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Abstract
Sarcomas are a diverse group of malignant neoplasms of mesenchymal origin. They develop rarely, but due to poor prognosis, 
they are a challenging and significant clinical problem. Currently, available therapeutic options have very limited activity. 
A better understating of sarcomas’ pathogenesis may help develop more effective therapies in the future. The Sonic hedge-
hog (Shh) signaling pathway is involved in both embryonic development and mature tissue repair and carcinogenesis. Shh 
pathway inhibitors are presently used in the treatment of basal cell carcinoma. Its increased activity has been demonstrated 
in many sarcomas, including osteosarcoma, Ewing sarcoma, chondrosarcoma, rhabdomyosarcoma, leiomyosarcoma, and 
malignant rhabdoid tumor. In vitro studies have demonstrated the effectiveness of inhibitors of the Hedgehog pathway in 
inhibiting proliferation in those sarcomas in which the components of the pathway are overexpressed. These results were 
confirmed by in vivo studies, which additionally proved the influence of Shh pathway inhibitors on limiting the metastatic 
potential of sarcoma cells. However, until now, the efficacy of sarcomas treatment with Shh pathway inhibitors has not been 
established in clinical trials. The reason for that may be the non-canonical activation of the pathway or interactions with other 
signaling pathways, such as Wnt or Notch. In this review, we present the Shh signaling pathway's role in the pathogenesis of 
sarcomas, including both canonical and non-canonical signaling. We also propose how this knowledge could be potentially 
translated into clinics.
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Introduction

Signaling pathways, crucial in the physiological functions 
of cells and tissues, may, through dysregulation and ensuing 
dysfunctions, be significant factors in the process of tumo-
rigenesis (Park et al. 2020). The Hedgehog (Hh) signaling 
pathway plays an important role in embryogenesis and in the 
upkeep of mature tissues and stem cells (Katoh and Katoh 
2008). Mutations leading to dysregulation of the Hh pathway 

are consistently observed in the basal cell carcinoma (BCC) 
and medulloblastoma and sporadically in other cancers (Car-
penter and Ray 2019). Currently, treatment with specific Shh 
pathway inhibitors has been approved in BCC by both Euro-
pean Medical Agency (EMA) and Food and Drug Adminis-
tration (FDA) (Brancaccio et al. 2020), but new studies are 
being carried out in the hope of expanding these indications 
(Carballo et al. 2018).

Sarcomas develop from transformed mesenchymal cells 
and are usually divided into sarcomas arising from the soft 
tissues and the bones. They are further segregated into vari-
ous subtypes, making them a very diverse group of tumors 
(Mehren et al. 2020; Gronchi et al. 2021; W.C.o.T.E. Board 
2020). Though sarcomas are rare, accounting for just 1% of 
all adult malignant tumors, they are characterized by poor 
prognosis and unsatisfactory treatment options, which makes 
them a significant clinical challenge (Mastoraki et al. 2020).

In this article, we summarize the current data regarding 
the role played by the Shh pathway in the pathogenesis of 
sarcomas. Our goal is to emphasize that connection and 
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start a discussion about the potential value of Shh targeted 
therapy in the treatment of sarcomas.

Sonic Hedgehog pathway activation 
and regulation

The Hedgehog (Hh) pathway is a ligand-dependent sign-
aling pathway. In vertebrates, three Hh ligands have been 
described: Desert hedgehog (Dhh), Indian hedgehog (Ihh), 
and Sonic hedgehog (Shh), the last one being the primary 
ligand in humans (Lézot et al. 2020). Furthermore, the Hh 
signaling pathway consists of two 12-pass transmembrane 
receptors Ptch1 and Ptch2, Smoothened (Smo) receptor, and 
three transcription factors Gli1, Gli2, and Gli3 (Yao et al. 
2018).

There are two pathways which activate the Shh cascade—
a canonical and a non-canonical one (Lézot et al. 2020). 
Interaction between the Shh and the Ptch receptor is the 
base of the canonical cascade (Marigo et al. 1996). When 
the Hh ligand is absent, the Ptch receptor binds to a consti-
tutively active Smo receptor, suppressing the Smo activity 
(Fig. 1) (Liu et al. 2017). The suppressor of fused (SuFu) is 
a negative regulator of the Shh pathway (Liao et al. 2020). 
In the absence of activated Smo, SuFu forms SuFu–Gli com-
plexes and sequesters Gli proteins in the cytoplasm, restrain-
ing their activity (Zhang et al. 2017). However, recent data 
indicate that SuFu may also further increase Gli2 expres-
sion in cells with an already high Gli2 expression (Yin et al. 
2019). The presence of the Hh ligand leads to the binding 
of the Hh ligand to the Ptch receptor, which results in endo-
cytic degradation of Ptch in the lysosome (Incardona et al. 

2000). Activated Smo induces the dissociation of SuFu–Gli 
complexes and translocation of Gli proteins into the nucleus, 
where it can regulate the expression of various genes (Ruel 
and Thérond 2009).

The non-canonical cascade refers to the activation of Gli 
transcription factors independently of Smo (Pietrobono et al. 
2019). This can be caused by various signaling molecules 
and pathways, which can work separately or simultaneously 
(Pietrobono et al. 2019). Examples of these mechanisms will 
be discussed in more detail later. Non-canonical activation 
is involved in carcinogenesis connected with elevated Gli 
activity (Brechbiel et al. 2014) (see Fig. 2).

