Table 2.
Model category | Model name | FPR | TPR | F0.5 score† | ROC/ AUC a | Recallb | Precisionb | Kappa (-1, 1) |
---|---|---|---|---|---|---|---|---|
Approach #1: Clinical data only (on the set of 30 selected clinical labels from ExtraTree classifier) | Gaussian NB | 0.49 | 0.70 | 0.57 | 0.60 | 0.61 | 0.59 | 0.19 |
Random Forest | 0.07 | 0.56 | 0.60 | 0.74 | 0.74 | 0.64 | 0.27 | |
Gradient Boosting | 0.14 | 0.70 | 0.66 | 0.78 | 0.78 | 0.68 | 0.37 | |
XGBRF | 0.16 | 0.65 | 0.62 | 0.72 | 0.73 | 0.64 | 0.28 | |
k-nearest neighbors | 0.47 | 0.58 | 0.50 | 0.55 | 0.56 | 0.52 | 0.05 | |
SVM | 0.18 | 0.18 | 0.32 | 0.50 | 0.50 | 0.42 | 0 | |
MLP | 0.40 | 0.40 | 0.22 | 0.50 | 0.50 | 0.20 | 0 | |
Approach #2: CTs only | 3D-CNN | 0.83 | 0.84 | 0.63 | 0.57 | 0.57 | 0.78 | 0.22 |
3D Swin Transformer | 0.38 | 0.89 | 0.75 | 0.75 | 0.75 | 0.75 | 0.49 | |
Approach #3: Data fusion |
Terminal 3D-CNN on CTs + 30 labels |
0.36 | 0.90 | 0.75 | 0.76 | 0.76 | 0.76 | 0.51 |
Medial 3D-CNN on CTs + 67 labels |
0.65 | 0.98 | 0.70 | 0.66 | 0.66 | 0.67 | 0.37 | |
3D Swin Transformer on CTs + 30 labels |
0.35 | 0.91 | 0.78 | 0.78 | 0.78 | 0.80 | 0.55 | |
3D Swin Transformer on CTs + 67 labels | 0.40 | 0.95 | 0.82 | 0.77 | 0.77 | 0.83 | 0.60 |
aROC Receiver Operating Characteristics Curve, AUC Area under the ROC Curve
bDenotes the macro-averaging evaluation method