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ZHX2 emerges as a negative regulator of
mitochondrial oxidative phosphorylation
during acute liver injury

Yankun Zhang1, Yuchen Fan2, Huili Hu 3, Xiaohui Zhang3, Zehua Wang1,
Zhuanchang Wu1, Liyuan Wang1, Xiangguo Yu1, Xiaojia Song1, Peng Xiang1,
Xiaodong Zhang1, Tixiao Wang1, Siyu Tan1, Chunyang Li 1,4, Lifen Gao 1,
Xiaohong Liang 1, Shuijie Li5, Nailin Li 6, Xuetian Yue 1,7 &
Chunhong Ma 1

Mitochondria dysfunction contributes to acute liver injuries, and mitochon-
drial regulators, such as PGC-1α and MCJ, affect liver regeneration. Therefore,
identification of mitochondrial modulators may pave the way for developing
therapeutic strategies. Here, ZHX2 is identified as a mitochondrial regulator
during acute liver injury. ZHX2 both transcriptionally inhibits expression of
several mitochondrial electron transport chain genes and decreases PGC-1α
stability, leading to reduction of mitochondrial mass and OXPHOS. Loss of
Zhx2 promotes liver recovery by increasing mitochondrial OXPHOS in mice
with partial hepatectomyorCCl4-induced liver injury, and inhibitionof PGC-1α
or electron transport chain abolishes these effects. Notably, ZHX2 expression
is higher in liver tissues from patients with drug-induced liver injury and is
negatively correlated with mitochondrial mass marker TOM20. Delivery of
shRNA targeting Zhx2 effectively protectsmice fromCCl4-induced liver injury.
Together, our data clarify ZHX2 as a negative regulator of mitochondrial
OXPHOS and a potential target for developing strategies for improving liver
recovery after acute injuries.

Liver is the largest internal organof the human body and is responsible
for metabolism, immunity, digestion, detoxification, and protein
synthesis, and is characterized by robust regenerative capacity in
response to injury1,2. Mitochondria act as the critical metabolic and
signaling hubs to maintain liver homeostasis, flexibility, and survival3.
Abnormal mitochondrial function has been reported to not only trig-
ger the onset of various liver diseases, but also contribute to acute liver
injury and liver failure caused by infection, toxin, and drug abuse4–8.
Hepatic mitochondrial oxidative capacity varies broadly across the

spectrum of obesity and nonalcoholic fatty liver diseases (NAFLD)7,
and studies on the contributions of altered mitochondria in liver
metabolic diseases are controversial. For instance, lifestyle modifica-
tions and drugs that are able to enhance mitochondrial function are
successful in improving NAFLD and NASH9. On the contrary, loss of
mitochondrial OXPHOS could protect against diet-induced steatosis
and NASH progression10. Nevertheless, controlling mitochondrial
dysfunction might provide a promising strategy forward to the treat-
ment of liver diseases, especially for acute liver injury.
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Emerging evidencedemonstrates thatmitochondria playa central
role in liver regeneration during acute liver injuries11,12. After hepa-
tectomy,mitochondria support hepatocyte proliferation byproducing
ATP through OXPHOS to meet the bioenergetic demands of
hepatocytes13. Improvement of mitochondrial biogenesis increases
mitochondrial OXPHOS to promote liver regeneration after 2/3 partial
hepatectomy (PHx)14. However, currently limited number of mito-
chondrial function regulators has been identified in liver injuries.
Peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) is
essential for the upregulation of electron transport chain (ETC) genes,
activation of respiratory chain, increase of mitochondrial mass, and
the augmentation of mitochondrial respiratory capacity15. TRPM8
(transient receptor potential melastatin 8) enhances metabolism and
promotes hepatocytes proliferation in mice after hepatectomy16.
Methylation-controlled J protein (MCJ) is a distinct co-chaperone that
localizes at the mitochondrial inner membrane17. The absence of MCJ
enhances mitochondrial activity to promote liver regeneration4,18. In
addition, mutation of mitochondrial transcription factor A (TFAM),
another well-known mitochondrial modulator, causes neonatal liver
failure associated withmtDNA depletion19. Knockout of mitochondrial
topoisomerase I (Top1mt) interrupts the biogenesis of mitochondrial
and declines the capacity of liver regeneration20. Therefore, targeting
mitochondrial regulation seems to be an appropriate strategy to
improve repair of liver injury and there is an urgent need to identify
mitochondrial regulators.

Transcription factor Zinc-finger and homeoboxes 2 (ZHX2) has
been identified as a critical regulator of liver postnatal gene expres-
sion, cell proliferation, and hepatic lipid hemostasis21–25. Importantly,
loss of Zhx2 accounts partially for high-fat diet-induced lipid accu-
mulation and liver damage26. Further studies demonstrated that ZHX2
inhibits exogenous lipid uptake and de novo lipid synthesis27,28, both
biological processes are closely associated with ATP production from
mitochondria. However, whether ZHX2 plays a role in mitochondrial
regulationduring liver injury and repair is largely unexplored. Here, we
show that hepatocyte-specific knockout of Zhx2 enhances mitochon-
drial OXPHOS and promotes liver recovery after acute injury.
Mechanistically, ZHX2 represses expression of mitochondrial ETC
genes through PGC-1α-dependent and independent manner to inhibit
mitochondrial OXPHOS and reduce mitochondrial mass. Clinical data
verify the negative correlation of ZHX2 expression with mitochondrial
mass in patients with drug-induced liver injury (DILI). These findings
demonstrate that ZHX2 is a regulator of mitochondria function that
contributes to the repair of liver injury and may serve as a drug target
for acute liver injury with mitochondrial dysfunction.

Results
ZHX2 decreases hepatic mitochondrial biogenesis and OXPHOS
To assess the potential involvement of ZHX2 in hepatic mitochondrial
regulation, we first performed bioinformatics analysis using a pub-
lished dataset with ZHX2manipulation29. Gene set enrichment analysis
(GSEA) demonstrated the significant enrichment of the gene sets
encodingOXPHOS and ETCOXPHOS system in control cells relative to
ZHX2-overexpressing L02 cells (Supplementary Fig. 1a). Furthermore,
we performed GSEA in acetaminophen-induced acute liver failure
(ALF) cohort (GSE74000) using median of ZHX2 expression levels as a
cutoff30. As shown inSupplementary Fig. 1b,OXPHOS-related gene sets
were enriched in low ZHX2 groups from ALF cohorts. Together,
bioinformatics analyses indicate that ZHX2 is associated with mito-
chondrial function.

