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The intrinsic organizational structure of the brain is reflected in spontaneous brain oscillations. Its functional integration and
segregation hierarchy have been discovered in space by leveraging gradient approaches to low-frequency functional connectivity.
This hierarchy of brain oscillations has not yet been fully understood, since previous studies have mainly concentrated on the brain
oscillations from a single limited frequency range (∼ 0.01–0.1 Hz). In this work, we extended the frequency range and performed gradient
analysis across multiple frequency bands of fast resting-state fMRI signals from the Human Connectome Project and condensed a
frequency-rank cortical map of the highest gradient. We found that the coarse skeletons of the functional organization hierarchy are
generalizable across the multiple frequency bands. Beyond that, the highest integration levels of connectivity vary in the frequency
domain across different large-scale brain networks. These findings are replicated in another independent dataset and demonstrated
that different brain networks can integrate information at varying rates, indicating the significance of examining the intrinsic
architecture of spontaneous brain activity from the perspective of multiple frequency bands.
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Introduction
The intrinsic functional architecture of the brain is reflected in
spontaneous brain oscillations as measured by resting-state func-
tional magnetic resonance imaging (rs-fMRI). From spontaneous
brain activity, several large-scale brain networks dominant in
different functions have been discovered (Yeo et al. 2011). This
indicates that even in the absence of tasks, brain areas that are
dominant in the same functions display comparable connectivity
patterns. In contrast to network or parcellation analysis, which
stresses the universality within networks and the heterogeneity
among networks or parcels, gradient analysis based on functional
connectivity (FC) features demonstrates continuous similarity
changes across the cortex (Huntenburg et al. 2018). The FC matrix
could be rearranged into a collection of gradients by using dimen-
sion reduction procedures. Each gradient is represented by a one-
dimensional axis. The position of a particular brain region on the
gradient axis reflects the degree of function in the function scale
that it represents. The first two gradients are thought to reflect
relatively straightforward physiological significance (Margulies
et al. 2016). The first gradient, or the principal gradient, accounts
for the majority of variance in the FC matrix. On one end of the
first gradient axis are unimodal primary areas, and on the other
end are high-level transmodal associative areas. The first gradient
spreads brain areas of different processing levels on a continuous
axis and reflects how information is processed hierarchically in
the spatial domain from primary sensorimotor regions all the way
up to the associative regions. As a corollary, it captures the cortical
functional integration feature. And a particular brain region’s

position on this axis reflects its degree of functional integration
across the entire cortex. Besides, the distribution of the first gra-
dient is consistent with the gradient change in gene expression as
well as cortical microstructure (Hawrylycz et al. 2012; Huntenburg
et al. 2017). This indicates that the hierarchical organization of
the spontaneous brain oscillations reflects the brain’s intrinsic
architecture. The second gradient depicts functional segregation
among the primary unimodal regions. The gradient axis serves to
partition different sensorimotor areas. Therefore, both functional
integration and functional refinement can be seen in the way that
neuronal oscillations are organized when these two gradients are
combined.

These results, however, only consider brain oscillations within
the traditional resting-state frequency range (∼ 0.01–0.1 Hz); oscil-
lations at higher and lower frequencies are ignored. In other
words, studies of gradients in the traditional frequency range only
capture the spatial organization of oscillations in a limited spec-
tral range. Higher and lower frequencies, however, should also be
taken into account in order to investigate brain activity in a more
comprehensive manner, as they also carry valuable neural infor-
mation (Yan et al. 2009; Zhang et al. 2015; Frühholz et al. 2020).
Evidence from research using various measuring techniques has
demonstrated that brain oscillations at different frequencies are
prevalent in different brain processes and correlate with different
psychological states. According to a recent fMRI study, different
states of consciousness were associated with frequency-specific
power differences in blood oxygen level-dependent (BOLD) signals
in the rat brains (Cabral et al. 2023). Early electrophysiological
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research has shown that fast oscillations correspond to local
activity and primary sensory processing, whereas slow oscilla-
tions correspond to remote synchronization and high-order activ-
ities (Kopell et al. 2000; Engel et al. 2001; Buzsaki and Draguhn
2004). This frequency feature is supported by the anatomy of
neural fibbers (Aboitiz 1992). Local sensorimotor brain areas are
mostly connected by thick, highly myelinated fibbers that conduct
signals fast. Remote and high-level brain regions are linked by
thin, less myelinated fibbers that transport signals at a slower
rate. This physiological trait establishes the independence of mea-
surement methods for the frequency-dependent nature of brain
signals. Hence, both frequency and spatial domain should be
taken into account in fMRI research in order to further decipher
the tangled brain processes. Although the majority of rs-fMRI
discoveries were made in the traditional resting-state frequency
range, an increasing number of fMRI studies using multiband
frequency analysis in the last decade have found that the charac-
teristics of BOLD oscillations are also frequency-dependent (Zuo
et al. 2010; Baria et al. 2011; Xue et al. 2014; Li et al. 2018; Li
et al. 2021). Similar to electrophysiological evidence, BOLD oscil-
lations in low frequency bands have more long-distance connec-
tions than in high-frequency bands; additionally, low frequency
brain networks contribute more to global efficiency than high-
frequency brain networks, which suggests that slow oscillations
might predominate more in functional integration and high-level
functions (Thompson and Fransson 2015; Jamadar et al. 2018;
Park et al. 2019). This suggests that BOLD oscillations in different
frequency bands have different spatial arrangements and func-
tions. Furthermore, these discrepancies may also be seen in the
connectivity gradient patterns across frequency bands. There-
fore, the organization architecture of spontaneous brain activity
should be examined in the full detectable frequency range rather
than just focusing on one narrow spectra (e.g. the traditional rs-
fMRI frequency range). When combining the spatial, temporal,
and frequency dimensions, it may be possible to determine the
processing speed of different brain areas as well as potential
information transmission pathways.

