
Science, PubMed, Embase, Scopus, and Google 
Scholar to identify all related studies published from 

the beginning of databases to December 2022. The 
keywords were included in the articles’ title, abstract, 
or full text. We used a combination of predefined 
keywords such as ‘Ceftolozane-Tazobactam’ AND 
‘Escherichia coli OR E. coli’ AND ‘Extended-
spectrum β-lactamase OR ESBL’ AND ‘Klebsiella 
pneumoniae OR K. pneumoniae’ AND ‘drug resist-
ance OR antibiotic resistance OR antibiotic suscep-
tibility’ AND ‘Minimum Inhibitory Concentration 
OR MIC’ AND ‘Clinical sample’ in the titles, 
abstracts, and keywords fields.

Selection criteria and quality assessment
Two reviewers independently checked the data-
base results with the related keywords. They sur-
veyed the titles, abstracts, and full texts to apply 
eligibility for inclusion based on the inclusion crite-
rion, and any inconsistencies between reviewers 
were resolved by debate. There were no restric-
tions imposed on the language in our search, but 
the abstract must be available in English at the very 
least. The research was restricted to cross-sectional 
publications indexed on the Web of Science, 
PubMed, or Scopus. Related studies with the fol-
lowing criteria were included in our study:

(1) Antibacterial activity was determined using the 
standard method, such as broth micro-dilution10–13; 
(2) MIC 50, MIC 90 (minimum inhibitory concen-
tration at which 50% and 90% of ESBLs-EC and 
ESBLs-KP isolates were inhibited); and their MIC 
ranges were reported; and (3) original articles that 
were performed on clinically derived isolates.

Meanwhile, exclusion criteria were: (1) studies 
that did not use the antibacterial susceptibility test-
ing method; (2) studies with a sample size of fewer 
than 10 isolates; (3) studies that were performed 
on samples with animal or environmental origin; 
and (4) studies that were performed on K. pneumo-
niae carbapenemase-producing bacteria or other 
carbapenemases. In addition, reviews and system-
atic review articles, case reports, clinical trials, and 
congress abstracts with no sufficient data were dis-
regarded. Any other similar articles were looked up 
in the reference lists of all related publications. All 
susceptibility rates in this study were evaluated and 
reported based on the Clinical and Laboratory 
Standards Institute (CLSI) breakpoints.12

Quality assessment and data extraction
Two researchers assessed eligible studies’ quality 
separately using a critical appraisal checklist 
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developed by the nine-point Joanna Briggs Institute, 
and any disagreement was resolved by consensus.14 
Items related to the title and abstract, introduc-
tion, methods, results, discussion, and other infor-
mation were determined, and a score was assigned 
to each item.

Then, for all eligible studies, the following data 
were extracted: the first author’s name, date of 
publication, date of study performing, the geo-
graphical distribution of clinical samples, sample 
size, MIC results, and antibiotic susceptibility rate.

Statistical analysis
Meta-analysis was performed using the random 
effects model to estimate the pooled prevalence 
and corresponding 95% confidence interval (CI). 
Heterogeneity between studies was evaluated 

using Cochran’s Q statistic and the I2 index. 
Publication bias was graphically assessed by a vis-
ual examination of the funnel plot and mathemati-
cally measured using Egger’s weighted regression 
test (p < 0.05 indicated statistically significant 
publication bias). A meta-regression using the 
random-effect model (method of moments) was 
performed to determine whether the prevalence of 
ESBLs strains was modulated by time (performed 
years). Comprehensive Meta-Analysis Software 
Version 3 (Biostat Inc. Englewood, NJ, USA) 
analyzed data and the construction of graphs.

Results
We selected 31 eligible studies for inclusion  
in our meta-analysis. A flowchart depicting  
the literature searches and study selection pro-
cess is provided in Figure 1. The main detailed 

Figure 1.  Flowchart of the literature search strategy and study selection.
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characteristics of each included article are pre-
sented in Tables 1 and 2.

This study reviewed 31 articles from various coun-
tries across different regions, including North and 
South America, Asia, the Middle East/Africa, 
Asia/Pacific, and Latin America. We investigated 

several collections of ESBLs-producing E. coli and 
K. pneumoniae clinical isolates to determine the in 
vitro activity of Ceftolozane/Tazobactam through 
the evaluation of MICs.