To confirm the role of ZHX2 in mitochondrial regulation, mito-
chondrial biogenesis was examined in HCC cell line Huh7 with ZHX2
manipulation (Supplementary Fig. 1c). As shown in Fig. 1a, b, over-
expression of ZHX2 in Huh7 cells decreased mitochondrial mass, as
evidenced by lower copy number ofmtDNA,weaker intensities ofMito
Tracker deep red, less total mitochondrial area as well as fewer

mitochondrial filamentous network. In accordance, knockdown of
ZHX2 led to augmentedmtDNAcopy number andhigher levels ofMito
Tracker deep red in Huh7 cells (Supplementary Fig. 1d). Importantly,
ZHX2 greatly inhibitedmitochondrial OXPHOS, presented as lower JC-
1 aggregates in ZHX2-overexpressing Huh7 cells and higher JC-1
aggregates in ZHX2-knockdownHuh7 cells (Fig. 1c and Supplementary
Fig. 1e). Consistently, ZHX2 overexpression reduced oxygen con-
sumption rate (OCR) (Fig. 1d), while ZHX2 silence promoted mito-
chondrial OXPHOS (Supplementary Fig. 1f). Subsequently, ZHX2
decreased ATP generation, indicated as lower ATP levels, reduced
ratios of ATP/AMP and ATP/ADP, and higher AMP levels in ZHX2-
overexpressing Huh7 cells than those of control (Fig. 1e). On the
contrary, ZHX2 knockdown increased ATP generation (Supplemen-
tary Fig. 1g).

To further validate the above results, both human hepatic orga-
noids and murine primary hepatocytes were included. ZHX2 was suc-
cessfully knocked down in human hepatic organoids (Supplementary
Fig. 1h). Importantly, knockdown of ZHX2 increased mitochondrial
mass and ATP generation in human hepatic organoids (Fig. 1f). Con-
sistently, ZHX2 knockout markedly increased mitochondrial mass,
enhanced mitochondrial membrane potential, and promoted ATP
production in primary hepatocytes isolated from hepatocyte-specific
Zhx2 knockout mice (Zhx2-KOhep) (Fig. 1g and Supplementary Fig. 1i).
Above all, these data demonstrate that ZHX2 inhibits mitochondrial
biogenesis and OXPHOS in hepatocytes.

ZHX2 deficiency accelerates liver repair after acute injury
Sincemitochondria play important roles in the repair of damaged liver
and ZHX2 regulates mitochondrial function, we hypothesized that
ZHX2might involve in liver recovery fromdamage. Toaddress this, 2/3
partial hepatectomy (PHx), the widely used mice model of acute liver
injury, was performed with Zhx2-KOhep mice and their littermate con-
trols (Zhx2-WT). As shown in Supplementary Fig. 2a, Zhx2mRNA levels
were largely reduced in mice liver at 24 h after damage. Although the
initial body weight, liver weight, and liver/body weight ratios were
comparable between Zhx2-KOhep and Zhx2-WT mice (Supplementary
Fig. 2b), the liver/body weight ratios following 2/3 PHxwere recovered
faster in Zhx2-KOhepmice than that in Zhx2-WTmice, and the livermass
of Zhx2-KOhep mice was larger than that of Zhx2-WT mice at 96 h after
2/3 PHx (Fig. 2a). In line with the rapid liver mass restoration, we
observed an earlier induction of Cyclin D1 at 12 h post 2/3 PHx in Zhx2-
KOhep mice and this increase of Cyclin D1 lasted until 48 h after PHx in
Zhx2-KOhep mice. In agreement, enhanced expression of Cyclin A2,
Cyclin B1, Cyclin E1, and proliferating cell nuclear antigen (PCNA) at
both mRNA and protein levels were observed at different time points
post 2/3 PHx in Zhx2-KOhep mice (Fig. 2b and Supplementary Fig. 2c).
Meanwhile, the numbers of BrdU-positive cells and mitotic cells in the
livers of Zhx2-KOhep mice were higher than those of Zhx2-WT mice
(Fig. 2c and Supplementary Fig. 2d). As expected, the livers of both
groups recovered almost completely at 7 days after PHx. We did not
detect any significant differences of ALT, AST and H&E staining
between Zhx2-KOhep and Zhx2-WT mice (Supplementary Fig. 2e, f).
Whereas liver/body weight ratios and liver cell proliferation had no
difference between Zhx2-KOhep and Zhx2-WT mice after sham opera-
tion (Supplementary Fig. 2g, h).

To test whether ZHX2-mediated liver recovery is specific to 2/3
PHx, carbon tetrachloride (CCl4) exposure was performed on Zhx2-
KOhep and Zhx2-WT mice to mimic chemical-induced liver injury. As
expected, Zhx2 deficiency significantly increased the expression of
cell-cycle-related genes (Cyclin D1, Cyclin A2, Cyclin B1, and Cyclin E1)
and PCNA at 48 and 72 h after CCl4 exposure (Fig. 2d and Supple-
mentary Fig. 2i). Notably, loss of Zhx2 decreased the cell death and
liver damage caused by CCl4, as assessed by reduced serum levels of
ALT and AST, decreased necrotic areas, and lower number of TUNEL-
positive cells (Fig. 2e–g). Taken together, these results demonstrate
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that hepatic Zhx2 deficiency promotes liver repair from acute injuries
induced either by mechanical or chemical factors.

Zhx2 deficiency augments hepatic OXPHOS during acute injury
To decipher the underlying mechanism for liver recovery from an
acute injury, we performed multi-omics with liver tissues from Zhx2-
KOhep and Zhx2-WTmice at 48 h after 2/3 PHx (Supplementary Fig. 3a).
RNA-seq identified a total of 1091differentially expressed genes (DEGs)
(fold change ≥ 2.00, adjusted p value ≤0.05) (Supplementary Fig. 3b).