The intrinsic organization hierarchy of BOLD oscillations in the
full detectable frequency range has very seldomly been studied
to this point. One of the reasons behind this, aside from the lack
of awareness of the significance of multiband analysis in fMRI
research, is that the signal-to-noise ratio of the early MRI scan-
ners used in research was insufficient to identify neural signals
in frequencies outside the traditional rs-fMRI frequency range.
The power spectrum measured was therefore mostly centered
between 0.01 and 0.1 Hz (Biswal et al. 1995). Moreover, higher fre-
quencies could not be reached due to the slow sample rates. The
finest opportunity to explore this issue has been made possible by
the development of magnetic resonance devices with higher sam-
pling rates and stronger signal-to-noise ratios. Almost the whole
range of slow oscillations (from slow-1 to slow-6) on the frequency
axis defined by the natural logarithm linear law (N3L) can be
covered by a sufficiently long fast scan (Penttonen and Buzsáki
2003). According to the classification of N3L, the traditional rs-
fMRI frequency range is the summation of slow-4 and slow-5
bands. In the current study, we extended the frequency range to
slow-1 to slow-6, and aim to illustrate the intrinsic organization
hierarchy of BOLD oscillations in the full detectable frequency
range by performing gradient analysis across multiple frequency
bands of fast rs-fMRI signals from the Human Connectome Project
(HCP). We mainly focused on the first two gradients since they
have rather obvious physiological relevance. By depicting the dis-
tribution patterns of these two gradients across frequency bands,

we investigated how functional integration and segregation are
arranged across the cortex in the frequency domain. We also
identified the frequency band at which certain brain regions
exhibit the highest integration level based on the frequency-rank
of the greatest values of the first gradient. By doing so, a brain
map that reflects the highest integration rate of the cortex could
be generated. We anticipated that brain regions that differ in the
integration level in the spatial domain would also differ in the
frequency domain.

Materials and methods
Data acquisition and preprocessing
Resting-state fMRI data with a high sampling rate and extended
scan duration from the HCP-339 unrelated datasets were chosen
for this research to acquire a wider frequency range (Van Essen
et al. 2013). The resting-state data were collected in the adja-
cent two days. Two runs of resting-state sequence were scanned
each day. The first run was coded from left to right, and the
second run was from right to left. The length of each run was
14 minutes, 33 seconds. The scanning parameters were as fol-
lows: sequence = gradient-echo EPI; TR = 720 ms; TE = 33.1 ms;
flip angle = 52; FOV = 208 mm × 180 mm; matrix = 104 × 90; slice
thickness = 2 mm (72 slices; 2 mm isotropic voxels); multiband
factor = 8; echo spacing = 0.58 ms; bandwidth = 2,290 Hz/Px; vol-
umes = 1,200. The HCP dataset is described in depth in (Van Essen
et al. 2013). The data were preprocessed according to the HCP
minimal preprocessing pipeline with the ICA-FIX denoising proce-
dure (Glasser et al. 2013). The preprocessing procedures included
(i) gradient distortion correction; (ii) motion correction; (iii) EPI
image distortion correction; (iv) registration to the T1w image; (v)
one-step spline resampling; (vi) intensity normalization and brain
masking; (vii) transfer volume-based time series into surface-
based time series; and (vii) ICA-FIX denoising. The preprocessed
time series were then decomposed into six frequency bands (slow-
6: 0.007–0.012 Hz; slow-5: 0.012–0.030 Hz; slow-4: 0.030–0.082 Hz;
slow-3: 0.082–0.223 Hz; slow-2: 0.223–0.607 Hz; slow-1: 0.607–
0.694 Hz) using DREAM (Gong et al. 2021).