According to this evaluation, in 28 studies, E. coli 
and K. pneumoniae isolates were grouped as 

Table 1.  The main characteristics of studies included in the meta-analysis for ESBLs-EC isolates.

No. First author Publication 
year

Preformed 
time

Sample source ESBL-EC 
sample 
size No.

MIC50/
MIC90 µg/mL

MIC range  
µg/mL

Susceptibility 
rate %

Ref.

1 Shortridge 2022 2016–2018 Australia, New 
Zealand

143 0.25/1 0.12 to >32 94.4 (135) 15

2  Hernández-
García

2022 2016–2018 Spain, 
Portugal

75 0.5/4 0.12 to >32 89.3 (67) 16

3  Ahmed 2022 2012–2013 Qatar 38 0.38/0.75 0.19–256 97.4 (37) 17

4 Pfaller 2022 2016–2018 Asia 314 0.5/2 ⩽0.06 to >32 90.4 (284) 18

5 Karlowsky 2021 2018–2019 US 74 ND ND 86.5 (64) 19

6 Belley 2021 2016–2018 US, Europe 418 0.25/2 0.06–64 93.3 (390) 20

7 Shortridge 2021 2012–2018 US 1698 0.5/2 ⩽0.03 to >32 92.8 (1576) 21

8 Pfaller 2020 2015–2018 US 235a 0.5/1 ⩽0.06 to >32 96.6 (227) 22

84b 0.5/1 ⩽0.06 to >32 95.2 (80)

27c 0.5/2 ⩽0.06–4 96.3 (26)

Europe 563a 0.25/1 ⩽0.06 to >32 95.4 (537)

114b 0.25/2 ⩽0.06 to >32 92.1 (105)

41c 0.5/1 ⩽0.06–32 95.1 (39)

9 Hirsch 2020 2012–2017 US 90 0.5/1 0.25–128 97.8 (88) 23

10 Golden 2020 2015–2017 Canada 29 0.5 ⩽0.12–2 100 (29) 24

11 García-
Fernández

2020 2017–2018 Spain, 
Portugal

29 1/1 0.25–2 100 (29) 25

12 Beirão 2020 2016–2017 Brazil 102 0.5/2 ND 92.2 (94) 26

13 Kuo 2020 2015–2016 Asia-Pacific 45 0.5/2 ND 93.3 (42) 27

14 Karlowsky 2019 2016 Europe, Middle 
East/Africa, 
Asia/Pacific, 
Latin America, 
US/Canada

2144 0.5/2 ⩽0.06 to >32 90 (1930) 5

15 Sader 2019 2018 US 226 0.5/2 ND 91.5 (207) 28

(Continued)
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No. First author Publication 
year

Preformed 
time

Sample source ESBL-EC 
sample 
size No.

MIC50/
MIC90 µg/mL

MIC range  
µg/mL

Susceptibility 
rate %

Ref.

16 Shortridge 2019 2012–2016 US 119 0.5/2 0.06 to >32 92.4 (110) 9

Europe 131 0.5/4 0.06 to >32 87 (114)  

17 Hatem Amer 2019 2016–2018 Egypt 50 0.064/0.25 0.064–0.25 100 (50) 4

18 Carvalhaes 2019 2015–2017 US 134 0.5/2 0.03 to >32 91.0 (122) 29

19 García-
Fernández

2019 2016–2017 Spain 46 0.5/16 0.25 to >64 84.8 (39) 30

20 Bouxom 2018 2016 France 100 1/2 0.25–4 78 (78) 2

21 Seifert 2018 2014–2015 Germany 32 0.5/2 0.25–16 81.3 (26) 31

22 Shortridge 2017 2013–2014 US 966 0.5/2 0.03 to >32 92.2 (891) 32

23 Pfaller 2017 2012–2015 Europe 559 0.5/2 0.03 to >32 92.7 (518) 3

24 Pfaller 2017 2013–2015 minus China, 
Australia, New 
Zealand

198 0.5/4 0.06 to >32 87.9 (174) 33

25 Pfaller 2017 2013–2015 Latin American 
(Argentina, 
Brazil, Chile, 
Mexico)

238 0.5/2 0.06 to >32 91.6 (218) 34

26 Pfaller 2017 2013–2015 Australia, New 
Zealand

47 0.25/0.5 0.06–2 100 (47) 35

27 Tato 2015 2013 Spain 30 0.5/1 0.25–2 100 (30) 36

28 Sader 2014 UN Europe 715 0.5/4 ⩽0.12 to >32 89.9 (643) 37

29 Sader 2014 2012 US, Europe 38d 0.5/32 0.25 to >32 78.9 (30) 38

170e 0.5/2 ⩽0.12–16 97.1 (165)  