Gene Set Variation Analysis (GSVA) revealed multiple upregulated
gene sets in Zhx2-KOhep mice, including E2F targets and G2M check-
point (Supplementary Fig. 3c), two known signatures related with
damaged liver recovery31,32. Notably, metabolism-related gene sets
were upregulated in Zhx2-KOhep mice, of which OXPHOS was the most
significantly upregulated gene set (Supplementary Fig. 3c). GSEA fur-
ther showed the enrichment of mitochondrial related gene sets,
including OXPHOS gene set (Fig. 3a). Consistently, quantitative pro-
teomics identified a total of 644 differentially expressed proteins (fold

Fig. 1 | Interruption of ZHX2 enhances hepatic mitochondrial biogenesis and
OXPHOS in vitro and in vivo. a The copy number of mtDNA (left) and intensity of
Mito tracker deep red (right) in Huh7 cells with ZHX2 overexpression were deter-
mined by qPCR and flow cytometry, respectively. Representative data are pre-
sented as mean± sd (two-tailed Student’s t-test. n = 3 biologically independent
samples). b Mitochondrial morphology in Huh7 cells with or without ZHX2 over-
expression was observed by super-resolution microscopy. Representative images
depicting TOM20 (green), DAPI (blue) and mitochondrial network model were
presented on the right panel. Quantification of total mitochondrial area (footprint)
andmitochondrial networks are shown on themiddle and right panel, respectively.
Scale bar: 5 μm. Representative data are represented as mean ± sd (two-tailed
Student’s t-test. n = 9 cells). c–e JC-1 aggregates (c), OCR (d) and ATP, AMP levels,

ATP/AMP and ATP/ADP ratios (e) in Huh7 cells with ZHX2 overexpression were
examined by the assay kits. Representative data are presented as mean± sd (two-
tailed Student’s t-test. c: n = 3; and d and e: n = 4. n represents biologically inde-
pendent samples). f The copy number of mtDNA and intracellular ATP levels were
measured in human hepatic organoids transfected with lentivirus-mediated shRNA
against ZHX2 (LV-shZHX2) or control shRNA (LV-shNC) with ATP level assay kit.
Representative data are presented as mean± sd (two-tailed Student’s t-test. n = 3
biologically replicates experiments). g The copy number of mtDNA, intensity of
TMRM and ATP levels in primary hepatocytes from Zhx2-WT and Zhx2-KOhep mice
were determined. Representative data are presented as mean± sd (two-tailed
Student’s t-test. n = 4 biologically independent samples).
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Fig. 2 | Liver repair is enhanced in Zhx2-KOhep mice after 2/3 PHx and CCl4
administration. a Liver/body weight ratios of Zhx2-WT and Zhx2-KOhep mice at
indicated time points after 2/3 PHx are presented on the left panel. Right panel
displays the representative images of liver mass at 96 h after 2/3 PHx. Data are
presented asmean ± s.e.m. (two-tailed Student’s t-test. n = 5mice per group). b The
mRNA levels of Cyclin D1, Cyclin A2, Cyclin B1and Cyclin E1 were accessed in Zhx2-
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quantification data are displayed on the right panel, respectively. Data are pre-
sented as mean ± s.e.m. (two-tailed Student’s t-test. n = 6 mice per group).
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change ≥ 1.2) between Zhx2-KOhep and Zhx2-WT mice at 48 h after 2/3
PHx, and KEGG analyses revealedmetabolic pathway as one of top ten
altered pathways in Zhx2-KOhep mice (Supplementary Fig. 3d). Further
analysis of differentially expressed proteins in metabolic pathways
showed that about 15.8% proteins were involved in mitochondria-
related metabolic pathways, including energy metabolism, lipid and
amino acid metabolism (Fig. 3b). Subsequently, energy metabolomics
showed that the metabolites in mitochondrial ETC were enriched in
the liver of Zhx2-KOhep mice (Fig. 3c), and the levels of ATP were sig-
nificantly higher while the levels of ADPwere lower in the liver of Zhx2-
KOhep mice than Zhx2-WT mice at 48 h after 2/3 PHx (Fig. 3d).

Collectively, multi-omics data suggest that ZHX2 regulates mito-
chondrial OXPHOS during liver repair after acute injury.

To verify multi-omics findings, mitochondrial functional assays
were performed in primary hepatocytes isolated from mice at 48 h
after 2/3 PHx. As shown in Fig. 3e, mtDNA copy number was increased
in primary hepatocytes of Zhx2-KOhep mice at 48 h after 2/3 PHx.
Consistently, electron microscopy detected higher mitochondrial
volume density in hepatocytes from Zhx2-KOhep mice (Fig. 3f). Subse-
quently, Zhx2 knockout largely increased mitochondrial membrane
potential (JC-1 aggregates), oxygen consumption and mitochondrial
OXPHOS in primary hepatocytes isolated from mice at 48 h after 2/3
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hepatocytes fromZhx2-KOhep andZhx2-WTmicewereanalyzed at 48h after 2/3 PHx
by using transmission electron microscopy (TEM). The representative images are
shown on the left panel and one mitochondrial was selected to zoom in. The
quantitative data of mitochondrial volume density is shown on the right panel.
Scale bar: 1 μm. Representative data are presented as mean ± sd (two-tailed Stu-
dent’s t-test. n = 9 cells). g–i Mitochondrial functional status, including mitochon-
drial membrane potential (JC-1 aggregates) (g), extracellular O2 consumption (h),
and Oxygen consumption (i) in hepatocytes from Zhx2-KOhep and Zhx2-WT mice
48h after 2/3 PHx were accessed by the assay kits according to the manufacture
protocols. Data are presented asmean ± s.e.m. (g and h: two-tailed Student’s t-test.
n = 3 mice; i: two-way ANOVA with Bonferroni’s test. n = 4 mice). j ATP levels and
ATP/AMP ratio were accessed in hepatocytes from Zhx2-KOhep and Zhx2-WT mice
by the assay kits according to the manufacture protocols. Data are presented as
mean ± s.e.m. (two-tailed Student’s t-test. n = 3 mice).
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PHx (Fig. 3g–i). Similarly, the ATP levels, ATP/AMP and ATP/ADP ratios
were higherwhile theAMP levelswere lower in Zhx2-KOhep hepatocytes
than thoseof Zhx2-WThepatocytes (Fig. 3j andSupplementary Fig. 3e).
Altogether, loss of Zhx2 promotes mitochondrial function during the
repair of injured livers.

Zhx2 inhibits liver recovery by reducing OXPHOS
To further verify that Zhx2 knockout facilitates repair of injured liver
by regulating mitochondrial OXPHOS, metformin, a widely accepted

inhibitor that indirectly targets mitochondrial complex I and inhibits
OXPHOS and ATP production33,34, was used to treat Huh7 cells and
mice. As shown in Fig. 4a, b, ZHX2 silence led to enhancement of
mitochondrial membrane potential and AMP to ATP conversion in
Huh7 cells, and these enhancements were abolished by metformin
treatment. Importantly, liver regeneration and ATP production in
metformin pretreated mice were assessed by following 2/3 PHx
(Fig. 4c). As expected, metformin administration abolished the
enhanced liver regeneration in Zhx2-KOhep mice, as demonstrated by