Various proteins and non-coding RNA regulate the 
Hh signaling pathway: microRNA (miRNA) and long 

Fig. 1   Shh pathway activation. The Shh pathway consists of the 
Sonic hedgehog ligand (Shh), Patched receptor (Ptch), Smoothened 
receptor (Smo), Suppressor of fused (SuFu) and transcription fac-
tors (Gli). The illustration shows the canonical activation of the Shh 
signaling pathway. a In the absence of the Shh ligand, Ptch binds to 
a constitutively active Smo, suppressing its activity. In the absence 

of activated Smo, SuFu forms SuFu–Gli complexes and restrains Gli 
activity. b In the presence of the Shh ligand, its binding with Ptch 
results in endocytic degradation of Ptch in the lysosome. Activated 
Smo induces the dissociation of SuFu–Gli complexes and transloca-
tion of Gli proteins into the nucleus

Fig. 2   Non-canonical Shh pathway activation. The illustration shows 
an alternative way of Shh signaling pathway activation. The non-
canonical pathway activation happens independently of Smo and 
directly through the activation of Gli by various proteins and non-
coding RNA, some of which are described in more detail in the text
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non-coding RNA (lncRNA) (Yao et al. 2018). Notably, the 
regulators acting beyond Smo may participate in the non-
canonical activation of the Shh pathway.

Kinases, transcription factors, glycoproteins, and pro- and 
anti-apoptotic factors have been connected to the activation 
or inhibition of the Hh pathway (Yao et al. 2018). Nek2A, an 
NIMA (never in mitosis gene a)-related kinase 2A, inhibits 
the Hh pathway and the transcriptional activity of Gli2 by 
stabilizing SuFu (Zhou et al. 2017). Rab23, a GTPase of 
the Rab family, also negatively regulates the Hh pathway 
through interaction with SuFu (Chi et al. 2012). Moreover, 
the methylation of Gli3, catalyzed by Set7, increases Gli3 
stability and DNA-binding activity, which promotes the 
Shh pathway activation (Fu et al. 2016). Increased levels of 
Galectin-1 (Gal-1) activate the Hh signaling by increasing 
the transcription of Gli1 via a Smo-independent pathway 
(Chong et al. 2016). Another study demonstrated that silenc-
ing the B4GALT1 gene, which encodes Beta-1,4-galactosyl-
transferase 1, in K562/ADR cells results in the inhibition of 
the Hh pathway (Zhou et al. 2012).

Proteins that interact directly with Smo also play a role in 
regulating the Hh pathway. RACK1, a receptor of activated 
kinase 1, initiates Gli1 transcription through interaction with 
activated Smo (Shi et al. 2012), while a GTPase Arl13b pro-
motes Hh signaling by stabilizing Smo (Shao et al. 2017).

Gli1, Gli2, and Gli3 are also directly regulated by various 
proteins. Overexpression of NUSAP1 leads to upregulation 
of the Hh pathway’s target gene through induction of Gli1 
translocation into the nucleus (Wu et al. 2017). Mastermind-
like 1 (Maml1) binds to the Gli proteins and acts as a tran-
scriptional coactivator, reinforcing the activation of Shh 
pathway target genes (Quaranta et al. 2017). Overexpres-
sion of beta1 integrin (ITGB1) results in the upregulation 
of Shh and Gli1 levels and the downregulation of SuFu, 
leading to the activation of Hh signaling (Song et al. 2015). 
FOXC1, a transcription factor, activates the Smo-independ-
ent Hh pathway by direct interaction with Gli2, increasing 
its DNA-binding and transcription-activating capacity (Han 
et al. 2015). Overexpression of Sloan–Kettering viral onco-
gene homolog (Ski), a protein which can function both as an 
oncoprotein and a tumor suppressor gene, leads to increased 
expression of Shh pathway components, such as Shh, Ptch-1, 
Smo, Gli1, and Gli2 (Song et al. 2016). Increased activity 
of mTORc2, one of the complexes formed by mTOR kinase 
(Fu and Hall 2020), has been shown to enhance the expres-
sion of Hh components (Gli1, Gli2, and Ptch1) and the tar-
get genes of the pathway (Cyclin D1, Cyclin D2, Cyclin 
E, Snail, Slug, and VEGF). Moreover, mTORc2 promotes 
stability and nuclear translocation of Gli2 (Maiti et al. 2017).

The hedgehog signaling pathway is crucial in embryonic 
processes: it controls cells differentiation, tissue polarity, 
and proliferation (Varjosalo and Taipale 2008). Timing aber-
rations of hedgehog signaling can generate embryological 

malformations (Ericson et al. 1996). To some degree, the 
Hh pathway remains active in mature organisms and partici-
pates in processes such as stem cell maintenance and tissue 
repair (Roma et al. 2012). Genes regulated by the Hh sign-
aling pathway are crucial in cell proliferation and survival, 
cell cycle, cell invasion, and stem cell formation (Yao et al. 
2018). However, in most tissues, the pathway remains inac-
tive and is only activated when necessary, for example, in the 
regeneration of damaged tissues (Skoda et al. 2018).

The Hh pathway plays an essential role in osteogenesis, 
regulating endochondral and intramembranous ossification. 
It also promotes bone resorption through indirect activation 
of osteoclasts, making it a crucial factor in bone homeostasis 
and remodeling (Yang et al. 2015).

The role of Shh pathway in the pathogenesis 
of selected subtypes of sarcomas

Osteosarcoma 

Osteosarcoma is a malignant bone tumor that produces oste-
oid and immature bone and comprises mesenchyme-derived 
cells (W.C.o.T.E. Board 2020; Biazzo and Paolis 2016). It 
is a high-grade sarcoma and appears mostly among children 
and young adults (Lo et al. 2014a). Osteosarcoma has a high 
metastatic potential; approximately one-fourth of patients 
with osteosarcoma have metastases at presentation (Tsuka-
moto et al. 2020). The clinical outcome for patients with 
lung metastases remains poor, since they are hard to control 
(Yao et al. 2018) and are resistant to standard chemotherapy 
(Saitoh et al. 2016).