30 Farrell 2014 2012 US, Europe 76 0.5/4 ⩽0.5 to >32 93.4 (71) 39

31 Farrell 2013 2011–2012 US 327 0.5/4 0.03 to >32 88.4 (289) 40

aPatients >65 years old.
bIntensive care unit.
cImmunocompromised patients.
dIntra-abdominal infections
eUrinary tract infections
ESBL, extended-spectrum β-lactamase; ESBLs-EC, ESBLs-producing Escherichia coli; IAI, intra-abdominal infections; MIC, minimum inhibitory 
concentration; ND, no data; UTI, urinary tract infections; UN, unknown.

Table 1.  (Continued)

‘ESBL-phenotype’ based on the CLSI screening 
criteria for potential ESBL production, that is, MIC 
of ⩾2 mg/L for ceftazidime or ceftriaxone or aztre-
onam. In three studies, both phenotypic and molec-
ular methods were used to determine and confirm 
ESBLs production.20,24,27 Most clinical isolates of 
ESBLs-EC had MIC50 at a concentration of 0.5 µg/

mL which 50% of the isolates were inhibited. In 
contrast, MIC90 was at a concentration of 2 µg/mL 
which 90% of the isolates were inhibited.

In these studies, the pooled prevalence of 
Ceftolozane/Tazobactam susceptibility for 
ESBLs-EC isolates was assessed at 91.3% (95% 
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Table 2.  The main characteristics of studies included in the meta-analysis for ESBLs-KP isolates.

No. First author Publication 
year

Preformed 
time

Sample source ESBL-
KP 
sample 
size
No.

MIC50/
MIC90  
µg/mL

MIC range  
µg/mL

Susceptibility 
rate %

Ref.

1 Shortridge 2022 2016–2018 Australia, New 
Zealand

29 0.5/2 0.12 to >32 93.1 (27) 15

2 Hernández-
García

2022 2016–2018 Spain, Portugal 66 1/16 0.25 to >32 68.2 (45) 16

3 Ahmed 2022 2012–2013 Qatar 55 0.38/1 0.25/1.5 100 (55) 17

4 Pfaller 2022 2016–2018 Asia 261 4/>32 0.06 to >32 47.1 (123) 18

5 Karlowsky 2021 2018–2019 US 85 ND ND 67.1 (57) 19

6 Belley 2021 2016–2018 US, Europe 299 1/32 0.06 to >64 70.9 (212) 20

7 Shortridge 2021 2012–2018 US 675 1/16 ⩽0.03 to >32 77 (520) 21

8 Pfaller 2020 2015–2018 US 87a 1/16 ⩽0.06 to >32 85.1 (74) 22

49b 1/8 ⩽0.06 to >32 79.6 (39)  

24c 1/16 ⩽0.06 to >32 75 (18)  

Europe 289a 1/32 ⩽0.06 to >32 67.1 (194)  

173b 2/32 ⩽0.06 to >32 61.3 (106)  

24c 2/16 0.12 to >32 58.3 (14)  

9 Hirsch 2020 2012–2017 US 26 1/16 0.25–256 76.9 (20) 23

10 Golden 2020 2015–2017 Canada 11 2 0.25 to >64 54.5 (6) 24

11 García-
Fernández

2020 2017–2018 Spain, Portugal 43 2/32 0.25 to >64 55.8 (24) 25

12 Beirão 2020 2016–2017 Brazil 144 16/>32 ND 36.1 (52) 26

13 Kuo 2020 2015–2016 Asia-Pacific 87 2/>32 ND 65.5 (57) 27

14 Karlowsky 2019 2016 Europe, Middle 
East/Africa, Asia/
Pacific, Latin 
America, US/
Canada

1343 1/>32 ⩽0.06 to >32 70.1 (941) 5

15 Sader 2019 2018 US 61 1/>16 ND 80.4 (49) 28

16 Shortridge 2019 2012–2016 US 44 0.5/4 0.12–16 86.4 (38) 9

Europe 113 1/16 0.12 to >32 67.3 (76)  