Fig. 4 | Metformin treatment inhibits OXPHOS activity and dampens aug-
mented liver regeneration in Zhx2-KOhep mice. a, b Huh7 cells were transfected
with siNC and siZHX2, following with metformin or vehicle treatment. TMRM
intensity (a), ATP andAMP levels, andATP/AMP ratio (b) are shown. Representative
data are presented as mean± sd (two-way ANOVA with Tukey’s test. n = 4; n bio-
logically independent samples). c Diagram for metformin administration in Zhx2-
KOhep and Zhx2-WT mice with 2/3 PHx. d Liver/body weight ratios of Zhx2-WT and
Zhx2-KOhep mice with or without metformin administration were measured at 36
and 48 h after 2/3 PHx. Data are presented as mean ± s.e.m. (one-way ANOVA with
Tukey’s test.n = 4mice pergroup). e Expressionof PCNA,CyclinA2 andCyclinD1 in

Zhx2-WT and Zhx2-KOhep liverswith or withoutmetformin treatment were obtained
at 36 and 48h after 2/3 PHx by western blot. f BrdU-positive cells in livers from
metformin and vehicle-administrated Zhx2-KOhep and Zhx2-WT mice were deter-
minedby immunofluorescence staining. Reprehensive images are shownon the left
panels and the quantitative data are shown on the right panels. Scale bar: 50μm.
Data are presented as mean ± s.e.m. (one-way ANOVA with Tukey’s test. n = 4 mice
per group). g Levels of ATP and AMP, and ratio of ATP/AMP were determined in
livers from Zhx2-KOhep and Zhx2-WT at 36 h and 48h after 2/3 PHx with/without
metformin administration. Data are presented as mean ± s.e.m. (one-way ANOVA
with Tukey’s test. n = 3 mice per group).
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the abrogation of increased liver/body weight ratio (Fig. 4d). Con-
sistently, metformin treatment eliminated the increased levels of
PCNA, Cyclin A2, Cyclin D1 proteins and increased numbers of BrdU-
positive cells in Zhx2-KOhep mice (Fig. 4e, f). More importantly, met-
formin not only decreased ATP levels, but also eliminated the differ-
ence in AMP and ATP levels and ATP/AMP ratios in Zhx2-KOhep and
Zhx2-WT mice (Fig. 4g), suggesting that metformin dampens Zhx2
deficiency-accelerated liver repair by inhibiting ATP production.

To further exclude the non-specific effect of metformin and
confirm the role of ZHX2-mediated OXPHOS inhibition in injured liver
repair, Zhx2-KOhep and Zhx2-WT mice were pre-exposed to carbonyl
cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), an uncoupler of
mitochondrial OXPHOS33,35, following with 2/3 PHx (Supplementary
Fig. 4a). Consistent with metformin treatment, FCCP treatment elimi-
nated the differences in liver/body weight ratios, PCNA, Cyclin A2,
Cyclin D1 expression, BrdU-positive cells, and ATP levels and ATP/AMP
ratios in Zhx2-KOhep and Zhx2-WT mice after 2/3 PHx (Supplementary
Fig. 4b–e). Taken together, these data demonstrate that ZHX2 inhibits
liver repair by reducing OXPHOS.

ZHX2 binds to the promoters of a subset of ETC genes for
inhibition
To investigate the mechanisms by which Zhx2 deficiency increases
mitochondrial OXPHOS, we further analyzed the transcriptomic and
proteomic data. As shown in Fig. 5a, Zhx2-KOhep increased hepatic
expression of genes encoding mitochondrial complex I-V. Similarly,
the heatmap of proteomic data showed the increased levels of ETC
proteins in Zhx2-KOhep mice (Fig. 5b). In addition, mitochondria-
located proteins also increase in Zhx2-KOhep mice liver (Supplemen-
tary Fig. 5a). RT-qPCR and western blot further confirmed the
enhanced levels of ETC genes in liver tissues from Zhx2-KOhep mice
48 h after 2/3 PHx (Supplementary Fig. 5b, c). Furthermore, ZHX2
overexpression decreased the expression of ETC genes in Huh7 cells
(Supplementary Fig. 5d), while knockdown down of ZHX2 increased
the expression of ETC genes in human hepatic organoids (Fig. 5c).
Above all, these data imply that ZHX2 regulates expression of
ETC genes.

Since ZHX2 has been identified as a transcriptional factor, we
performed ChIP sequencing (ChIP-seq) with cell lysate of ZHX2-HA
overexpressing Huh7 cells (Supplementary Fig. 5e). KEGG analysis
showed that ZHX2-bound genes were enriched in OXPHOS pathway
(Fig. 5d), which was in agreement with RNA-seq data showing enrich-
ment of mitochondrial OXPHOS genes in Zhx2-KOhep mice livers
(Fig. 3a). To identify the direct target of ZHX2, we performed a cluster
analysis of sharing genes in OXPHOS pathway obtained from RNA-seq
data and ChIP-seq data. As shown in Fig. 5e, six ETC genes were
overlapped in both sequencing data, indicating that these genes are
the potential targets of ZHX2. Interestingly, ChIP-seq data showed that
these ETC genes contain a common ZHX2-binding motif (AGGCTGAG)
in their 5’ UTR. And, this potential ZHX2-binding motif also presented
at the promoters of previously reported ZHX2 targeted genes (Sup-
plementary Fig. 5f). In accordance, ChIP assays performedwith anti-HA
confirmed the occupancy of ZHX2 in the promoter regions of four ETC
genes in Huh7 cells (Fig. 5f). Co-transfection and dual luciferase assays
showed thatZHX2overexpression inHuh7 cellsmarkedly inhibited the
promoter activities of NDUFB9, SHDA, COX7C and UQCRC1, which
contain the ZHX2-binding motif (Supplementary Fig. 5g). Further-
more, when three repeated putative ZHX2-bindingmotifs were cloned
into a luciferase reporter vector, results of dual luciferase assays
demonstrated that ZHX2 overexpression decreased the luciferase
activity in a dose-dependentmanner (Fig. 5g). The interaction of ZHX2
with this motif was further illustrated by EMSA and pull-down assays
using biotin-labeled ZHX2-binding motif as a probe. As shown in
Fig. 5h, an increased gel shift was observed in ZHX2-overexpressing
Huh7 cells (lane 3) as referred to that of control (lane 2). The shift was

weakened by non-labeled probes as specific competitor in a dose-
dependent way (lanes 4 and 5). Further pull-down assay confirmed the
interaction of ZHX2 with the biotin-labeled motif (Supplementary
Fig. 5h). Hence, these observations support that ZHX2 binds to the
promoter region of these ETC genes for repression.

