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Abstract
The objective of this work was to identify genetic variants in Mexican patients diagnosed with hypertrophic cardiomyopathy 
(HCM). According to world literature, the genes mainly involved are MHY7 and MYBPC3, although variants have been 
found in more than 50 genes related to heart disease and sudden death, and to our knowledge there are no studies in the 
Mexican population. These variants are reported and classified in the ClinVar (PubMed) database and only some of them are 
recognized in the Online Mendelian Information in Men (OMIM). The present study included 37 patients, with 14 sporadic 
cases and 6 familial cases, with a total of 21 index cases. Next-generation sequencing was performed on a predesigned panel 
of 168 genes associated with heart disease and sudden death. The sequencing analysis revealed twelve (57%) pathogenic or 
probably pathogenic variants, 9 of them were familial cases, managing to identify pathogenic variants in relatives without 
symptoms of the disease. At the molecular level, nine of the 12 variants (75%) were single nucleotide changes, 2 (17%) dele-
tions, and 1 (8%) splice site alteration. The genes involved were MYH7 (25%), MYBPC3 (25%) and ACADVL, KCNE1, 
TNNI3, TPM1, SLC22A5, TNNT2 (8%). In conclusion; we found five variants that were not previously reported in public 
databases. It is important to follow up on the reclassification of variants, especially those of uncertain significance in patients 
with symptoms of the condition. All patients included in the study and their relatives received family genetic counseling.
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Introduction

Primary hypertrophic cardiomyopathy (HCM) is considered 
a priority health problem in Mexico (INEGI 2020; Gobierno 
de México 2022) and globally (Antzelevitch 2007; Cheng 
et al. 2021), which in some cases begins with sudden death. 
Approximately 50% of HCM cases are caused by variations 
in genes that code for sarcomere proteins (Marian and Rob-
erts 1995; Kimura et al. 1997; McKenna and Monserrat Igle-
sias 2000). More than 8000 gene variants have been identi-
fied in more than 50 genes associated with heart disease and 
sudden death (Coppini et al. 2014; Herrera-Rodriguez et al. 
2020), most of them reported in the ClinVar database of the 
National Center of Biotechnology Information of PubMed 
(Sayers et al. 2021), and to the best of our knowledge, there 
have been no reports in the Mexican population.

Most cases are inherited in an autosomal dominant man-
ner, which is why they affect both sexes equally, reaching 
genealogies with repetition of the disease, with incomplete 
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penetrance and variable expressivity (Antzelevitch 2007; 
Maron et al. 2022). In familial cases, there are only 25 recog-
nized variants in the Online Mendelian Inheritance in Man 
(OMIM) (Amberger et al. 2015; Herrera-Rodriguez et al. 
2020) and less than 5% of cases have more than one variant 
with the severity of the phenotype due to gene dose effect 
(Wang et al. 2014; Rafael et al. 2017).

The genes most frequently associated with HCM are 
MYH7 and MYBPC3, in 15–25% of cases. Others such as 
TNNT2 and TNNI3 are found with frequencies lower than 5% 
(Ross et al. 2017; Herrera-Rodriguez et al. 2020). The types 
of gene variants that can be found are pathogenic and prob-
ably pathogenic (PV, PPV) variants that increase or probably 
increase the predisposition to the disease, benign or probably 
benign (BV, PBV) variants, which are not associated with 
the disease, and variants of uncertain significance (VUS), 
in which it is unknown whether or not it can contribute to 
the development of the disease (Alyousfi et al. 2021; Sayers 
et al. 2021; Richards et al. 2015).

The objective of this study is to identify genetic vari-
ants in Mexican patients with a previous clinical diagnosis 
of HCM through next-generation sequencing (NGS) with a 
panel of 168 genes associated with heart disease and sud-
den death.