Previous studies have shown that both the canonical 
and non-canonical Hh pathways may be involved in oste-
osarcoma tumorigenesis (Lo et al. 2014b). Osteosarcoma 
patients with higher levels of Gli1 are more likely to respond 
better to chemotherapy (Lézot et al. 2020; Lo et al. 2014a). 
Other evidence suggests a correlation between overexpres-
sion of Gli-2 and poor clinical outcomes (Yang et al. 2013). 
Gene expression analyses by real-time PCR revealed overex-
pression of Shh, Ihh, Ptch1, Smo, and Gli2 in osteosarcoma 
cell lines. In contrast, examination of osteosarcoma biopsy 
specimens showed overexpression of Smo, Ptch1, and Gli 
compared to normal bone tissue cells (Hirotsu et al. 2010) 
(Yang et al. 2013). Another group confirmed higher expres-
sion of Gli1 and Gli2 in canine osteosarcoma cell lines com-
pared to normal canine osteoblasts. Moreover, there was a 
correlation between the Gli1 or Gli2 expression level and the 
expression of Ptch1 and PAX6 (Shahi et al. 2014).

Data report that Gli2 significantly promotes the prolifera-
tion, migration, and invasion of mesenchymal stem cells and 
osteosarcoma cells (Nagao-Kitamoto et al. 2015a). This has 
been confirmed by knockdown of Gli2, which promoted the 
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arrest of osteosarcoma cells in the G1 phase of cell cycle and 
inhibited osteosarcoma growth, demonstrated in murine xen-
ograft models (Nagao et al. 2011). One of the target genes 
of Gli2 is the RPS3 gene encoding the ribosomal protein S3, 
which is a component of the eukaryotic 40S ribosomal subu-
nit and is involved in various processes, such as apoptosis, 
immune response, DNA repair, transcriptional regulation, 
and transformation (Yao et al. 2018; Gao and Hardwidge 
2011). Overexpression of RPS3 increases the migration and 
invasion of osteosarcoma cells, playing a role in metastases 
formation (Nagao-Kitamoto et al. 2015a).

Exosomes, small vesicles secreted by various cells, con-
tain proteins, lipids, and nucleic acids such as mRNA or 
miRNA. Exosomes acquired from mesenchymal stem cells 
derived from human bone marrow (hBMSC) have been 
shown to promote osteosarcoma cell growth by activat-
ing the Hh pathway. Hsp70 and CD63 expression has been 
detected in these exosomes (Qi et al. 2017).

The interaction of the Hh pathway with other signaling 
pathways can also be an essential factor in osteosarcoma 
progression, including metastasis formation (Yao et  al. 
2018). Some evidence suggests that aberrant Hh signal-
ing leads to overexpression of the Yes-associated protein 
1 (Yap-1), which acts as an oncogene. YAP1 is the effec-
tor of the Hippo pathway, which dysfunction can result in 
tumorigenesis and metastasis (Chan et al. 2014; Kovar et al. 
2020). Moreover, both Wnt and Hh pathway components 
are significantly upregulated in metastatic cells compared to 
parental cell lines (Muff et al. 2015). Another study demon-
strated the upregulation of target genes of both AKT/PI3K 
and Hh pathways in canine mammary osteosarcomas; this 
indicates that the interaction of these two pathways may be 
an important factor in osteosarcoma formation and prolifera-
tion (Pawlowski et al. 2011).

The Notch pathway has also been shown to influence the 
Hh pathway in the pathogenesis of osteosarcoma. DNMT3A, 
through methylation of miR-149, leads to its decreased 
activity, promoting overexpression of Notch components. 
This results in increased activity of the Hh pathway, which 
induces osteosarcoma's development and progression 
(Cheng and Wang 2022).

The role of the Hh pathway in the pathogenesis of oste-
osarcoma has also been shown in several studies assess-
ing the preclinical efficacy of the Hh pathway inhibitors. 
Cyclopamine, a Smo inhibitor, promoted G1-phase arrest 
of the cell cycle, inhibited expression of cyclin D1, cyclin 
E1, SKP2, and pRb, and, as a result, restrained the growth 
of osteosarcoma in vitro (Hirotsu et al. 2010). In an ani-
mal model, it has been shown that cyclopamine decreased 
pulmonary osteosarcoma metastasis formation by 20% 
(Warzecha et al. 2012). Four acylguanidine and acylthi-
ourea derivatives of cyclopamine, which have similar 
Smo-inhibiting properties, had been shown to have either 

cytotoxic or proliferation-inhibiting effects in osteosarcoma 
cell lines. The three drugs inhibiting proliferation decreased 
the expression of Gli1 and showed significant pro-apoptotic 
activity without causing severe side effects. Moreover, 
unlike the older generation of Smo inhibitors—cyclopamine, 
vismodegib, or sonidegib—they also effectively inhibit a 
chemoresistant form of Smo (Bernardini et al. 2018).

Examination of osteosarcoma cell viability revealed that 
treatment based on a combination of ATO and GANT61 
(Gli inhibitors) or vismodegib (Smo inhibitor) decreased 
osteosarcoma cell migration. Moreover, inhibition of the 
osteosarcoma metastasis to the lung was observed during 
this combination treatment (Nagao-Kitamoto et al. 2015b). 
Decreased expressions of Gli1, Gli2, Ptch1, and PAX6 were 
observed after treatment of canine osteosarcoma cells using 
GANT61. Moreover, inhibition of cell growth was observed 
(Shahi et al. 2014). GANT61 has also been proven to inhibit 
the viability of certain osteosarcoma cell lines (Lo et al. 
2014b) and to reduce the resistance of osteosarcoma cells 
to cisplatin in vivo (Chen et al. 2021). A Gli inhibitor ATO 
promotes apoptotic cell death in human osteosarcoma cells 
by accumulating DNA damage (Nakamura et al. 2013). 
Moreover, recent findings indicate that ATO inhibits the 
transcriptional activity of Gli2 and inhibits osteosarcoma 
cell invasion (Nagao-Kitamoto et al. 2015b).