17 Hatem
Amer

2019 2016–2018 Egypt 50 0.094/0.25 0.094–0.25 100 (50) 4

18 Carvalhaes 2019 2015–2017 US 116 1/8 0.03 to >32 80.2 (93) 29

(Continued)
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No. First author Publication 
year

Preformed 
time

Sample source ESBL-
KP 
sample 
size
No.

MIC50/
MIC90  
µg/mL

MIC range  
µg/mL

Susceptibility 
rate %

Ref.

19 García-
Fernández

2019 2016–2017 Spain 22 1/16 0.25 to >64 77.3 (17) 30

20 Bouxom 2018 2016 France 50 1/4 0.5–8 52 (26) 2

21 Seifert 2018 2014–2015 Germany 40 1/4 0.25 to ⩾128 62.5 (25) 31

22 Shortridge 2017 2013–2014 US 369 1/16 0.03 to >32 75.1 (277) 32

23 Pfaller 2017 2012–2015 Europe 280 1/>32 0.03 to >32 65.4 (183) 3

24 Pfaller 2017 2013–2015 minus China, 
Australia, New 
Zealand

173 1/32 0.06 to >32 69.4 (120) 33

25 Pfaller 2017 2013–2015 Latin American 
(Argentina, 
Brazil, Chile, 
Mexico)

226 2/>32 0.03 to >32 56.6 (128) 34

26 Pfaller 2017 2013–2015 Australia, New 
Zealand

12 0.5/4 0.06–16 83.3 (10) 35

27 Tato 2015 2013 Spain 16 4/16 0.5–16 43.8 (7) 36

28 Sader 2014 UN Europe 633 2/>32 ⩽0.12 to >32 60.4 (382) 37

29 Sader 2014 2012 US, Europe 21d 1/>32 ⩽0.12 to >32 63.6 (13) 38

67e 2/>32 0.25 to >32 59.7 (40)  

30 Farrell 2014 2012 US, Europe 132 4/>32 ⩽0.5 to >32 57.6 (76) 39

31 Farrell 2013 2011–2012 US 244 32/>32 0.03 to >32 30.3 (74) 40

aPatients >65 years old.
bIntensive care unit.
cImmunocompromised patients.
dIntra-abdominal infections
eUrinary tract infections
ESBL, extended-spectrum β-lactamase; ESBLs-KP, ESBLs-producing Klebsiella pneumoniae; IAI, intra-abdominal infections; ND, no data; UTI, 
urinary tract infections; UN, unknown.

Table 2.  (Continued)

CI: 90.1–92.5%) [Figure 2(a)]. There was sig-
nificant heterogeneity among the 31 studies 
(χ2 = 91.621; p < 0.001; I2 = 67.256%). The sym-
metric funnel plots showed no evidence of publi-
cation bias [Figure 3(a)]. Egger’s tests were 
performed to evaluate the publication biases 
quantitatively. According to the result of Egger’s 
analysis (t = 1.02, p = 0.31), no evidence of publi-
cation bias was observed.

Also, most clinical isolates of ESBLs-KP had 
MIC50 at a concentration of 1 µg/mL which 50% 

of the isolates were inhibited. In contrast, MIC90 
was at 32 µg/mL which 90% of the isolates were 
inhibited.