Material and methods

Patients

Male and female patients, of any age, with a previous diag-
nosis of HCM were recruited. The diagnosis was established 
by specialists in cardiology from the Mexican Institute of 
Social Security, based on the guidelines of the American 
College of Cardiology (Ommen et al. 2020). All patients 
agreed to participate in the study and signed a written 
informed consent; in minors, the consent was signed by one 
of their parents. In patients with a positive molecular result 
for any PV or PPV, their relatives were invited to participate, 
exploring their family history with suspected HCM or sud-
den death in the family, before 60 years of age. Patients who 
reported a family history were taken as family cases and 
patients without a family history were considered sporadic.

Genetic study

The DNA was extracted from a peripheral blood sample of 
the patients. Subsequently, NGS (Rubio et al. 2020) using a 
hybridization-based protocol, and sequenced using Illumina 
technology was performed with a predesigned genetic panel 
named Invitae Arrhythmia and Cardiomyopathy Compre-
hensive panel, of 168 genes associated with cardiomyopa-
thies and sudden death (Table 1). These genes were selected 

using oligonucleotide primers designed to capture exons, 
the 10–20 bases flanking intronic sequences, and certain 
noncoding regions of interest (Agilent Technologies, Santa 
Clara, CA; Roche, Pleasanton, CA; Integrated DNA Tech-
nologies, Coralville, AI). The selected gene regions were 
sequenced with an average coverage of 350⨉ (50 ⨉ mini-
mum). The GRCh37 reference genome database was used 
for single nucleotide variants (SNVs), small and large inser-
tions/deletions (indels), structural variants, and intragenic 
copy number variants (Truty et al. 2019). Clinically signifi-
cant variants not meeting strict NGS quality metrics were 
confirmed using an orthogonal method (Lincoln et al. 2019). 
Enrichment and analysis focus on the coding sequence of the 
indicated transcripts, 20 bp of flanking intronic sequence, 
and other specific genomic regions demonstrated to be 
causative of disease at the time of assay design. Markers 
across the X and Y chromosomes are analyzed for qual-
ity control purposes and may detect deviations from the 
expected sex chromosome complement. Detected variants 
were interpreted using Sherloc (semiquantitative, hierarchi-
cal evidence-based rules for locus interpretation), (Nykamp 
et al. 2017), using a point-based system incorporating the 
American College of Medical Genetics and Association of 
Molecular Pathology (ACMG–AMP) joint consensus state-
ment guidelines (Ommen et al. 2020; Richards et al. 2015) 
and classified as: PV, PPV, BV, PBV, and VUS (den Dun-
nen and Antonarakis 2014; Richards 2015). Rare variants 
were defined as those with a minor allelic filtering frequency 
[MAF] < 1.0e − 4 based on a public data set.

Results

A total of 37 samples were analyzed. Of these, 14 were spo-
radic cases and 6 familial cases (7 index cases and 16 rela-
tives), with a total of 21 index cases. The age range of the 
patients was from 7 to 83 years; 24 (65%) were women and 
13 (35%) men.

Twelve (57%) 12 PV and PPV / 21 index cases, were 
detected in patients with an established diagnosis of HCM. 
Genes with gene variants were MYH7 (25%), MYBPC3 
(25%), ACADVL, KCNE1, TNNI3, TPM1, SLC22A5, and 
TNNT2 (1 each, 8%), of which 9 (75%) were SNVs, 2 (17%) 
deletions, and 1 (8%) splicing site alteration.

Family cases

Eight PV and PPV were detected in families with a history 
of HCM. The genealogical trees of the families are presented 
(Fig. 1) and the gene variants found, indicating whether or 
not they are reported in the ClinVar database, their variant 
number, and their probable consequence at the molecular 
level (Table 2) (den Dunnen and Antonarakis 2014).