Another study on patient-derived xenograft models 
of osteosarcoma evaluated the efficacy of treatment with 
saridegib, another Smo inhibitor. The drug effectively inhib-
ited the canonical but not the non-canonical Hh pathway in 
the tumor and its microenvironment. The inhibition resulted 
in decreased expression of Ptch1 and Gli1, increased level 
of apoptosis, and decreased tumor weight and volume (Lo 
et al. 2014b).

Transcription of the genes associated with osteogenic 
differentiation is connected with the degree of the chroma-
tin compaction (Montecino et al. 2020). There are different 
mechanisms that control chromatin organization in osteo-
genic cells, one of the major ones is a polycomb repressor 
complex 2 (PRC2) (Voigt et al. 2013; Shi et al. 2017).

PRC2 is involved in the modification of the chromatin 
during osteogenesis—it catalyzes the process of the tri-
methylation of histone H3 at lysine 27 (H3K27me3) and, 
as a result, induces chromatin condensation and transcrip-
tional repression (Chamberlain et al. 2008). Enhancer of 
zeste homolog 2 (Ezh2) is one of the methylotransferases 
forming PRC2 (Shi et al. 2017). EZH2 is involved in the 
process of skeletal development, supporting self-renewal of 
mesenchymal stem cells and blocking osteogenic commit-
ment of progenitor cells (Carrasco et al. 2023). It has been 
described that inactivation of Ezh2 leads to the activation of 
major osteogenic pathways and increased expression of bone 
formation-related genes and results in the pro-osteogenic 
effects (Dudakovic et al. 2020, 2015). A study revealed that 
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the Ezh2 inhibitor-Tazometostat (EPZ6438), through the loss 
of H3K27me3 in the presence of osteogenic cues, enhanced 
osteogenic differentiation (Carrasco et al. 2023). Different 
results of Ezh2 inhibition have been described depending 
on the period of the Ezh2 inhibition (Carrasco et al. 2023). 
Short-term inactivation of Ezh2 (such as caused by Tazome-
tostat-EPZ6438) activates the osteogenic process in the pro-
genitor cells and stimulates bone formation in vivo, while 
persistent loss of Ezh may lead to a loss in the number of 
the osteoblasts (Dudakovic et al. 2020, 2016; Galvan et al. 
2021).

Ewing sarcoma

Ewing sarcoma (ES) is the second most frequent bone sar-
coma affecting children and adolescents (Balamuth and 
Womer 2010; Grünewald et al. 2018). It occurs predomi-
nantly in bones (long bones, pelvis, chest wall, and spine) 
and to a much lower extent in soft tissues (W.C.o.T.E. Board 
2020; Lézot et al. 2020). Ewing sarcoma is associated with 
chromosomal translocation—usually t(11;22) (q12;q24), 
which leads to EWSR1–FLI1 genes fusion (Aurias et al. 
1984). Nonetheless, in approximately 15–20% of Ewing 
sarcomas, EWSR1 is fused with members of the ETS fam-
ily other than FLI1, most frequently ERG (Sorensen et al. 
1994).

Both survival and tumorigenesis of the Ewing sarcoma 
family of tumors are keyed to the function of EWS-FLI1, and 
it was shown that Gli1 is a transcriptional target of EWS-
FLI1 (Beauchamp et al. 2009). Data suggest that Gli1 upreg-
ulation by EWS-FLI1 is Smo-independent, which indicates 
an involvement of the non-canonical activation pathway 
(Zwerner et al. 2008; Joo et al. 2009).

The efficacy of ATO, a direct Gli inhibitor, has been 
shown in both cell lines and xenograft models of the EWS-
FLI1 Ewing sarcoma. Its effects included cell cytotoxicity 
and inhibition of cell migration and invasion (Beauchamp 
et al. 2011) (Zhang et al. 2012). In vitro studies experiments 
demonstrated that another Gli inhibitor, GANT61, reduces 
the growth of Ewing sarcoma cells, mainly by inducing cas-
pase-3/7-dependent cell apoptosis. The SK-N-LO cell line, 
characterized by the presence of the EWS-FLI1 fusion, was 
the most sensitive line to GANT61 treatment (Mullard et al. 
2020).

Chondrosarcoma

Chondrosarcoma is a malignant cartilage tumor, against 
which typically neither chemotherapy nor radiotherapy is 
effective (W.C.o.T.E. Board 2020; Fiorenza et al. 2002). 
Physiologically, Ihh and PTHrP (parathyroid hormone-
related protein) regulate chondrocyte proliferation and dif-
ferentiation. This signaling pathway is controlled through a 

negative feedback loop. A study showed that the Ihh–PTHrP 
pathway is dysregulated in chondrosarcoma cells, leading to 
constitutive ligand-dependent Hh signaling, as demonstrated 
by overexpression of Ptch1 and Gli1. However, no correla-
tion was observed between the tumor grade and the level 
of Hh pathway components’ expression (Tiet et al. 2006). 
Another study demonstrated increased levels of Ihh mRNA 
compared to Shh mRNA and high levels of Ptch1, Smo, and 
Gli1 mRNA.