The pooled prevalence of Ceftolozane/
Tazobactam susceptibility for ESBLs-KP isolates 
was assessed at 65.6% (95% CI: 60.8–70.2%) 
[Figure 2(b)]. There was high significant hetero-
geneity among the 31 studies (χ2 = 348.72; 
p < 0.001; I2 = 91.4%). The symmetric funnel 
plots showed no evidence of publication bias 
[Figure 3(b)]. Egger’s tests were performed to 
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Figure 2.  Forest plot of the pooled prevalence of Ceftolozane–Tazobactam susceptibility. (a) The prevalence 
of Ceftolozane–Tazobactam susceptibility in ESBLs-EC isolates and (b) The prevalence of Ceftolozane–
Tazobactam susceptibility in ESBLs-KP isolates.
ESBLs, Extended-spectrum β-lactamases; ESBLs-EC, ESBLs-producing Escherichia coli; ESBLs-KP, ESBLs-producing 
Klebsiella pneumoniae.
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evaluate the publication biases quantitatively. 
According to the result of Egger’s analysis 
(t = 0.04, p = 0.96), no evidence of publication 
bias was observed.

The sensitivity analysis was performed by exclud-
ing one study at a time to evaluate the impact of 
each study on the summary results and between-
study heterogeneity. None of the studies alone in 
the sensitivity analysis showed any significant 
effect on estimated prevalence (Supplemental 
Figure S1A and B).

Meta-regression results for susceptibility rate of 
ESBLs-EC (coefficient: −0.033, 95% CI: −0.111–
0.043, p = 0.4) and ESBLs-KP (coefficient: 0.036, 
95% CI: −0.072–0.144, p = 0.51) isolates against 
Ceftolozane/Tazobactam revealed that were not 

significantly associated with the year (Supplemental 
Figures S2A and B). Supplemental Figure S2A 
and B shows the results of the influence analysis, 
showing that none of the studies affect the esti-
mated pooled prevalence of susceptibility to 
Ceftolozane/Tazobactam.

Discussion
Faced with a growing global health threat posed 
by increasing resistance to main therapeutic drugs 
against ESBLs-producing Enterobacterales, 
which has left clinicians with few viable alterna-
tives, there is now an even greater need for intro-
ducing new effective antibiotics that demonstrate 
activity against ESBLs-producing gram-negative 
bacteria, especially ESBLs-EC and ESBLs-KP 
strains.31 To spare carbapenems as the first choice 

Figure 3.  Funnel plot of meta-analysis on the pooled prevalence of Ceftolozane–Tazobactam susceptibility 
for evaluation of publication bias. (a) The Funnel plot of Ceftolozane–Tazobactam susceptibility in ESBLs-EC 
isolates and (b) The Funnel plot of Ceftolozane–Tazobactam susceptibility in ESBLs-KP isolates.
ESBLs, Extended-spectrum β-lactamases; ESBLs-EC, ESBLs-producing Escherichia coli; ESBLs-KP, ESBLs-producing 
Klebsiella pneumoniae.
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for treating infections caused by ESBLs-
producing Enterobacterales and to prevent the 
increase of carbapenem-resistant strains, the use 
of alternative drugs is essential.5,41,42 This surveil-
lance study evaluated the antimicrobial suscepti-
bility profile of Ceftolozane/Tazobactam, an 
approved cephalosporin-beta-lactamase inhibitor 
combination, for treating infections caused by 
ESBLs-EC and ESBLs-KP strains on a global 
scale. To achieve this, we utilized the CLSI MIC 
interpretive criteria, which are predominant in 
the United States, Canada, and many regions 
outside Europe (such as Asia, the Middle East/
Africa, Asia/Pacific, Latin America, etc.), instead 
of the European Committee on Antimicrobial 
Susceptibility Testing (EUCAST)13 to determine 
susceptibility rates.43,44