1291Molecular Genetics and Genomics (2023) 298:1289–1299	

1 3

Table 1   Genes sequenced in patients with HCM

ABCC9: ATP binding cassette subfamily C 
member 9

ACADVL: Acyl-CoA dehydrogenase very 
long chain

ACTC1: Actin, Alpha, Cardiac muscle

ACTN2: ACTININ, ALPHA-2 ADNJC19: DnaJ Heat Shock Protein Family 
(Hsp40) Member C19

AGL: Amylo-1,6-Glucosidase, 4-Alpha-Glu-
canotransferase

AKAP9: A-kinase anchoring protein 9 ANK2: Ankyrin 2 ANKRD1: Ankyrin Repeat Domain 1
ALMS1: Centrosome And Basal Body Associ-

ated Protein
ALPK3: Alpha Kinase 3 A2ML1: Alpha-2-macroglobulin like 1

BAG3: Bcl2-Associated Athanogene 3 BRAF: B-Raf Proto-Oncogene, Serine/Threo-
nine Kinase

CACNA1C: Calcium Voltage-Gated Channel 
Subunit Alpha1 C

CACNA1D: Calcium Voltage-Gated Channel 
Subunit Alpha1 D

CALM1: Calmodulin 1 CALM2: Calmodulin 2

CACNA2D1: Calcium Voltage-Gated Channel 
Auxiliary Subunit Alpha2delta 1

CACNB2: Calcium Voltage-Gated Channel 
Auxiliary Subunit Beta 2

CALR3: Calreticulin 3

CALM3: Calmodulin 3 CASQ2: Calsequestrin 2 CBL: Cbl proto-oncogene
CAV3: Caveolin 3 CHRM2: Cholinergic Receptor Muscarinic 2 CTF1: Cardiotrophin 1
CRYAB: Crystallin Alpha B CSRP3: Cysteine and Glycine Rich Protein 3 DTNA: Dystrobrevin Alpha
CTNNA3: Catenin Alpha 3 CDH2: Cadherin 2 CPT2: Carnitine Palmitoyltransferase 2
DEPDC5: DEP domain containing 5, 

GATOR1 subcomplex subunit
ELAC2: Elac Ribonuclease Z 2 KCNA1: Potassium Voltage-Gated Channel 

Subfamily A Member 1
DES: Desmin DMD: Dystrophin DOLK: Dolichol Kinase
DSC2: Desmocollin 2 DSG2: Desmoglein 2 DSP: Desmoplakin
EYA4: EYA Transcriptional Coactivator And 

Phosphatase 4
FHL1: Four-and-a-half LIM domains 1 FHL2: Four-and-a-half LIM domains 2

FKRP: Fukutin Related Protein FKTN: Fukutin FLNC: filamin C
GAA: Alpha glucosidase GATA4: GATA Binding Protein 4 GATA5: GATA Binding Protein 5
GATA6: GATA Binding Protein 6 GATAD1: GATA Zinc Finger Domain Con-

taining 1
GPD1L: Glycerol-3-Phosphate Dehydrogenase 

1 Like
GJA5: Gap Junction Protein Alpha 5 GLA: Galactosidase Alpha HAND1: Heart And Neural Crest Derivatives 

Expressed 1
HCN4: Hyperpolarization Activated Cyclic 

Nucleotide Gated Potassium Channel 4
HRAS: HRas Proto-Oncogene, GTPase ILK: Integrin Linked Kinase

JPH2: Junctophilin 2 JUP: Junction Plakoglobin KCNE1: Potassium voltage-gated channel sub-
family E regulatory subunit 1