The efficacy of saridegib (Smo inhibitor) in the treatment 
of chondrosarcoma in primary xenografts was also evalu-
ated. The observed effects included decreased volume and 
cellularity of the tumor, tumoral calcification, and decreased 
chondrocyte proliferation. The high efficacy of the treatment 
was likely due to the ligand-dependent nature of the Hh 
pathway present in chondrosarcoma (Campbell et al. 2014).

However, emerging evidence suggests that the non-
canonical pathway activation might also play a role in its 
pathogenesis. It has been shown that Gli1 overexpression 
can be caused by the major vault protein (MVP) via mTOR/
S6K1 signaling pathway (Wang et al. 2021). This might 
explain the unsatisfactory results of the clinical trials assess-
ing the efficacy of Smo inhibitors—saridegib or vismod-
egib in patients with chondrosarcoma (Wagner et al. 2013; 
Italiano et al. 2013).

Rhabdomyosarcoma 

Rhabdomyosarcoma is a high-grade tumor of skeletal myo-
blast-like cells and is the most common malignant soft-tissue 
sarcoma affecting children (W.C.o.T.E. Board 2020; Ska-
pek et al. 2019; Dziuba et al. 2018). There are two major 
subtypes of RMS—embryonal rhabdomyosarcoma (ERMS) 
and alveolar rhabdomyosarcoma (ARMS) (Yechieli et al. 
2021). ARMS samples' analysis demonstrated that most 
cases are connected with chromosomal translocation (Gal-
lego Melcón and Sánchez de Toledo Codina  2007; Davis 
et al. 1994). Such chromosomal aberrations can lead to 
gene fusions, which are observed in ARMS, where in the 
majority of samples PAX3/7–FOXO1 gene fusion is present 
(Kaleta et al. 2019). Chromosomal translocations have not 
been observed in ERMS cases; however, another study, 
which examined 12 embryonal rhabdomyosarcoma speci-
mens from 10 patients, revealed gains and losses of some 
of the chromosomes or chromosomal regions. One of the 
most frequent ones was the loss of 9q22, a locus of Ptch 
(Bridge et al. 2000) (Roma et al. 2012). A cohort study 
revealed that in both ERMS and fusion-negative ARMS, 
Ptch1, Gli1, and Gli3 genes have higher expression levels 
than in fusion-positive ARMS. This study also demonstrated 
a correlation between high expression of Ptch1 and reduced 
overall survival in both ERMS and fusion-negative ARMS 
(Zibat et al. 2010). However, there is an ongoing discussion 
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regarding whether the survival of ERMS patients is linked 
to Gli1 and Ptch1 expression level—microarray analysis of 
rhabdomyosarcoma samples showed that the survival rate, 
age, tumor stage, group, and the primary anatomic site did 
not correlate with the expression of Gli1 mRNA transcripts 
(Pressey et al. 2011). Furthermore, this study did not iden-
tify any correlation between Gli1 or Ptch1 expression and 
poor clinical outcomes in ERMS and gene-fusion-negative 
ARMS patients (Pressey et al. 2011). However, the authors 
of this study emphasize the necessity of carrying out more 
trials on larger cohorts of patients to understand the molecu-
lar background of ERMS pathogenesis properly.

Regarding the efficacy of Hh inhibitors, an in vivo study 
was carried out to assess the effectiveness of sonidegib (Smo 
inhibitor) treatment in the embryonal subtype of rhabdomyo-
sarcoma (ERMS) with a mutation in Ptch. Sonidegib had 
a significant antitumor effect in murine models of ERMS, 
as evidenced by a reduction of tumor growth in monother-
apy and combined with pictilisib, a PI3K inhibitor. This 
effect of sonidegib treatment correlated with a decreased 
expression of Gli1 in vitro. Another study with vismodegib 
showed a similar effect (Geyer et al. 2018). Moreover, ATO, 
a Gli inhibitor, was identified to reduce viability and clonal 
growth and induce apoptosis of both embryonal and alveolar 
rhabdomyosarcoma cell lines (Boehme et al. 2016).

Leiomyosarcoma

Leiomyosarcoma (LMS) is one of the most common soft-
tissue sarcoma in adults, representing 10–20% of newly 
diagnosed cases. Uterine LMS is, in turn, the most com-
mon type of uterine sarcoma (George et al. 2018). Increased 
Smo, SuFu, and Gli1 expression was described in uterine 
LMS compared to normal myometrium (Garcia et al. 2016). 
Another study confirmed elevated levels of Smo and Gli1 
and that the Hh pathway is deregulated in uterine LMS (Gar-
cia et al. 2021). A study demonstrated that leiomyosarcoma 
cells showed decreased proliferation, migration, and inva-
sion in response to treatment with Smo or Gli inhibitors 
(Garcia et al. 2020).

Interesting data come from analyses of different regu-
lators of the Hh pathway in LMS. It has been shown that 
NKX6-1 plays an oncogenic role in LMS, and its overex-
pression modulates the Shh pathway, leading to the promo-
tion of stem cell properties in tumor cells and poor progno-
sis. In vitro treatment of NKX6-1 overexpressing LMS cells 
with an inhibitor of the Shh pathway RU-SKI43 resulted 
in cell growth inhibition (Su et al. 2021). The effect of 
GANT61 (Gli inhibitor) on LMS was assessed using a leio-
myosarcoma xenograft model. GANT61 caused significant 
regression of the leiomyosarcoma growth and decreased 
expression of Gli1 and its target genes: BMP4 and c-MYC 
(Garcia et al. 2022).

Malignant rhabdoid tumor

Malignant rhabdoid tumors (MRT) are a group of mainly 
soft-tissue cancers which most commonly develop in the 
kidney or the brain but can be found in any body part. Those 
located in the brain are referred to as atypical teratoid/rhab-
doid tumors (ATRT). MRT mainly affect infants and is 
believed to develop during embryogenesis. They remain one 
of the most lethal pediatric cancers and have a particularly 
bad prognosis in case of metastases (W.C.o.T.E. Board 2020; 
Custers et al. 2021).