ZHX2 represses PGC-1α through FBXW7
Mitochondrial OXPHOS is controlled by nuclear- and mitochondrial-
encoded proteins36. Since only a small subset of ETC genes contain
ZHX2-binding motif, we therefore asked whether ZHX2 regulates
mitochondrial OXPHOS activity through other intermediates. To
address this, we screened the well-defined mitochondrial regulators,
including PGC-1α, nuclear respiratory factor 1/2 (NRF1/2), and TFAM in
RNA-seq data obtained from Zhx2-KOhep and Zhx2-WT livers after 2/3
PHx. Gene co-expression network analysis showed these factors in the
central node of the ETC gene network (Supplementary Fig. 6a), in line
with the critical roles of PGC-1α, NRF1/2 and TFAM in regulating
mitochondrial functions37–39. Although ZHX2 had no significant effects
on mRNA levels of NRF1, TFAM and PGC-1α (Supplementary Fig. 6b),
ZHX2 overexpression largely decreased PGC-1α protein levels in Huh7
cells (Supplementary Fig. 6c). On the contrary, knockdown of endo-
genous ZHX2 increased PGC-1α protein levels in Huh7 cells (Supple-
mentary Fig. 6d). Similarly, overexpression of ZHX2 decreased while
knockdown of ZHX2 enhanced PGC-1α protein levels in HepG2 cells
(Supplementary Fig. 6d). Importantly, liver-specific knockout of Zhx2
enhanced PGC-1α protein levels in murine liver tissues (Fig. 6a). Simi-
larly, ZHX2 knockdown increased PGC-1α protein levels in human liver
organoids (Fig. 6b). All the data imply that ZHX2 regulates PGC-1α at
the protein level.

To determine how ZHX2 reduces PGC-1α protein levels, stability
of PGC-1α was monitored in Huh7 cells. ZHX2 overexpression
decreased the half-life of PGC-1α (Fig. 6c). Treatment with the pro-
teasome inhibitor MG132 but not the lysosome inhibitor CQ blocked
PGC-1α reduction caused by ZHX2 overexpression in Huh7 cells
(Fig. 6d), indicating that ZHX2 promotes proteasome-dependent
degradation of PGC-1α. Consistently, results of in vitro ubiquitination
assays showed that ZHX2 overexpression increased ubiquitination of
PGC-1α in Huh7 cells in a ZHX2 level-dependent manner (Fig. 6e).
Furthermore, GSEA analyses of RNA-Seq data revealed the enrichment
of protein degradation genes sets in Zhx2-KOhep mice (Supplementary
Fig. 6e). Heatmap showed the top E3 genes that were decreased in
Zhx2-KOhep mice at 48 h after 2/3 PHx (Fig. 6f). Among them, FBXW7 is
a reported E3 ligase targeting PGC-1α40. First, ZHX2-mediated down-
regulation of FBXW7 was validated at mRNA level in mice livers
(Fig. 6g). Consistently, ZHX2 overexpression increased FBXW7 and
ZHX2 knockout decreased FBXW7 atmRNA and protein levels in Huh7
and HepG2 cells (Supplementary Fig. 6f, g). Moreover, ZHX2 not only
suppressed FBXW7 promoter activity but also occupied the FBXW7
promoter region (Supplementary Fig. 6h–j). Importantly, in vitro ubi-
quitination assay demonstrated that FBXW7 knockdown abolished the
increased ubiquitination of PGC-1α caused by ZHX2 overexpression
(Fig. 6h). These findings demonstrate that ZHX2 promotes PGC-1α
degradation via FBXW7.

Zhx2 suppressesOXPHOSand liver recoveryby reducingPGC-1α
To determine whether ZHX2 inhibits mitochondrial OXPHOS via PGC-
1α, a series ofmitochondrial functional assayswere performed inHuh7
cells with PGC-1α interventions. The efficiency of ZHX2 and PGC-1α
overexpression and/or knockdown were verified by western blot,
respectively (Supplementary Fig. 7a). As shown in Fig. 7a, b and Sup-
plementary Fig. 7b, ZHX2 overexpression led to reduced mitochon-
drial mass and activity in Huh7 cells, and these reductions were
reversed by PGC-1α overexpression, as evidenced by disrupted
decreases in mtDNA content, mitochondrial mass, and mitochondrial
membrane potential. Consistently, both seahorse assay (Fig. 7c) and
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Oxygraph-2k test (Supplementary Fig. 7c) demonstrated that ZHX2
reduced respiratory capacity of Huh7 cells, while PGC-1α co-transfec-
tion disrupted those differences. Reciprocally, ZHX2 knockdown
increased the respiratory capacity of Huh7 cells, and this enhancement
was greatly blocked by PGC-1α silence (Supplementary Fig. 7d). Also,
ZHX2 knockdown elevated the mRNA levels of OXPHOS genes
(NDUFA6, CYCS, ATP5G1 and ATP5G3), which were abolished by PGC-1α
silencing (Fig. 7d). Collectively, all above results reveal that ZHX2
regulates mitochondrial OXPHOS via PGC-1α.

To determine the role of PGC-1α in ZHX2-inhibited liver repair
after acute damage, Zhx2-WT and Zhx2-KOhep mice were pretreated
with PGC-1α inhibitor (SR18292), and were then subjected to 2/3 PHx
(Fig. 7e). As shown in Fig. 7f, SR18292 administration almost com-
pletely abolished the difference of liver/body weight ratio between
Zhx2-WT and Zhx2-KOhep mice. Consistently, SR18292 eliminated the
Zhx2 deficiency-induced increases in PCNA, Cyclin A2, Cyclin D1 pro-
teins and the number of BrdU-positive cells inmice at 36 and 48 h after
2/3 PHx (Fig. 7g, h). In line with the evidence showing that ZHX2
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suppressed OXPHOS during liver recovery, SR18292 treatment ame-
liorated the differences in ATP and AMP levels, and ATP/AMP ratios in
Zhx2-KOhep and Zhx2-WT mice (Fig. 7i and Supplementary Fig. 7e).
Above data Zhx2-KO accelerates damaged liver repair in PGC-1α-
dependent manner.

ZHX2 correlates with mitochondrial mass in DILI
To investigate whether ZHX2 is associated with susceptibility to liver
toxicity and mitochondrial dysfunction in human, expression of ZHX2
andTOM20, awidely usedmitochondrialmassmarker,were examined
by multiplexed immunofluorescence staining in liver biopsies from
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DILI patients, normal non-tumor sections from patients with hepatic
hemangioma as normal control (Fig. 8a and Supplementary Table 1). In
line with studies reporting drug-inducedmitochondrial dysfunction in
DILI4,41, we detected decreased TOM20 in liver tissues from DILI
patients (Fig. 8a–c). Notably, ZHX2 protein levels (fluorescence
intensity) were higher in liver tissues from DILI patients than that of
normal tissues, although ZHX2-positive cells were not significantly
different in different groups (Fig. 8a, b). Furthermore, DILI patients

were classified into two groups based on their pathological
characters4. Interestingly, ZHX2 levels were higher and TOM20 levels
were lower in liver tissues from patients with severe DILI than those
with mild DILI (Fig. 8a–c). It is worth noting that ZHX2 expression was
negatively associated with TOM20 intensity in liver biopsies from DILI
patients (Fig. 8d), indicating that ZHX2 was negatively associated with
mitochondrial mass. Similar results were obtained by staining mito-
chondria with another marker COX IV (Supplementary Fig. 7f). These
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data reveal a negative correlation between hepatic ZHX2 expression
and drug-induced hepatic mitochondrial mass in human liver injury.