KCNE2: Potassium Voltage-Gated Channel 
Subfamily E Regulatory Subunit 2

KCNE3: Potassium Voltage-Gated Channel 
Subfamily E Regulatory Subunit 3

KCNE5: Potassium Voltage-Gated Channel 
Subfamily E Regulatory Subunit 5

KCNH2: Potassium Voltage-Gated Channel 
Subfamily H Member 2

KCNJ2: Potassium Inwardly Rectifying Chan-
nel Subfamily J Member 2

KCNQ1: Potassium Voltage-Gated Channel 
Subfamily Q Member 1

KCNJ5: Potassium Inwardly Rectifying Chan-
nel Subfamily J Member 5

KCNJ8: Potassium Inwardly Rectifying Chan-
nel Subfamily J Member 8

KCNK3: Potassium Two Pore Domain Channel 
Subfamily K Member 3

KCNQ2: Potassium Voltage-Gated Channel 
Subfamily Q Member 2

KCNQ3: Potassium Voltage-Gated Channel 
Subfamily Q Member 3

KCNT1: Potassium Sodium-Activated Channel 
Subfamily T Member 1

KIF20A: Kinesin Family Member 20A KLF10: KLF Transcription Factor 10 LAMP2: Lysosomal Associated Membrane 
Protein 2

KRAS: KRAS Proto-Oncogene, GTPase KCNA5: Potassium Voltage-Gated Channel 
Subfamily A Member 5

KCND3: Potassium Voltage-Gated Channel 
Subfamily D Member 3

LDB3: LIM Domain Binding 3 LRRC10: Leucine Rich Repeat Containing 10 MAP2K1: Mitogen-Activated Protein Kinase 
Kinase 1

LMNA: Lamin A/C LZTR1: Leucine Zipper Like Transcription 
Regulator 1

LAMA4: Laminin Subunit Alpha 4

MAP2K2: Mitogen-Activated Protein Kinase 
Kinase 2

MRAS: Muscle RAS Oncogene Homolog MTO1: Mitochondrial TRNA Translation 
Optimization 1

MAP3K8: Mitogen-Activated Protein Kinase 
Kinase Kinase 8

MED12: Mediator Complex Subunit 12 MYH6: Myosin Heavy Chain 6

MYBPC3: Myosin Binding Protein C3 MYH7: Myosin Heavy Chain 7 MYL2: Myosin Light Chain 2
MYL3: Myosin Light Chain 3 MYL4: Myosin Light Chain 4 MYLK3: Myosin Light Chain Kinase 3
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Family 1

The son (IV-2) is the index case; he has an established diag-
nosis of HCM, the mother (III-1) and the daughters (IV-1 
and IV-3) have symptoms. In all of them, an SNV was found 
in the MYH7 gene, in a heterozygous state, with a change in 
codon 1357 from cytosine (C) to thymine (T), which causes 
a change in amino acid 453 from arginine (Arg) to cysteine 
(Cys), considered as PV. The other daughter (IV-4) has no 
symptoms and was negative for PV. This family has a history 
of two cases of sudden death (II-1 and II-3).

Family 2

Cases II-1 and III-1 have an established diagnosis of 
HCM. They have a history of two sudden deaths in differ-
ent generations (I-2 and III-3). In both patients, a variant 
in TNNT2 was found, in the heterozygous state, with a 
change in codon 275 from guanine (G) to alanine (A) and 
a change in amino acid 92 from Arg to glutamine (Gln), 
considered as PV.

Table 1   (continued)

MYLK2: Myosin Light Chain Kinase 2 MYOM1: Myomesin 1 MYOZ2: Myozenin 2
MYPN: Myopalladin NEBL: Nebulette NF1: Neurofibromin 1
NKX2-5: NK2 Homeobox 5 NRAS: NRAS Proto-Oncogene, GTPase NEXN: Nexilin F-Actin Binding Protein
NPPA: Natriuretic Peptide A PDLIM3: PDZ And LIM Domain 3 PLEKHM2: Pleckstrin Homology And RUN 

Domain Containing M2
PCDH19: Protocadherin 19 PRRT2: Proline-Rich Transmembrane Protein 