Most ATRTs are characterized by a biallelic mutation of 
the SMARCB1 gene and loss of encoded protein INI1/SNF5 
(Frühwald et al. 2016). A recent meta-analysis has divided 
all MRT into three main subgroups based on their molecular 
and clinical features. One of them, ATRT-SHH, is character-
ized by an overexpression of Shh pathway components (such 
as Gli1 and Ptch1) and members of the Notch pathway (Ho 
et al. 2020). A study indicates that in MRTs, the Shh path-
way is activated through the non-canonical pathway. The 
lack of SNF5 protein, typically involved in limiting Gli1 
expression, leads to Gli1 overexpression and drives the 
growth of cancer cells. This theory was supported by the 
in vivo treatment of MRT with a small-molecule inhibitor of 
Gli, which led to the decrease of Gli1 levels and inhibition of 
tumor growth, whereas Smo inhibitors had no effect (Jagani 
et al. 2010) (see Table 1).

Shh pathway inhibitors in the treatment 
of sarcomas

Smo inhibitors

Smo inhibitors include cyclopamine and its derivatives and 
analogues: vismodegib, saridegib (IPI-926), and sonidegib 
(erismodegib, LDE225). While cyclopamine is chemically 
unstable (Tremblay et al. 2009) and has significant side 
effects (Warzecha et al. 2012), the newer Smo inhibitors are 
characterized by a more favorable pharmacokinetic profile 
and, in some cases, a higher potency (Tremblay et al. 2009; 
Kumar and Fuchs 2015).

Cyclopamine inhibited growth and metastasis formation 
in preclinical models of osteosarcoma (Hirotsu et al. 2010; 
Warzecha et al. 2012). Vismodegib, used in combination 
treatment, was also successful in preclinical models, lead-
ing to a decrease in cell migration and metastasis forma-
tion in osteosarcoma (Nagao-Kitamoto et al. 2015b), and 
a reduction of tumor growth and the number of proliferat-
ing cells in the embryonal subtype of rhabdomyosarcoma 
with a mutation in Ptch (Geyer et al. 2018). Saridegib 
decreased tumor size and increased apoptosis in the pre-
clinical models of osteosarcoma associated only with the 
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Table 1   Hedgehog pathway components expression and effect of pathway inhibition in vitro and in vivo in various sarcomas 

Overexpression of Hh 
components in cell 
lines

Overexpression of Hh 
components in human 
tumors

Effect of Hh inhibition Other pathways involved

Osteosarcoma Shh
Ihh
Ptch1
Smo
Gli

Shh
Ihh
Ptch1
Smo
Gli

Cyclopamine (SMO inhibitor):
 Inhibition of growth and metas-

tasis formation in preclinical 
models

Vismodegib (SMO inhibitor):
 Decreased cell migration and 

metastasis formation (when used 
in combination treatment)

Saridegib (SMO inhibitor):
 Effective inhibition of canonical 

pathway, noneffective inhibition 
of non-canonical pathway in 
xenograft model

ATO (Gli inhibitor)
 Decreased cell migration and 

metastasis formation in preclini-
cal models (when used in combi-
nation treatment)

 Increased apoptosis, reduced 
invasion

GANT61 (Gli inhibitor)
 Reduction of osteosarcoma cells' 

resistance to cisplatin
 Inhibition of cell growth
 Inhibition of certain OS cell lines 

viability
reduction of cell migration and 

metastasis formation in combina-
tion treatment in preclinical 
models

Emodin
 Lowered radioresistance of osteo-

sarcoma cells
Degalactotigonin
 Suppression of osteosarcoma cells

Wnt pathway
Notch pathway
Hippo pathway
MAPK pathway
PI3K/AKT/mTOR pathway

Ewing sarcoma Gli Gli GANT61 (Gli inhibitor)
 Reduced cell growth in preclini-

cal models (particularly in those 
with the presence of the EWS-
FLI1 Fusion gene)

ATO (Gli inhibitor)
 Increased cytotoxicity, reduced 

cell migration and invasion in 
preclinical models of EWS-FLI1 
Ewing-sarcoma

EWS–FLI1 pathway
IGF–1R pathway

Chondrosarcoma Ptch1
Gli1

Ptch1
Gli1

Saridegib (Smo inhibitor)
 Decreased volume and cellularity 

of the tumor
 Decreased tumoral calcification
 Decreased chondrocyte prolifera-

tion in xenograft models

Ihh–PTHrP pathway
PI3K/AKT/mTOR pathway
SRC pathway
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canonical activation of the Hh pathway (Lo et al. 2014b) 
Sonidegib significantly reduced tumor growth and the 
number of proliferating cells in the preclinical models of 
the embryonal subtype of rhabdomyosarcoma with a muta-
tion in Ptch (Geyer et al. 2018). Promising results have 
also been obtained in a study assessing the efficacy of four 
new cyclopamine derivatives in osteosarcoma cell lines. 
They significantly induced apoptosis and also effectively 
inhibited a chemoresistant form of Smo, unlike the older 
generations of Smo inhibitors (Bernardini et al. 2018).