The elevated ZHX2 in livers with DILI suggests ZHX2 as a ther-
apeutic target. To evaluate the potential application of silencing ZHX2
in the repair of acutely damaged liver, we mimicked DILI by exposing
mice to CCl4. Mice were injected with pSilencer-shZhx2 and control
vectors before CCl4 exposure. Western blot confirmed the successful
silence of hepatic Zhx2 mediated by shZhx2 injection (Fig. 8e). H&E
results showed that the injured area ofmice liverswas obviously less in
mice treated with shZhx2 than that of control mice (Fig. 8f). Con-
sistently, the numbers of Ki67-positive cells were higher and the
numbers of TUNEL-positive cells were lower in mice liver with Zhx2
knockdown (Fig. 8g, h). Furthermore, the recovery of liver function
was accelerated, displaying as the levels of serum ALT, AST, ALP, TBL,
TBA andGGTwereall significantly lower in Zhx2-knockdownmice than
that of control mice (Fig. 8i). Above all, ZHX2 silencing contributes to
augmented repair of mice liver after CCl4-induced acute injury.

Discussion
Acute liver injury, characterized by a rapid loss of functional
hepatocytes, severely threatens human health. If not treated
promptly, it can easily lead to liver failure, a lethal outcome that
currently lacks effective treatment, within days or weeks42,43.
Mitochondria provide energy for rapid proliferation of
hepatocyte3. Therefore, identifying mitochondrial regulators and
deep understanding their regulation onmitochondriamay pave the
way for the future development of therapeutic strategies in liver
injury. Here, we found that Zhx2 loss in hepatocytes led to
enhanced mitochondrial OXPHOS via PGC-1α dependent and
independent manners, which contributes to accelerated repair of
acute injured liver. Importantly, ZHX2 expression is negatively
associated with mitochondrial marker TOM20 and COX IV in liver
tissues from DILI patients. Previous research found that ZHX2
carried out its transcriptional activity upon reaching certain
threshold44. Therefore, strategies aiming to manipulate ZHX2 may
be a helpful strategy to enhance injured liver repair.

ZHX2 was first identified as a ubiquitous transcription factor (TF)
interacting with NF-YA45, and later studies have demonstrated the
important roles of ZHX2 in different biological processes, including
development,metabolism, and cancer24,46,47. Interestingly, ZHX2works
as a tumor suppressor in liver cancer and thyroid cancer24,48, but
functions as an oncogene in clear cell renal cell carcinoma (ccRCC)49,
which strongly suggests that ZHX2 takes effects in a context-
dependent manner. Here, we clarified ZHX2 as a mitochondrial nega-
tive regulator in acute injured liver. Using in vitro, ex-in vivo and in vivo
models, our data demonstrated that overexpression of ZHX2 reduced
mitochondrial mass, membrane potential, OXPHOS. Reciprocally,
knockdown or knockout ZHX2 increased mitochondrial activity dis-
playing as above maintained parameters. Consistently, our previous
work showed loss of Zhx2 enhanced lipid accumulation to promote
NAFLD progression and increased mitochondria-mediated lipid oxi-
dation to provide ATP for rapid hepatocytes proliferation during
NAFLD-HCC transition27. Recently, Zhao et al. reported that deletion of

Zhx2 augments NASH progression by enhancing PTEN-mTOR-
dependent lipogenesis29. Since mitochondrial alterations play an
important role in fatty liver dieases7, ZHX2-mediated OXPHOS reg-
ulation might also involve in NASH progression. However, mitochon-
drial oxidative capacity varies broadly across the spectrum of obesity
and NAFLD7, and the role of mitochondrial in NASH progression is
controversial. For instance, improving mitochondrial fatty acid oxi-
dation can prevent nonalcoholic steatohepatitis progression50. On the
contrary, hepatocyte-specific deletion of AIF indicated that the loss of
mitochondrial OXPHOS protected against diet-induced steatosis and
NASH progression10. Therefore, mitochondrial dysfunction in humans
is manifest as a variety of disorders with clinical outcomes largely
dependent on the magnitude and tissue distribution of the
impairment51,52. Therefore, the role of ZHX2-mediated OXPHOS reg-
ulation in metabolic liver diseases requires further studies. Never-
theless, ZHX2 is identified as a negative mitochondrial regulator,
manipulation of which could be beneficial for therapy of acute liver
injuries.

Being a ubiquitous transcription factor, ZHX2 transcriptionally
represses expression of many genes, such as AFP, GPC3 and H1922,25.
Importantly, ZHX2 had been reported to transcriptionally repress
expression of Cyclin A and E24, the well-known cell cycle regulators
during liver regeneration. However, ZHX2-binding element on its tar-
get gene promoter is still unclear. Here, by integrated analyses of RNA-
seq and ChIP-seq data, we identified a putative ZHX2-interacting
consensus motif, which is in the 5’-UTR of some ETC genes. Both
luciferase activity and ChIP-qPCR assays demonstrated that ZHX2
occupies on ETC gene promoters via this consensus motif, leading to
transcriptional repression. Notably, EMSA and pull-down assays con-
firmed that ZHX2binds to the biotin-labeled consensusmotif. Previous
reports showed that ZHX2 interacts with NF-YA or RelA/p65 to repress
or promote gene expression45,49. To the best of our knowledge, the
presentwork is identifying the direct bindingmotif of ZHX2. It is worth
noting that the putative ZHX2-binding motif is also located in the
previously reported ZHX2 target genes, such as Cyclin E and KDM2A,
which are involved in liver cancer progression24,53. Thesefindings could
shed light on the research about the function of ZHX2 in genes
transactional regulation.