2
SCN1A: Sodium Voltage-Gated Channel, Alpha 

Subunit 1
PLN: Phospholamban PPA2: Inorganic Pyrophosphatase 2 PPCS: Phosphopantothenoylcysteine Syn-

thetase
PPP1CB: Protein Phosphatase 1 Catalytic 

Subunit Beta
RANGRF: RAN guanine nucleotide reléase 

factor
RASA2: RAS P21 Protein Activator 2

PRDM16: PR/SET Domain 16 PCCA: Propionyl-CoA Carboxylase Subunit 
Alpha

PCCB: Propionyl-CoA Carboxylase Subunit 
Beta

PRKAG2: Protein Kinase AMP-Activated 
Non-Catalytic Subunit Gamma 2

PTPN11: Protein Tyrosine Phosphatase Non-
Receptor Type 11

PKP2: Plakophilin 2

RBM20: RNA Binding Motif Protein 20 RIT1: Ras Like Without CAAX 1 RYR2: Ryanodine Receptor 2
RRAS: RAS Related RAF1: Raf-1 Proto-Oncogene, Serine/Threo-

nine Kinase
RASA1: RAS P21 Protein Activator 1

SCN10A: Sodium Voltage-Gated Channel 
Alpha Subunit 10

SCN1B: Sodium Voltage-Gated Channel Beta 
Subunit 1

SCN5A: Sodium Voltage-Gated Channel Alpha 
Subunit 5

SCN4B: Sodium Voltage-Gated Channel Beta 
Subunit 4

SLMAP: Sarcolemma Associated Protein SNTA1: Syntrophin Alpha 1

SCN8A: Sodium Voltage-Gated Channel, 
Alpha Subunit 8

SCN9A: Sodium Voltage-Gated Channel, 
Alpha Subunit 9

EMD: Emerin

SDHA: Succinate Dehydrogenase Complex 
Flavoprotein Subunit A

SGCD: Sarcoglycan Delta SHOC2: SHOC2 Leucine Rich Repeat Scaffold 
Protein

SLC22A5: Solute Carrier Family 22 Member 
5

SOS1: SOS Ras/Rac Guanine Nucleotide 
Exchange Factor 1

SOS2: SOS Ras/Rho Guanine Nucleotide 
Exchange Factor 2

SLC2A1: Solute Carrier Family 2 Member 1 TAZ: Tafazzin, Phospholipid-Lysophospho-
lipid Transacylase

TBX20: T-Box Transcription Factor 20

SPRED1: Sprouty Related EVH1 Domain 
Containing 1

SCN2B: Sodium Voltage-Gated Channel Beta 
Subunit 2

SCN3B: Sodium Voltage-Gated Channel Beta 
Subunit 3

TCAP: Titin-Cap TMEM43: Transmembrane Protein 43 TMEM70: Transmembrane Protein 70
TMPO: Thymopoietin TXNRD2: Thioredoxin Reductase 2 TTN: Titin
TNN13: Troponin I3, Cardiac Type TNN13K: TNNI3 Interacting Kinase TNNT2: Troponin T2, Cardiac Type
TPM1: Tropomyosin 1 TRDN: Triadin TRPM4: Transient Receptor Potential Cation 

Channel Subfamily M Member 4
TTR: Transthyretin VCL: Vinculin TNNC1: Troponin C1, Slow Skeletal And 

Cardiac Type
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Fig. 1   Pedigree and gene vari-
ants of the families studied
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Fig. 1   (continued)
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Family 3

Patient II-2 is the index case, with an established diagnosis 
of HCM. A variant was found in MYBPC3, with a change 
in codon 1457 in a splicing site cataloged as PPV. Daughter 
III-4 was also heterozygous for PPV, with no clinical symp-
toms. Daughters III-5 and III-6 were also studied and were 
negative for PPV. There is no history of sudden death or 
major cardiac events in previous generations.

Family 4

Patient II-1 is the index case with an established diagnosis of 
HCM. A PV was found in MYBPC, with a change at codon 
772 from G to A, causing a change at amino acid 258 from 
glutamic acid (Glu) to lysine (Lys). Daughter III-3 was also 
heterozygous for PV without having an established diagnosis 
of HCM. Her twin sister (III-2) has no symptoms and it was 
not possible to perform the molecular study on her. Appar-
ently, there is no history in previous generations.