Gradient analysis
First, four FC matrices (64,984 × 64,984) in each band were pro-
duced by performing a whole-brain vertex-based FC analysis on
each run for all frequency bands at the individual level. The four
matrices were then averaged in each band after each FC matrix
underwent the Fisher-Z transform. One FC matrix was created
in this manner for each participant in each band. The group-
level FC matrix was then calculated for each frequency band by
averaging all the individual-level FC matrices in the same band.
Next, we performed gradient analysis on each group level matrix
using the Brainspace toolkit (Wael et al. 2020). The matrix was first
made sparse by preserving the top 10% values for each vertex and
setting the remaining values to 0. Then, using the cosine similarity
approach, an affinity matrix (64,984 × 64,984) was produced by
computing the FC similarity between each pair of vertices. The
affinity matrix’s dimension was then reduced using diffusion map
embedding, which also divided the matrix into a few eigenvectors.
The gradient values of all brain areas are contained in each
eigenvector.

Frequency-rank analysis
After gradient analysis, we obtained six first gradient vectors, one
for each frequency band. When the directions of these vectors are
aligned, and the gradient values are normalized in each vector, the
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position across vectors would be comparable. Since the first gradi-
ent reflects the transition of connectivity pattern from unimodal
via multimodal to transmodal regions, the relative position of a
vertex along the first gradient can indicate whether the function
of the vertex is more basic and unitary (e.g. more toward the
unimodal end) or more advanced and integrated (e.g. more toward
the transmodal end). A vertex’s position along the first gradient
can therefore, from the angle of frequency dimension, reflects in
which frequency band its function is more unitary and in which
is more integrated. Based on this, we performed the frequency-
rank analysis to identify the frequency band in which each vertex
has the highest level of integration. We started by lining up the
orientation of the six vectors. Each vector was then transformed
into z-scores. The z-scores were then sorted across six frequency
bands for each vertex, and the sorted values were assigned to the
corresponding frequency bands. Finally, according to the ranking
data, we extracted two maps, one depicting the frequency band
with the highest gradient value and the other representing the
frequency band with the lowest gradient value. The high-value
frequency-rank map could reflect the frequency bands at which
brain regions show the highest level of integration. The frequency
information contained in the map can further reflect the rate
at which the cortex performs its highest integration function.
As a supplement, we performed frequency-rank analysis for the
second gradient as well.

The global Moran test
To testify whether the spatial pattern of the high-value frequency-
rank map is spatially clustered or randomly distributed, we
performed the global Moran test. We first calculated Moran’s
I, an index measures spatial autocorrelation, which refers to
the correlation between adjacent positions of signals in space
(Moran 1948). Because the index is multi-dimensional and
multi-directional, it can reflect the global spatial information
better than one-dimensional correlation. Moran’s I is computed
according to formular (1):

I = N
∑N

i=1

∑N
j=1 wij

(
xi − x

) (
xj − x

)

W
∑N

i=1

(
xi − x

)2 (1)

where N is the number of vertices indexed by i and j; x is the
variable of interest; wij is the spatial weight matrix that reflects
the weight of the distance between every two positions; and W is
the sum of all wij.The null hypothesis of the global Moran test
is that the spatial pattern of variables is randomly distributed.
A positive Moran’s I with a statistically significant P-value indi-
cates the spatial pattern is spatially clustered, whereas a nega-
tive one indicates a spatially dispersed pattern. If the P-value is
not statistically significant, then the null hypothesis cannot be
rejected. The statistical significance of the spatial distribution can
be obtained by calculating the Z-score of the Moran’s I:

zi = I − E [I]
√

V [I]
(2)

where E [I] is the expectation value of I and V [I] is the variance of
I, which are computed as follows:

E [I] = − 1
n − 1

(3)

V [I] = E
[
I2] − E[I]2 (4)

Meta-analytic decoding of the high-value
frequency-rank map
We used the NeuroSynth meta-analytic database (www.neurosynth.
org) to evaluate the functional terms associated with the
brain regions showing the highest first gradient values in each
frequency band in order to further validate the neurocognitive
meaning of the high-value frequency-rank map of the first
gradient. The first step was to construct and project a surface
mask for each frequency band into the MNI152 standard space.
The similarity between each mask and the complete collection of
1,307 NeuroSynth terms was then determined. All terms were listed
in descending order by correlation coefficients. Terms related to
brain anatomy were then removed (e.g. prefrontal), and the top
five terms with cognitive implications for each frequency band
were chosen. If within the top five terms there were more than
one terms referring to the exact same function (e.g. pain and
painful), we only kept the first one.