Another mechanism by which ZHX2 represses OXPHOS is that
ZHX2 reduces PGC-1α protein levels by enhancing FBXW7 transcrip-
tional activation, thereby limiting mitochondrial biogenesis. PGC-1α is
dynamically regulated at the mRNA and protein levels in response to
various signaling pathways involved in cellular growth, differentiation,
and energy metabolism39,54. Previous report showed that PGC-1α is
rapidly and dramatically induced at transcriptional level after
hepatectomy55. However, its post-transcriptional regulation after
hepatectomy is still unclear. Here, using protein half-life and ubiqui-
tination assays, we demonstrated that ZHX2 regulates PGC-1α at pro-
tein levels. Importantly, FBXW7, an E3 ligase of PGC-1α, was
transcriptionally upregulated by ZHX240. Extensive body of literature
implicates that FBXW7 mediates ubiquitination and degradation of
c-Myc56,57, which participates in the “priming” of hepatocytes
after partial hepatectomy58. In addition, ZHX2 promotes PTEN

Fig. 7 | Loss of ZHX2promotesmitochondrialOXPHOSand liver repair via PGC-
1α. a, bMitochondrial mass was detected inHuh7 cells transfected with ZHX2 and/
or PGC-1α by measuring mtDNA copy number (a) and intensity of Mito Tracker
deep red (b). Data are presented as mean± sd (two-way ANOVA with Tukey’s test.
n = 3 biologically independent samples). c Oxygen consumption rates (OCR) in
ZHX2 and/or PGC-1α transfected Huh7 cells were evaluated by seahorse analyzer.
Representative data are presented as mean± sd (two-tailed Student’s t-test. n = 3
biologically independent samples. n.s. indicates the difference is not significant).
dThe expression of ETCgeneswere analyzed inHuh7 cells transfected siZHX2 and/
or siPGC-1α by RT-qPCR, respectively. Representative data are presented as

mean ± sd (one-way ANOVA with Tukey’s test. n = 3 biologically independent sam-
ples). e–i Zhx2-WT and Zhx2-KOhep mice were pretreated with PGC-1α inhibitor
SR18292or vehicle, followingwith 2/3PHx.Mice liverswerecollected at 36 and48h
after 2/3 PHx. Panel (e) shows theworkflow. Panel (f) displays the liver/bodyweight
ratios after 2/3 PHx (n = 4mice per group,mean± s.e.m.). Panel (g) presents protein
levels of cell proliferated genes. Panel (h) showsBrdU-positive cells. Representative
Images (left) and quantitative data (right) are shown. Scale bar: 50 μm. Data are
presented as mean ± s.e.m. (n = 4 mice per group). Panel (i) shows the ATP levels
and ATP/AMP ratios. Data are presented as mean ± s.e.m. (one-way ANOVA with
Tukey’s test. n = 3 mice per group).
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transactivation to inhibit mTOR signaling and suppresses LPL to block
exogenous lipids uptake29,46, which are also associated with mito-
chondrial activity. Thus, ZHX2 involves in the repair of acute liver
injuries through complex pathways and signals. Nevertheless, based
on our findings and previous reports, in Zhx2 knockdown or knockout
mice, PGC-1α-dependent mitochondrial OXPHOS is the most

significant changed pathways that contributes to accelerated liver
recovery after acute injuries.

In conclusion, our work identified ZHX2 as a regulator of mito-
chondria function that contributes to repair of injured livers. On one
hand, ZHX2 transcriptionally represses ETC gene expression by bind-
ing to consensus motif in their promoter. On the other hand, ZHX2
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destabilizes PGC-1α protein to reduce mitochondrial biogenesis and
OXPHOS. Thus, the present research has not only improved our
understanding of ZHX2 biological activities, but also provides a
potential strategy for treatment of acute liver injuries, such asDILI, and
liver resection.

Methods
Human samples
A total of 27 samples from patients with drug-induce liver injury (DILI)
were collected from Qilu Hospital of Shandong University (n = 12) and
Beijing Ditan Hospital Capital Medical University (n = 15). Drugs asso-
ciated with DILI are angiotensin-converting enzyme inhibitor (1/27,
3.7%), antidiabetic agents (2/27, 7.4%), anticonvulsant drugs (1/27,
3.7%), dietary supplements (3/27, 11.1%), Chinese herbal medicine (12/
27, 44.4%), antibiotics (1/27, 3.7%), acetaminophen (2/27, 7.4%), anti-
psychotic agents (1/27, 3.7%), antihistamines (1/27, 3.7%). There are
three patients whosemedication information is not available, but liver
histology provided information supporting the diagnosis of DILI. All
the samples were separated into three groups: hepatocellular injury,
cholestatic injury andmixed injury, according to types of liver damage.
Adjacent non-tumoral tissues from patients with hepatic hemangioma
in Qilu Hospital, Shandong University, were used as normal liver
samples (n = 4). Diagnosis of DILI was determined by three patholo-
gists from the above twohospitals. According to the grade of damaged
severity, sampleswere grouped intomild,moderate, severe and fatal59.
The detailed pathological information of these samples is described in
Supplementary Table 1. Histological analysis and genes expression
detection were presented in the following part. These studies were
approved by the Research Ethics Committees of Qilu Hospital, Shan-
dong University (KYLL-202209-033) and Beijing Ditan Hospital Capital
Medical University (2021-041-01). All patients gave informed consent
for all clinical investigations, according to the principles embodied in
the Declaration of Helsinki.

Mice
C57BL/6 mice (6–8 weeks of age) were purchased from GemPharma-
tech LLC. Albumin-Cre mice were obtained from Jackson Laboratory.
Zhx2 floxed mice were gifted by Prof. Brett T Spear from University of
Kentucky, hepatocyte-specific Zhx2 deficient mice (Zhx2-KOhep) were
generated by crossing Albumin-Cre and Zhx2 floxed mice60. Their lit-
termates without Albumin-Crewere defined as Zhx2-WTmice. Allmice
were maintained under specific pathogen-free conditions with a 12-h
light, 12-h dark cycle andgiven free access to food (Xiaoshuyoutai, AIN-
93M) and water at Shandong University Laboratory Animal Center.
Experiments were carried out under the Shandong University
Laboratory Animal Center’s approval. Animal Ethics Number:
ECSBMSSDU2018-1-031.

Partial hepatectomy and CCl4 injection
For the partial hepatectomy model, 8–12-week-old mice were ran-
domly anesthetized with 1% pentobarbital sodium. Then the left lat-
eral and median hepatic lobes were ligated and removed. After

closing the abdominal cavity, the sutured incision was sterilized with
betadine, and the mice were placed on a warming pad for regen-
eration. At the indicated time points, the mice were sacrificed, and
the mice livers were collected. The liver/body weight ratios were
calculated. Then, harvested liver tissues were either fixed in buffered
formalin or snap frozen in liquid nitrogen and stored at –80 °C
until use.