Family 5

This is a very large family where the index case was patient 
II-9 with an established diagnosis of HCM. A PV was found 
in MYH7, in the heterozygous state, with a change in codon 
1063 from G to A, which leads to a change in amino acid 355 
from alanine (Ala) to Threonine (Thr). Siblings II-8 and II-
10 were also heterozygous for PV, without presenting symp-
toms of the disease. The daughters of patient II-8 (III-4, 
III-5, and III-6) were studied and were negative for PV. This 

family has a history of sudden death (III-3) and other family 
members with symptoms did not agree to be analyzed.

Family 6

The index case in this family is patient II-2 with an estab-
lished diagnosis of HCM. This patient was double het-
erozygous for two PVs, the first in MYH7 with a change in 
codon 4135 from G to A, which modifies amino acid 1379 
from Ala to Thr, and the second in ACADVL with a change 
in codon 481 from G to A, with change in amino acid 161 
of Ala for Thr. In son III-3, he presented symptoms of 
heart disease, without having an established diagnosis of 
HCM, and he also turned out to be double heterozygous 
for the same PVs in MYH7 and ACADVL. Son III-4 does 
not present symptoms of heart disease and was heterozy-
gous but for a different PV located in KCNE1, which is 
caused by a deletion of the entire coding sequence, without 
presenting the other PV in MYH7 and ACADVL that his 
mother and brother have. This family has a history of heart 
disease in case II-2.

Sporadic cases

PV and PPV were found in 4 cases (29%) of the 14 patients 
with no history of HCM in the family, of which 3 PV were 
found in MYBPC3, TNNI3, and SLC22A5 and one PPV in 
TPM1 (Table 2). The rest of the sporadic cases were negative 
for PV and PPV.

Table 2   Gene variants found in the Mexican patients studied

SNV single nucleotide variant, N/R ClinVar not reported, PV pathogenic variant, PPV like−pathogenic variant
*Gene variant not included in the OMIM
? Unknown

Family Gene cDNA Aminoacid change Variant type ID variant ClinVar Change type Molecular consecuence

1 MYH7 c.1357C > T p.Arg453Cys PV 14,089.22 SNV Missense
2 TNNT2 c.275G > A p.Arg92Gln PV N/R SNV ?
3 MYBPC3 c.1457_1457 Splice site PPV N/R Splice-site variant Loss of exons or inclusion 

of introns that alter the 
protein sequence

4 MYBPC3 c.772G > A p.Glu258Lys PV 42,792.35 SNV Missense
5 MYH7 c.1063G > A p.Ala355Thr PV 42,820.25 SNV Missense
6 ACADVL* c.481G > A p.Ala161Thr PV N/R SNV ?
6 KCNE1* Deletion Entire coding sequence PV N/R deletion Absence of protein
6 MYH7 c.4135G > A p.Ala1379Thr PV 42,993.12 SNV Missense
Sporadic MYBPC3 c.1800del p.Lys600Asnfs*2 PV 42,568.17 deletion Stop
Sporadic SLC22A5* c.695C > T p.Thr232Met PV 25,386.25 SNV Missense
Sporadic TNNI3 c.470C > T p.Ala157Val PV 43,388.22 SNV Missense
Sporadic TPM1 c.62G > T p.Arg21Leu PPV N/R SNV ?



1296	 Molecular Genetics and Genomics (2023) 298:1289–1299

1 3

Genetic counselling

All HCM patients included in this study and their rela-
tives were referred to a geneticist for genetic counselling, 
regardless of the type of variant found. The classification of 
genetic variants may change as the databases are fed back 
with results from new studies. It is important to monitor 
these variants, especially those VUS found in patients with 
severe symptoms of the disease.