Reproducibility analysis
In recent years, more and more, researchers have pointed out
that the reproducibility crisis in the field of fMRI has been largely
overlooked (Noble et al. 2019; Zuo et al. 2019; Marek et al. 2022).
Although the reliability of FC gradient derived with a scan of
duration less than 20 minutes is below moderate (Hong et al.
2020; Zhang and Zang 2023), the gradient distribution pattern in
the traditional frequency range has been reproduced at the group
level across different studies (Margulies et al. 2016; Nenning et al.
2023; Samara et al. 2023). This shows that the gradient analysis is
a reliable method at group level. However, the multi-band gradient
distribution pattern has not been studied yet, let alone repro-
duced. To testify the reproducibility of the multi-band results, we
performed the same frequency analysis and the frequency-rank
analysis based on the Chinese Human Connectome Project (CHCP)
dataset. It is the counterpart of the HCP that utilized a comparable
protocol for the data collection. Details of subject information,
data parameters, and preprocessing procedure can be found in Ge
et al. (2023). It should be noted that the CHCP BOLD oscillations
could be decomposed into only five frequency bands (slow-1 to
slow-5) because the CHCP resting-state scan duration is shorter
than the HCP resting-state scan duration. We thus performed
the frequency-rank analysis on these five frequency bands of the
HCP data to make sure the frequency-rank maps are comparable
between the two datasets.

Results
The proportion of variance explained
by gradients
Gradient analysis produced a set of gradient vectors for each
frequency band. The gradient vectors are arranged according to
the amount of FC matrix variance they can explain. For instance,
the first gradient explains the most variance. Slow-3 to slow-6
demonstrate the same tendency, as shown in Fig. 1. Beginning
about the 50th gradient, the explanation of variance tends to be
zero, with the front gradients explaining far more variance than
the back gradients. Slow-1 and slow-2 exhibit a similar tendency,
but the amount of variance explained by each gradient differ.

Gradient distribution across frequency bands
We primarily concentrated on the distribution patterns of the
first two gradients across frequency bands because they account
for the majority of variance in the FC matrix and have relatively

http://www.neurosynth.org
http://www.neurosynth.org
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Fig. 1. The variance explained by each gradient across six frequency bands. Each point in the diagram represents a gradient component. The vertical
axis represents the proportion of variance that each gradient component can explained. The tendencies are similar across frequency bands, but the
amount of variance explained by each gradient differs less in slow-1 and slow-2 from that in lower frequency bands.

obvious physiological implications. The distribution patterns of
the first two gradients from slow-1 to slow-6 are shown in Fig. 2.
The general distribution patterns of the first gradient are compa-
rable throughout all six bands, whereas slow-1/2 and the lower
frequency bands differ in some specifics. In all frequency bands,
the first gradient clearly shifts from unimodal to transmodal
regions. However, the unimodal end of the first gradient anchors
in sensorimotor regions in slow-3 to slow-6, whereas in slow-1,
it anchors in the visual cortex. Slow-2 shows a transition mode
from slow-1 to lower bands, of which the unimodal end anchors
in both sensorimotor and visual cortex. This characteristic is more
clearly shown in Fig. 3. The color of the scatter plots indicates
the position of each vertex on the cortex. In slow-3 to slow-
6, the unimodal end of the first gradient, or the points in the

scatter plot at the minimum of the first gradient axis, is rep-
resented by purple, which distributed in the motor cortex. In
slow-1 and slow-2, the unimodal end points are dark blue, which
distributed in the visual cortex in slow-1 and both visual and
sensorimotor cortex in slow-2. In addition, the transmodal end
of the first gradient is more focalized in the lateral part of the
transmodal regions in slow-1/2 compared with lower frequency
bands.

The general distribution pattern of the second gradient is con-
sistent in slow-3 to slow-6, which shows the segregation among
the primary sensorimotor regions. It should be noted that slow-1
and slow-2 show different patterns. Extreme values in a restricted
region of the anterior medial temporal lobe interfere with the
visualization of the second gradient in slow-1 (see Fig. 2B).
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Fig. 2. The distribution of the first and second gradient across six frequency bands. (A) The general distribution patterns are comparable throughout all
six bands, whereas slow-1/2 and the lower frequency bands differ in some specifics. (B) Extreme values in a few localized areas of the anterior medial
temporal cortex interfere with the visualization of the second gradient of slow-1. After thresholding, we can see that the gradient distribution of slow-1
also goes from the visual cortex to the auditory cortex and finally reaches the sensorimotor cortex.