While vismodegib and sonidegib have been approved 
by FDA as agents targeting the Hh pathway in the treat-
ment of basal cell carcinoma, none of the Smo inhibitors 
has been approved for therapy of any sarcomas associ-
ated with Hh pathway dysfunction (Meiss et al. 2018; 
Casey et al. 2017) due to the lack of efficacy in clinical 
trials. The efficacy of vismodegib was assessed in a clini-
cal trial conducted to determine if dual inhibition of the 
Notch and Hh pathways would result in a synergistic anti-
tumor effect in advanced sarcomas (Gounder et al. 2022). 
Patients received a combination of vismodegib and a 
Notch inhibitor RO4929097 or Notch inhibitor alone. No 
patients had an objective response, and there was no differ-
ence in progression-free or overall survival between treat-
ment arms. Paired tumor biopsies from a subset of patients 
demonstrated decreased expression of cleaved Notch and 
decreased phosphorylated Akt, suggesting successful inhi-
bition of the gamma-secretase enzyme leading to down-
regulation of Notch signaling. Contrary, only two out of 
ten patients had a substantial decrease in Gli1 expression, 

implying that inhibition of the canonical Hh pathway was 
not very effective (Gounder et al. 2022).

It is important to note that the non-canonical pathway 
activation happens independently of Smo. Its inhibitors have 
thus no effect on the pathway in cases where this method of 
activation is predominant. This might explain the unsatis-
factory results of the clinical trials assessing the efficacy of 
saridegib and vismodegib in patients with chondrosarcoma, 
where a significant role of the non-canonical activation is 
suspected (Wang et al. 2021; Wagner et al. 2013; Italiano 
et al. 2013).

Another possible explanation for the lack of efficacy 
of Smo inhibitors is the presence of specific mutations in 
the target protein. Several solutions have been proposed to 
overcome this issue: development of second-generation Smo 
inhibitors that would retain their inhibitory effect despite 
the presence of the mutation, for example, by targeting a 
different domain of the protein; targeting downstream mol-
ecules of Smo, such as Gli transcription factors; and finally 
genetic prescreening before initiating Smo inhibitor therapy 
(Nguyen and Cho 2022).

Another promising strategy could be the simultaneous 
inhibition of both the upstream and downstream levels of 
the Shh pathway. A study showed that a synthetic isoflavone, 
which targets Smo and Gli1 at the same time, had a signifi-
cant anti-tumor effect both in in vitro and in vivo models of 
medulloblastoma. This form of therapy also has the potential 
to decrease the toxicity of individual Shh pathway inhibitors 
and should therefore be examined in sarcoma models (Los-
pinoso Severini et al. 2019).

Table 1   (continued)

Overexpression of Hh 
components in cell 
lines

Overexpression of Hh 
components in human 
tumors

Effect of Hh inhibition Other pathways involved

Rhabdomyosarcoma Ptch1
Gli1
Gli3

Ptch1
Gli1
Gli3

Vismodegib, Sonidegib (SMO 
inhibitors)

 Reduced tumor growth
 Reduced number of proliferating 

cells in ERMS with a mutation 
in Ptch in preclinical models

ATO (Gli inhibitor)
 Increased cells apoptosis
 Reduced viability and clonal 

growth in preclinical models of 
both ERMS and ARMS

Wnt pathway
Notch pathway
Hippo pathway
p53 pathway

Leiomyosarcoma Smo
Gli

Smo
SuFu
Gli1

GANT61 (Gli inhibitor)
 Regression of leiomyosarcoma 

growth on xenograft model
Malignant rhabdoid 

tumor (ATRT-SHH 
subtype)

Gli1 Gli1 small molecule inhibitor of Gli
 Inhibition of tumor growth in 

in vivo treatment
Smo-inhibitors
 No effect on tumor growth inhibi-

tion

Notch pathway
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Gli inhibitors

Gli inhibitors include GANT61 and arsenic trioxide (ATO). 
There is an ongoing discussion about their potential thera-
peutic value, particularly in the case of the non-canonical 
activation of the Shh pathway, where Smo inhibitor therapies 
have no effect (Beauchamp and Uren 2012).

GANT61 reduced cell growth in preclinical models of 
Ewing sarcoma, particularly the ones characterized by the 
EWS–FLI1 fusion gene (Mullard et al. 2020). It also reduced 
cell viability (Lo et al. 2014b; Shahi et al. 2014) as well as 
the resistance to cisplatin (Chen et al. 2021) in monotherapy 
and cell migration and metastasis formation in combina-
tion treatment (Nagao-Kitamoto et al. 2015b), in preclinical 
models of osteosarcoma. Finally, GANT61 caused a regres-
sion of growth in preclinical models of leiomyosarcoma 
(Garcia et al. 2022).

ATO in monotherapy in preclinical models of EWS–FLI1 
Ewing sarcoma led to cell cytotoxicity, reduced both cell 
migration and invasion (Beauchamp et al. 2011; Zhang et al. 
2012). Moreover, in preclinical osteosarcoma models, ATO 
has been observed to increase apoptosis and reduce inva-
sion (Nagao-Kitamoto et al. 2015b; Nakamura et al. 2013). 
A study showed that targeting both embryonal and alveolar 
rhabdomyosarcoma with ATO resulted in increased apopto-
sis, reduced viability, and reduced clonal growth (Boehme 
et al. 2016). ATO combined with GANT61 or vismodegib 
reduced cell migration and metastasis formation in preclini-
cal osteosarcoma models (Nagao-Kitamoto et al. 2015b).

These findings suggest that Gli inhibitors may have a 
potential therapeutic value in treating sarcomas associated 
with elevated Gli levels, particularly in the case of the non-
canonical activation of the Shh pathway, where Smo inhibi-
tors have no effect. However, while the FDA has approved 
ATO for the treatment of acute promyelocytic leukemia 
(Ferrara et al. 2022), neither drug has been registered as a 
treatment method for sarcomas. The significant cytotoxicity 
caused by Gli inhibitors might be a possible setback (Siga-
foos et al. 2021).