Discussion

PV and PPV were identified in 57% (12/21) of the patients 
analyzed with an established diagnosis of HCM. The genes 
involved are similar to those previously reported in the 
literature MYH7 (25%) and MYBPC3 (25%) (Amberger 
et al. 2015; Chiou et al. 2015; Herrera-Rodriguez et al. 
2020) and TNNI3, TPM1, and TNNT2 (8%), (García-Castro 
2009; Herrera-Rodriguez et al. 2020). Of the 12 PV and 
PPV found, 7 are reported in ClinVar (Sayers et al. 2021) 
(Table 2) and the other 5 are not found in this database, but 
they were designated as PV and PPV by the ACMG–AMP 
variant classification criteria (Nykamp et al. 2017). The 
PVs in ACADVL, KCNE1, and SLC22A5 are not included 
in the OMIM within the 25 most frequent variants in HCM 
(Amberger et al. 2015). At the molecular level, we found 
9 (75%) SNVs that lead to changes in the amino acid 
sequence of the protein and prevent its correct functioning 
(Amberger et al. 2015), 2 deletions (17%), and 1 altera-
tion in the splicing site (8%). Presence of PV and PPV in 
these genes makes it possible to improve the follow-up of 
carrier patients, offering genetic counseling to the family 
depending on their mode of inheritance. As well as early 
management of relatives who did not present symptoms 
of the disease.

Previous investigations in other populations report 54.2, 
60.6 and 43.8% in the United States, France, and Japan, 
respectively (Richard et al. 2003; Van Driest et al. 2004; 
Otsuka et al. 2012). This percentage can be explained as 
our population was clinically selected and a history of 
severe heart disease and sudden death was considered in 
family cases.

Genes with variants encode or are associated with sar-
comeric proteins and the change found causes that had 
some effect, or absence of protein formation, or they are 
related to ion transport processes associated with HCM. 
The MYH7 gene (OMIM 160760) is located on chromo-
some 14 at position q11.2 and codes for the heavy chain of 
β-myosin, involved in cardiac muscle contraction (Perrot 
et al. 2005; O’Leary et al. 2016). In families 1, 5, and 6, 
PVs were found in this gene, all with a single nucleo-
tide change and previously reported (Burns et al. 2017, 

Nykamp et al. 2017, Salazar-Mendiguchia et al. 2020). 
In this gene, the gene variant that changes Arg to Cys at 
position 453 has been reported to have a more aggressive 
phenotype, due to a change in amino acid charge, com-
pared with other reported variants (Epstein et al. 1992; 
Frisso et al. 2009).

The MYBPC3 gene (OMIM 6000958) (Amberger et al. 
2015) is located at 11p11.2 and codes for myosin-binding 
protein C. The molecular consequence of the deletion 
found in this gene is the formation of a premature termi-
nation codon, which results in an absent or altered pro-
tein. This variant has been previously reported in 0.003% 
of HCM cases (O’Leary et al. 2016; Walsh et al. 2017; 
Nykamp et al. 2017). The alteration in the splicing site 
occurs at the border between an exon and an intron and 
can lead to the loss of exons or the inclusion of introns 
that also alter the protein sequence (Amberger et al. 2015).

The TNNI3 gene (OMIM 191044) is located at 19q13.42 
and codes for type 3 troponin I related to cardiac muscle con-
traction (Amberger et al. 2015; Walsh et al. 2017; Herrera-
Rodriguez et al. 2020). On the other hand, TPM1 (OMIM 
191010) is located at 15q22.2 and encodes for tropomyosin 
1. In the case of TNN2 (OMIM 191045), it is located at 
1q32.1 and encodes the cardiac isoform of troponin T type 2. 
These proteins are located in the thin filaments and regulate 
muscle contraction in response to changes in intracellular 
calcium ion concentration (O'Leary et al. 2016). Variants 
in these three genes have been associated with a family his-
tory of sudden death and other prognoses (Anan et al. 1998; 
Karibe et al. 2001; Rani et al. 2012; Renaudin et al. 2018).