After thresholding, we can see that the gradient distribution of
slow-1 also goes from the visual cortex to the auditory cortex and
finally reaches the sensorimotor cortex. The gradient change,
however, is not as noticeable as it is in lower frequency bands. A
different gradient pattern can be seen in slow-2, where the task-
positive regions are located on one end of the axis and parts of
the DMN are located on the other. Furthermore, this gradient
pattern resembles the third gradient in the slow-3 to slow-6
bands. The extreme values in slow-1 suggest that gradients at
high frequencies may be noise-sensitive. Since the amounts of
variation explained by each gradient in slow-1 and slow-2 are
quite close, we speculate that the order of gradients in slow-1/2
may likewise be noise- and preprocess-sensitive.

Results of frequency-rank analysis
and the global Moran test
The frequency-rank maps for the two gradients are shown in
Fig. 4. The frequency-rank map of the highest values for the
first gradient represents the frequency band where a certain
brain region is the most toward the transmodal end, as shown
in Fig. 4(A). In slow-1, for example, relative to other frequency
bands, a brain region operates the most like transmodal regions
or exhibits the highest level of integration if it is the closest to
the transmodal end among all six bands. Furthermore, it can be
inferred that this brain region performs its highest integration
function at a rate in the frequency range of slow-1 because

frequency provides information about speed. Thus, Fig. 4(A)
reflects the highest integration rate across the cortex. And in
the present work, we primarily focus on discussing this map. The
spatial distribution of the highest integration rate apparently
exhibits clustered spatial pattern rather than stochastically
distributed. It’s interesting to note that the contour of the
clustered pattern approximately outlines the shapes of the
resting-state networks. To testify the significance of the spatially
clustered pattern, we performed the global Moran test for
each hemisphere. Both hemispheres show significant spatially
clustered patterns (left hemisphere: I = 0.1134, z = 620.2489,
P = 0.0000; right hemisphere: I = 0.1045, z = 591.0687, P = 0.0000).
In general, the primary sensory and motor networks mainly show
the highest integration level in high-frequency bands (except for
part of the visual network), while high-level networks exhibit
divergent patterns. Specifically, the DMN is divided into two
regions. The medial region of the DMN has the highest level of
integration in slow-6, whereas the lateral part exhibits the highest
level of integration in slow-1. The ventral attention network (VAN)
is also partitioned. The lateral and medial parietal lobe VAN areas
in slow-5 and slow-6 exhibit the highest levels of integration.
Areas in the ventral lateral frontal lobe have the highest level of
integration in slow-1 to slow-4. The frequency distributions of the
highest integration level of the dorsal attention network (DAN)
and the frontoparietal network (FPN) are more inner consistent.
The DAN shows the highest integration level in the low frequency
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Fig. 3. The Euclidean distribution of the first and second gradient across six frequency bands. The color of the points in the scatter plot indicates the
location of these points on the cortex, as depicted on the left. In slow-1 and slow-2, the points at the unimodal end of the first gradient are dark blue.
The dark blue points are situated on the visual cortex in slow-1 and both the visual and sensorimotor cortex in slow-2, as indicated on the left cortical
maps. In slow-3 to slow-6, the unimodal end points are purple, which are all located on the sensorimotor cortex.
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Fig. 4. The frequency-rank map of the first two gradients. (A) The frequency-rank map of the highest values for the first gradient reflects the frequency
band where a particular brain area has the highest level of integration. (B) The frequency band where the most basic functional level of a particular
brain area is present is indicated by the frequency-rank map of the lowest value for the first gradient. The frequency-rank map of the highest and lowest
values for the second gradient are shown in (C) and (D), respectively.

bands (slow-5 and slow-6), whereas the FPN in the high-frequency
bands (slow-1 and slow-2). The highest level of integration of
primary networks is mainly in the high-frequency bands. In slow-
1 and slow-2, the auditory network (AN) and the somatomotor
network (SMN) show the highest levels of integration. In slow-2/3
and slow-5, the visual network (VN) exhibits the highest levels of
integration. The frequency band where the most basic functional
level of a particular brain area is present is indicated by the
frequency-rank map of the lowest value for the first gradient.
Figure 4(B) shows that the distribution pattern is practically the
inverse of the high value map. Figure 4(C)–(D) displays the two
maps for the second gradient, which illustrate the frequency band
at which a particular brain region exhibits the most connectivity
similarity to the visual or sensorimotor cortex.