Pfaller et  al. reported that Ceftolozane–
Tazobactam exhibits the highest antimicrobial 
activity against P. aeruginosa and ranks second to 
meropenem against most enteric isolates with an 
ESBLs phenotype.22 Our finding indicate the 
promising antibacterial activity of Ceftolozane/
Tazobactam against clinical isolates of ESBLs-EC, 
as evidenced by the low rate of non-susceptible 
isolates (9%). The assessed MIC values of 
Ceftolozane/Tazobactam against ESBLs-EC iso-
lates were 0.5 µg/mL for MIC50 and 2 µg/mL for 
MIC90, which were slightly higher than the MIC 
values of carbapenems (Imipenem, Meropenem, 
Doripenem, and Ertapenem) for ESBLs-EC 
reported in the literature.2,3,5,24,26,30–34,36,39,40,45 In 
contrast to other studies, Hatem Amer et  al. in 
Egypt reported that Ceftolozane/Tazobactam 
showed MIC50 values of 0.064 and 0.094 µg/mL 
against ESBLs-EC and ESBLs-KP isolated from 
blood-stream infections, respectively, compared 
to a MIC50 value of 0.125 µg/mL for meropenem. 
Additionally, the MIC90 values for both drugs 
were 0.25 µg/mL against ESBLs-EC and 
ESBLs-KP isolates.4 The frequency of certain 
resistant strains and the activity of Ceftolozane–
Tazobactam vary across high-risk patients, such as 
those aged >65 years, patients in intensive care 
units, and immunocompromised patients, as well 
as in different geographical regions.22 Although 
Ceftolozane/Tazobactam is less effective than car-
bapenems against ESBLs-EC strains, it is essential 
to highlight that its use can help reduce carbap-
enem utilization and the emergence of carbap-
enem-resistant strains. Ceftolozane/Tazobactam’s 
relatively similar activity and cost-effectiveness 

compared to carbapenems make it a valuable 
treatment option for infections caused by 
ESBLs-EC strains.2,30–32,46–48 Based on several 
randomized clinical trials conducted in recent 
years, Ceftolozane/Tazobactam has been found 
to be comparable to meropenem as an effective 
and safe treatment option for complicated and 
life-threatening infections caused by ESBL-
producing Enterobacterales.49–55 Ceftolozane/
Tazobactam may confer a survival advantage over 
meropenem in invasive ESBLs-related infections, 
leading to lower mortality.52,54 However, this 
effect needs confirmation through adequately 
powered prospective studies.

Based on previous studies, the results indicated a 
lower activity of Ceftolozane/Tazobactam against 
clinical isolates of ESBLs-KP due to a high rate of 
non-susceptible isolates (34.6%). The evaluated 
MIC values of Ceftolozane/Tazobactam against 
ESBLs-KP were 1 µg/mL for MIC50 and 32 µg/mL 
for MIC90, which are much higher than the MIC 
values of carbapenems for ESBLs-KP reported  
in the literature.2,3,5,24,29–37,39,40,45 Ceftolozane/
Tazobactam exhibits moderate activity against 
certain ESBLs-KP strains. This may be attributed 
to the coproduction of Carbapenemases in 
ESBLs-KP strains, which is less prevalent in E. 
coli. It is important to note that Ceftolozane/
Tazobactam lacks activity against K. pneumoniae 
carbapenemases, Metallo-β-lactamases, or AmpC 
β-lactamases.9,36,56–58

Considering the results of meta-regression 
(Supplemental Figures S2A), the susceptibility rate 
of Ceftolozane/Tazobactam against ESBLs-EC 
isolates has shown a slight decrease during recent 
years, leading to an increase in the prevalence of 
resistant phenotypes. This finding suggests that the 
usage of Ceftolozane/Tazobactam and the pressure 
of natural selection may contribute to an increase in 
the prevalence of antibiotic-resistant ESBLs-EC 
strains in the future. On the other hand, the meta-
regression analysis related to the susceptibility rate 
of Ceftolozane/Tazobactam against ESBLs-KP 
isolates (Supplemental Figure S2B) did not reveal a 
significant increasing trend in the estimated pooled 
prevalence of susceptibility rate over time.

The main limitations of our study were the lack of 
a standard MIC breakpoint for defining 
Ceftolozane/Tazobactam susceptibility rates in 
some of the studies, and the absence of sufficient 
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data about the molecular enzymes of the studied 
ESBLs strains.

In summary, the meta-analysis results demon-
strate that ESBLs-EC isolates from different clin-
ical sources show a higher susceptibility to 
Ceftolozane/Tazobactam compared to ESBLs-KP 
isolates. Although Ceftolozane/Tazobactam 
exhibits limited activity against ESBLs-KP strains 
when compared to carbapenems, it effectively 
inhibits the majority of clinical isolates of ESBLs-
positive Enterobacteriaceae. Therefore, it has the 
potential to serve as a valuable empirical thera-
peutic agent, offering an alternative to carbapen-
ems for treating patients with infections caused by 
ESBLs-producing Enterobacteriaceae.
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