Other drugs

Emodin (1, 3, 8-trihydroxy-6-methylanthraquinone) is a 
natural anthraquinone derivative which has been reported 
to have various desired pharmacological effects, such as 
an anti-neoplastic, antioxidant, anti-inflammatory, and 
anti-apoptotic potential (Semwal et al. 2021). Regarding 
emodin’s anticancer activity, its effects include induction 
of apoptosis and cell cycle arrest, anti-metastasis activity, 
and reversion of multidrug resistance (Dong et al. 2016). 
A study showed that emodin, through inhibition of the 
Shh pathway, can partially reverse the radioresistance of 
osteosarcoma cells. In this study, two cell lines have been 

used: human osteosarcoma cell line MG63 and, produced 
through 30-repeat low-dose X-ray irradiation cycles, cell line 
MG63R (radioresistant OS cells). The study revealed that 
emodin treatment before irradiation inhibited the nuclear 
translocation of Gli1 in MG63 cells and lowered the levels 
of Shh and BCL2 in MG63R cells (Qu et al. 2017). BCL2 
is an antiapoptotic protein whose function has been linked 
to the mitochondrial pathway and has been described to be 
expressed at high levels in osteosarcoma cells (Chen et al. 
2015). It has been described that BCL2 protein protects oste-
osarcoma cells from apoptosis, and on this account, silenc-
ing BCL-2 may have a positive outcome on the effectiveness 
of therapeutic strategies in osteosarcoma (Zhao et al. 2009).

Degalactotigonin (DGT), a substance extracted from the 
plant Solanum nigrum L., has been shown to inhibit the Hh 
pathway through GSK3 beta inactivation. This leads to the 
suppression of osteosarcoma proliferation and metastasis 
(Zhao et al. 2018). Glycogen synthase kinase-3β (GSK3β) 
is a serine/threonine protein kinase which levels have been 
described to have a direct impact on osteosarcoma cells 
(Tang et al. 2012). A study on patient-derived xenograft 
models has shown that inhibition of GSK-3β leads to inhi-
bition of the NF- κB pathway and results in the apoptosis of 
osteosarcoma cells (Tang et al. 2012).

Conclusions and discussion

Dysregulation of the Hh pathway, leading to overexpression 
of its components, has been observed in some sarcomas, 
including osteosarcoma, Ewing-sarcoma, chondrosarcoma, 
rhabdomyosarcoma, leiomyosarcoma, and malignant rhab-
doid tumor. This points to the critical role played by the 
Hh pathway in the tumorigenesis of sarcomas; however, Hh 
components do not seem to be the core mechanism in the 
pathogenesis of these tumors. Subsequently, the efficacy 
of sarcomas treatment with Hh inhibitors was assessed. 
Both in vitro and in vivo studies showed promising results, 
but they have not yet been confirmed in clinical trials. We 
believe that the observed lack of effect may result from two 
factors: the non-canonical pathway activation and interac-
tions with other signaling pathways.

Due to its mechanism, the non-canonical pathway 
activation is less sensitive to Smo inhibition, making Gli 
inhibitors the only potentially effective Hh-targeted treat-
ment in this group of sarcomas. Understanding which 
mechanism of Hh pathway activation is present in each 
sarcoma subtype (Table 2) is crucial to properly plan and 
execute preclinical experiments and clinical studies with 
Hh-targeted agents. Interactions between the Shh pathway 
and pathways, such as Wnt and Notch, create a complex 
network where activation of one pathway can increase the 
expression of the others’ components. Several connection 
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points between Hh and Notch, Wnt, or TGF-β pathways 
show a reciprocal synergism contributing to tumorigenesis 
in various tumors but have not yet been thoroughly stud-
ied in sarcoma (Pelullo et al. 2019). This is thought to be 
one of the mechanisms of target-specific treatment evasion 
(Roma et al. 2012).

Another aspect of the Shh pathway’s role in the treatment 
of sarcomas is its possible influence on susceptibility to 
immunotherapy. Reduced expression of the Hedgehog sign-
aling pathway and the presence of CD8 + T cells have been 
shown to correlate with the best clinical outcome in patients 
with sarcoma undergoing immunotherapy (D’Angelo et al. 
2022). Similar observations were also made in other tumors, 
such as gastric, breast, and basal cell carcinoma. It has 
been shown that the inhibition of Hh signaling results in 
decreased PD-L1 expression and tumor cell proliferation in 
mouse-derived gastric cancer organoids (Chakrabarti et al. 
2018). Shh pathway inhibitors used in basal cell carcinoma 
have led to tumor regression accompanied by beneficial 
changes in the tumour’s microenvironment, such as upreg-
ulation of MHC class I expression, alteration of the local 
cytokine network, and infiltration of CD8 + T cells (Otsuka 
et al. 2015). Changes in the tumor microenvironment con-
nected with Hh pathway inhibition have also been investi-
gated in immunocompetent breast cancer murine models. It 
has been shown that Hh inhibition resulted in the reduction 
of immune-suppressive cells and an increased number of 
cytotoxic immune cells (Hanna et al. 2019). These effects 
could be potentially beneficial for treating sarcomas, which 
are generally considered “cold” tumors with a low number 
of infiltrating lymphocytes and rather immunosuppressive 
microenvironment (Petitprez et al. 2020).

A better understanding of the role played by the Shh 
pathway in the pathogenesis of sarcomas is necessary. We 
propose that further research should primarily focus on the 
role of the non-canonical pathway and the development of its 
inhibitors as well as potential combination therapies, which 
would simultaneously target not only the Shh pathway but 
also other signaling pathways. Such studies could be used 
to develop an effective therapy for sarcomas connected 
with Shh pathway dysregulations and thus help solve one of 
oncology’s most prominent problems (see Table 2).
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