Meta-analytic functions of each frequency band
We conducted a meta-analytic decoding for the high-value
frequency-rank map of the first gradient using the NeuroSynth
database in order to further examine the meaning provided by
the frequency-rank map. Table 1 lists the top five functional
terms associated with each frequency band’s highest-ranking
brain regions. The top functional terms in each band, except
for slow-2, are rather homogeneous. Slow-1’s highest frequency-
ranking brain areas are primarily linked to sensory and motor
processes. Slow-2’s correlation coefficient values are lower than
those of other bands and it is related with functional items that
are diverse. Slow-3 is mostly associated with language-related
functions. Most slow-4 terms have relevance with executive
function. Slow-5 is associated with visual, spatial, and attention
functions. Slow-6 terms are mostly concerning self-related and
social cognitive functions.

Multi-band gradient patterns of the CHCP dataset
The same frequency-rank analysis and gradient analysis were
repeated on the CHCP dataset to demonstrate the reproducibility
of the multi-band gradient analysis. The multi-band gradient
distribution of the CHCP is consistent with the HCP (see Fig. S1).
The unimodal-transmodal axis appears as the first gradient in all
five frequency bands. The visual-sensorimotor axis appears as the
second gradient in all bands except slow-2. Same as the HCP, the
slow-2 second gradient of the CHCP displays the transition from
the task-positive regions to task-negative regions. Like the HCP
results, Fig. S2 shows in slow-1 and slow-2 the unimodal end of
the first gradient differs from lower frequency bands. In lower
frequency bands, the unimodal end anchors in the sensorimotor
cortex, but in slow-1 and slow-2 it anchors in both the visual and
sensorimotor cortex. The comparison of frequency-rank maps
between the HCP and the CHCP is shown in Fig. S3. The frequency-
rank analysis was carried out in slow1-slow5 for the HCP data as
well to ensure that the maps are comparable between the two
datasets. Although some specifics of the first gradient’s highest
rank map differ across the two datasets, the overall patterns
are identical. The frequency-rank maps of the second gradient
show some clear differences across datasets. For example, in the
HCP dataset, the DMN is located closest to the sensorimotor
cortex on the second gradient axis in slow-5, whereas in the
CHCP dataset, it is located closest in higher frequency bands
(Fig. S3C). The mechanism behind the differences between the
two datasets is worthwhile to further investigate. Since there
are just five frequency bands in the replicative frequency-rank
analysis, further explanation of the cognitive meaning of these
maps is not necessary here. We will focus on discussing the six-
band frequency-rank map of the HCP dataset in the following part.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad238#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad238#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad238#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad238#supplementary-data
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Table 1. Meta-analytic decoding of the frequency-rank map.

The top five functional terms (correlation coefficient)

slow-1 Somatosensory (0.237), primary motor (0.199), sensorimotor (0.191), pain (0.184), auditory (0.167)
slow-2 Self referential (0.058), primary visual (0.058), executive (0.054), primary somatosensory (0.053), remembering (0.051)
slow-3 Early visual (0.106), lingual (0.104), verb (0.093), visual (0.089), semantic (0.089)
slow-4 Olfactory (0.135), arithmetic (0.094), spatial (0.082), working memory (0.077), calculation (0.075)
slow-5 Visual (0.243), spatial (0.201), spatial attention (0.201), eye (0.200), attention (0.194)
slow-6 Autobiographical (0.217), episodic (0.178), social (0.161), memories (0.153), theory of mind (0.151)

Discussion
In this study, we examined the distribution of the first and second
FC gradients over six frequency bands. We found both consistency
and differences of gradient patterns across frequency bands. We
discovered that the coarse skeleton of the functional organization
is stable across frequencies. However, the slow-1/2 and lower
frequency bands had differences in some specifics. This indi-
cates that, the large-scale functional organization is consistent
across frequencies, which might be driven and constrained by
neurophysiological characteristics. Whereas, in some details, the
integration and segregation patterns between high and low fre-
quencies are different, which reflects there exists differences in
function between high and low frequency oscillations. To further
explore the differences across frequency bands, we performed
frequency-rank analysis on the gradient maps, and found that
different networks can integrate information at varying rates and
that subregions of the DMN and the VAN diverged in the frequency
domain, whereas other networks were relatively homogeneous.