The SLC22A5 gene (OMIM 603377), located at 5q31.1, 
is a member of the organic cation transporter family and 
is expressed in the kidney, skeletal muscle, heart, and pla-
centa (Amberger et al. 2015; Mutlu-Albayrak et al. 2015). 
Some variants in SLC22A5 cause primary systemic carnitine 
deficiency, skeletal myopathy, or cardiomyopathy (O’Leary 
et al. 2016), due to a defect in the carnitine transporter. 
Patients present with hypoketotic hypoglycemia, HCM, and 
sudden death in children and adults (Frigeni et al. 2017). In 
our patient, the clinical history does not show any symptoms 
of primary carnitine deficiency.

An interesting case was found in family 6 where one 
of the members presented a deletion in KCNE1 (OMIM 
176261), located at 21q22.12 and belonging to the KCNE 
family of potassium channels (Chen, et al. 2003; Amberger 
et al. 2015). This gene codes for a transmembrane protein 
that, together with the KVLQT1 gene product, forms the 
delayed rectifier potassium channel (Avalos Prado et al. 
2021). There are few reports of deletions in KCNE1 and 
those have been identified in patients with long QT syn-
drome (Splawski et al. 2000). Experimentally, a deletion in 
KCNE1 has been found to increase susceptibility to atrial 
fibrillation in mice (Avalos Prado et al. 2021). This family 
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member did not present symptoms of HCM but was included 
because his mother and brother were double heterozygotes 
for PV, in MYH7 and ACADVL, which were not present in 
this patient.

The ACADVL gene (OMIM 609575) is located at 17p13.1 
and codes for the very long chain of acyl-CoA dehydro-
genase. Deficiency of this enzyme causes an inborn error 
in mitochondrial fatty acid β-oxidation that causes severe 
cardiomyopathy and/or sudden death during the neonatal 
period. This condition is rare and is inherited in an auto-
somal recessive manner. To our knowledge, there is only 
one report of a variant in ACADVL in a patient with HCM, 
caused by frameshift duplication (Kim et al. 2018). Due to 
the difference in PV present in this family, we suggest per-
forming molecular studies in the other members, to confirm 
whether the PV in KCNE1 is de novo and whether there are 
other heterozygotes for PV in ACADVL and MYH7.

Of the sporadic cases, a 7-year-old patient with severe 
symptoms of HCM stands out in whom only 2 VUS were 
found in ACTC1 (OMIM 102540) and EYA4 (OMIM 
603550). The parents were negative for these VUS, which 
proves that they are de novo variants, and they do not report 
a history of HCM in the family. It is important to continue 
analyzing the presence of VUS to define its clinical impor-
tance in HCM since the meaning of these can change as 
more variants are categorized (Burke et al. 2022). It is sug-
gested to perform a microarray study on the patient to see 
if these variants come from some de novo chromosomal 
rearrangement.

There is a great need to include the identification of gene 
variants to support the diagnosis of HCM, as the diagnosis is 
currently only made based on the patient’s symptoms and the 
results of imaging studies (Ommen et al. 2020). The iden-
tification of PV and PPV allows the detection of carriers in 
the family even before expressing symptoms of the disease. 
With this methodology, it is possible to distinguish double 
heterozygous patients, with two or more variants in different 
genes, where the clinical manifestations are more severe. 
Similarly, compound heterozygotes that present genetic 
variants in both alleles of the same gene, where the clinical 
phenotype leads to death in a few months (Rafael et al. 2017; 
Carrier 2021), could be identified. Currently, there are gene 
therapy proposals for compound heterozygotes for MYBPC3 
(Carrier 2021).

Limitations

In this manuscript, we focus only on reporting the gene vari-
ants observed in our patients with HCM. To establish a prev-
alence of each of them in the Mexican population, it is nec-
essary to increase the sample size of the population studied, 

as has been done in other populations (Erdmann et al. 2003; 
Richard et al. 2003; Van Driest et al. 2003; García-Castro 
et al. 2009; Otsuka et al. 2012; Saposnik et al. 2014).
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