The coarse skeletons of the functional
organization architecture are generalizable
across the multiple frequency bands
According to our analysis, in spatial dimension, the distribution
patterns of the first two gradients are generally stable across
frequency bands. And these spatial patterns are consistent with
previous single band studies (Margulies et al. 2016; Dong et al.
2021; Samara et al. 2023). This indicates that the main vari-
ance of FC in different frequency bands has the same driving
mechanism. A recent study has shown that the sensorimotor-
transmodal axis appeared as the principal gradient through the
entire range of connectivity levels (Nenning et al. 2023). Our
results further demonstrated that this axis emerged as the prin-
cipal gradient across all frequency bands as well. The promi-
nent position of the sensorimotor-transmodal axis across con-
nection levels and frequency bands suggests that essential traits,
such as physiological organization, should be the driving force of
the first gradient. As physical connection is the basis of func-
tional connection, the main driving mechanism should be the
anatomical pathways and physical attributes of the brain. There
is some evidence supporting this view. The intracortical myelin
and gene expression of the cortex both show a gradient change
along the unimodal-transmodal axis (Huntenburg et al. 2018). In
addition, recent studies have revealed the presence of network
organization in white matter and the corresponding relationship
between white matter networks and resting-state networks (Peer
et al. 2017; O’Muncheartaigh and Jbabdi 2018). Further research
is needed to determine whether there are corresponding gradi-
ent changes among white matter networks. This physiologically
based frequency consistency maintains that the functional cat-
egories of a given brain region or brain network are constant

across frequency bands. In other words, in the spatial axis, the
approximate location of a brain region’s integration level is essen-
tially constant across frequency bands. For instance, the visual
cortex is primarily involved in processing visual information;
therefore, its integration level should be lower across frequencies
compared with the prefrontal cortex, whose functional level is
more abstract. This is true even though the exact function of the
visual cortex may vary depending on the frequency.

Although the coarse skeleton of the functional organization
is similar across frequencies, the exact location of the unimodal
end is different between slow-1/2 and lower frequencies in both
datasets. The unimodal end is anchored in the visual cortex in
slow-1/2, whereas it is anchored in the sensorimotor cortex in
lower frequencies. This suggests that the integration processes
of different sensory modules might be different in the frequency
domain. We note that, in both datasets, the task-positive to task-
negative axis emerged as the second gradient in slow-2. Brain
regions at the task-positive end largely overlapped with the FPN
and the VAN. And the task-negative end anchored in the DMN.
The FPN and the VAN negatively interplay with the DMN both
temporally and spatially, and in both resting- and task-state (Chen
et al. 2013; Leech et al. 2014). Given that the FPN and a portion of
the VAN exhibit the highest integration rates in high-frequency
bands on the frequency-rank map, the second gradient in slow-2
may reflect the predominance of stimuli-related cognitive control
in slow-2.

Frequency-rank map reflects that brain networks
integrate information at varying rates
From a global perspective, the frequency-rank map of the highest
value for the first gradient is consistent with the spatial structure
of the large-scale brain networks (Yeo et al. 2011), indicating that
a common intrinsic large-scale architecture underpins both the
spatial and frequency functional organization. The frequency-
rank cluster of the primary sensory and motor networks (SMN,
AN, and most part of VN) is comparatively homogeneous, with all
of them operating at the highest order in high-frequency bands
(slow-1 to slow-3). This is in line with previous discoveries that
high-frequency bands display the most power in these networks
(Gohel and Biswal 2015). However, there are still discrepancies
between AN/SMN and VN. The AN in slow-1 exhibits the highest
integration level. The SMN performs at the highest order mainly
in slow-1, with part of the postcentral gyrus operating in slow-2.
Additionally, the meta-analytic decoding results show that slow-
1 is mainly associated with somatosensory, motor and auditory
functions. This illustrates the integration process of these pri-
mary functions is in high-frequency bands. The lowest rankings
of these two networks are mainly in the low- and medium-
frequency bands (slow-3 to slow-5), implying that the integration
direction of these two networks is from low frequency bands up
to high-frequency bands. Most part of the VN performs at the
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highest integration level in slow-2 and slow-3, whereas a region
in the lateral VN is in slow-5. The lowest rankings of the VN are
mainly in slow-1, except for the lateral posterior visual cortex
that is in slow-6, which suggests there may be two types of visual
pathways opposite in direction. One type integrates information
from higher frequency (slow-1) to lower frequency (slow-2/3 and
slow-5), the other integrates information from lower frequency
(slow-5) to higher frequency (slow-3). Terms about visual func-
tion are associated with slow-3 and slow-5, further dividing the
former type into two, the pathways of which ended in high and
low frequency bands, respectively. These findings challenged the
conventional binary segmentation of visual pathways (Schneider
1969) but provided fresh insights into the sophisticated visual
perception mechanism (Freud et al. 2016). Notably, the ranking
direction is opposite between the main part of the VN and the
SMN/AN, indicating that visual and sensorimotor/auditory infor-
mation processing and integration mechanisms may be different.
This corresponds with previous findings that the power distribu-
tion pattern of the visual cortex is different from that of the pre-
central gyrus and the superior temporal gyrus (Gohel and Biswal
2015). The former exhibits more power at low frequencies and less
power at high frequencies than the latter. Additionally, behavioral
research has shown that the auditory process is superior to the
visual process in working memory (Paivio et al. 1975; Goolkasian
and Foos 2002; Pillai and Yathiraj 2017). Our findings indicate
that the AN integrates information more quickly than the VN,
which is consistent with behavioral observations. This suggests
that investigating the brain-behavior association leveraging the
multiband frequency analysis would provide more information to
decode the brain mechanism.

The FPN and the DAN are also relatively homogenous in the
frequency-rank map. These two networks are usually activated
in cognitive control and attention-intensive tasks (Corbetta and
Shulman 2002; Fox et al. 2005; Dosenbach et al. 2007). The highest
integration level of the FPN is in slow-1 and slow-2, whereas the
DAN is in slow-5 and slow-6, suggesting that the FPN can integrate
information very fast, while the DAN integrates information in a
more sustained process. The present results are in line with previ-
ous findings. The FPN is thought to provide control initiation and
flexibility during information processing (Dosenbach et al. 2007),
thus requiring fast processing capabilities. The DAN participates
in the top-down processing of selecting external information as
well as the maintenance of attention (Corbetta et al. 1998; Fox
et al. 2006), both of which require ongoing processing over time.
Furthermore, in the meta-analytic decoding results, attention is
linked to slow-5. The VAN differentiates in the frequency-rank
parcellation map. The ventral frontal cortex (VFC) displays the
highest integration level in medium to high frequencies, whereas
the temporal-parietal junction (TPJ) and the medial part of the
VAN display the highest integration level in low frequencies. The
VAN is involved in the bottom-up control of attention (Corbetta
and Shulman 2002). Along with detecting salient stimuli, it also
responds to task-relevant stimuli and interacts with the DAN (Cor-
betta and Shulman 2002). Consequently, the integration degree
and speed requirements for the VAN may vary according to the
type of stimuli and the degree of task involvement. This may
help to explain why the VAN in the frequency-rank parcellation
is heterogeneous.

The DMN is polarized into lateral and medial parts in the
frequency-rank parcellation. The lateral part shows the highest
integration level in slow-1, whereas the medial part shows the
highest integration level in slow-6. According to a recent discov-
ery, which examined the frequency-dependent FC characteristics

among the DMN nodes, connections of the medial nodes are sig-
nificantly reduced in high frequencies, whereas some of those of
the lateral nodes are still present (Zhang et al. 2015). Additionally,
a clinical study discovered frequency-dependent variations in the
DMN between AD patients and healthy controls, demonstrating
that the FC alterations are primarily in low frequencies (Li et al.
2017). The heterogeneity in the frequency domain suggests that
the DMN operates differently and plays different roles at various
frequencies. Additionally, our findings suggest that the DMN could
be separated into medial and lateral subregions. On the axis of
the first gradient, the DMN is considered to have the highest level
of integration (Margulies et al. 2016). The two subregions of the
DMN may be at the highest level of integration of two parallel sets
of processing systems. Information that requires rapid processing
speed or a continuous processing duration may be integrated by
the lateral and medial DMN, respectively. Meta-analytic decoding
results showed that self-related functions commonly thought to
be associated with the DMN were integrated in slow-6. Future
multiple frequency research should involve more in-depth studies
to provide a deeper understanding of how the DMN and other
networks function in both the spatial and frequency domains.

In sum, this study investigated the consistency and differ-
ences of FC gradient distribution across multiple frequency bands.
Our results suggest that the coarse skeleton of the organiza-
tional hierarchy is generalizable across frequency bands. Align
with previous gradient research, the unimodal-transmodal axis
appeared as the first gradient in all six frequency bands and
the visual-sensorimotor axis appeared as the second gradient
in most frequency bands (Margulies et al. 2016). The omnipres-
ence of the unimodal-transmodal axis across frequency bands
as well as connectivity strength (Nenning et al. 2023) indicates
its dominant role in the FC organization. Additionally, the large-
scale brain networks are embodied by the frequency-rank map.
The highest levels of integration, however, differ in the frequency
domain across large-scale brain networks. These results show
that information integration rates vary among brain networks. By
combining frequency information with the unimodal-transmodal
gradient, the direction of information flow would be emerged.
Gradient analysis has been used to study cognition in several
studies (Sormaz et al. 2018; Murphy et al. 2019). Our findings show
the potential of leveraging the multi-band gradient method to
decode cognition process.
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