For CCl4-inducedmice liver injury, 8–12-week-old hepatic-specific
Zhx2 knockout and littermate control mice were treated with CCl4
(10% 10μL/g). Then the mice liver tissues were collected at 24, 48 and
72 h after CCL4 injection for assessment as above.

To evaluate whether Zhx2 silencing is effective to promote
recovery of drug-induced liver damage, 8–12-week-old C57BL/6 mice
were injected with pSilencer-shZhx2 (15μg) or control vectors via the
tail vein hydrodynamic injection, respectively. Five days later, themice
were treated with CCl4 (10% 10μL/g). Then themice were sacrificed at
24 and 48 h after CCl4 treatment. Liver tissues and blood serum were
collected to examine recovery of liver injury and function.

Quantitative real-time PCR (RT-qPCR)
Total RNA of cells, liver tissues and organoids were extracted using
TRIzol reagent (TIANGENBiotech, DP424) and reverse transcribed into
cDNA with RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher
Scientific, K1622). qPCRwas carried out using a BioRadC1000Thermal
Cycler CFX96 Real-Time System with ChamQ Universal SYBR qPCR
Master Mix (Vazyme Biotech, Q711). Primer for RT-qPCR, see Supple-
mentary Table 2.

Western blot
The total proteins of liver tissue from Zhx2-WT and Zhx2-KOhep mice
and Huh7 cells were collected in cell lysis buffer (Beyotime, P0013).
And protein extracts were quantified by BCA protein assay (Beyotime,
P0009). Equal of protein were loaded in SDS-polyacrylamide electro-
phoresis gel, transferred to Immobilon-P Membranes (Millipore,
IPVH00010) and incubated overnight at 4 °C with the following pri-
mary antibodies from Proteintech: anti-β-actin (66009-1-Ig, 1:5,000;
RRID:AB_2687938), anti-ZHX2 (20136-1-AP, 1:4,000; RRID:
AB_10666438), anti-PCNA (10205-2-ap, 1:4,000; RRID: AB_2160330),
anti-CyclinA2 (18202-1-AP,1:2,000; RRID: AB_10597084), anti-CyclinD1
(60186-1-Ig,1:2,000; RRID: AB_10597084), anti-NRF1 (12482-1-
AP,1:2,000; RRID: AB_2282876), anti-TFAM (22586-1-AP,1:2,000; RRID:
AB_11182588), anti-PGC-1α (66369-1-Ig,1:2,000; RRID: AB_2828002),
anti-NDUFB9 (15572-1-AP,1:1,000; RRID:AB_2267110), anti-COX7C
(11411-2-AP,1:1,000; RRID:AB_2085713), anti-SDHA (14865-1-
AP,1:2,000; RRID:AB_11182164), anti-UQCRC1 (21705-1-AP,1:2,000;
RRID:AB_10734437). CST: anti-Cyclin B1 (4138T,1:1,000), anti-Cyclin E1
(20808s,1:1,000; RRID: AB_2783554). Abcam: anti-FBXW7
(ab109617,1:1,000; RRID: AB_2687519). The membranes were washed
with PBST for 3 times and subsequently incubated with secondary
HRP-conjugated anti-mouse (Proteintech, SA00001-1, 1:5,000) or anti-
rabbit IgG secondary antibodies (Proteintech, SA00001-2, 1:5,000).
The signal was detected by enhanced chemiluminescence (ECL)

Fig. 8 | ZHX2 expression is increased in human DILI and silencing ZHX2
accelerates liver recovery inmicewithCCl4-induced injury. a–dHuman samples
from normal non-tumor sections of patients with hepatic hemangioma (Healthy)
(n = 4) and frompatientswith drug-induced liver injury (DILI) (n = 27) were used for
examination. a Representative H&E images and IF staining of ZHX2 and TOM20 of
DILI patients and healthy donors were displayed. Scale bar: 50 μm. b, c showed the
quantified data. Data are presented as mean± sd. Two-tailed Student’s t-test.
d Correlation analysis of fluorescence intensity of ZHX2 and TOM20 in DILI
patients. Right, representative images. Left, quantitative data. Scale bar: 20 μm.
Data are represented as mean ± s.e.m. Pearson’s correlation coefficients (r) and p
values (p) for two-sided correlation tests are shown. e–h C57BL/6 mice were

injected with Vector or pSilencer-shZhx2 via the tail vein hydrodynamic injection,
respectively. Five days later, the mice were used to induce liver injury by CCl4
injection. e Expression of ZHX2 in mice liver with or without Zhx2 knockdown was
determined by western blot. Representative images of H&E staining (f), Ki67-
positive cells (g) and TUNEL-positive cells (h) of liver sections at indicated time
points after CCl4 injection are displayed at left panel. The quantitative data are
presented on the right panel. f Scale bar: 100 μm. g, h Scale bar: 50 μm. Data are
represented as mean ± s.e.m. (two-tailed Student’s t-test. n = 4 mice per group).
iTheplasmaALT,AST,ALP, TNIL, TBA andGGT levelsweredeterminedat indicated
time points after CCl4 injection. Data are presented as mean ± s.e.m. (two-tailed
Student’s t-test. n = 4 mice per group).
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reagent (Millipore, WBULS0500) using the Tanon Bio-Imaging Sys-
tems (Tanon, 4600).

Cell lines, primary hepatocytes, human liver organoids
Huh7(SCSP-526), HepG2(SCSP-510) and HEK293T(SCSP-502) were
purchased from Shanghai Institute of Cell Biology (Chinese Academy
of Sciences, China) and cultured in DMEM (GIBCO, C11995500BT)
supplemented with 10% FBS (BI, 10270-106) at 37 °C. Metformin
(Sigma-Aldrich, D150959) and SR18292(MCE, HY-101491).

Primary hepatocytes were cultured in Williams’ Medium E
(Thermo Fisher Scientific, 22551089) supplemented with 5% FBS, 0.5%
penicillin/streptomycin (Solarbio, p1400) and 15mM HEPES (Thermo
Fisher Scientific,15630080) at 37 °C in a 5% CO2 incubator overnight
before use in experimentation.

Human liver organoids were cultured in the medium: AdDMEM/
F12 (Thermo Fisher Scientific, 12634028), 0.5% Penicillin-Streptomy-
cin, 1% GlutaMAX (Thermo Fisher Scientific, 35050061), 10 × 10−3 M
HEPES, 1% B27 minus vitamin A, 15% R-spodin1-conditioned medium,
3 × 10−6 M ChIR99021 (Sigma-Aldrich, SML1046), 10 × 10−3 M nicotina-
mide (Sigma-Aldrich, N0636), 50ngmL−1 EGF (Peprotech,100-47),
20 ngmL−1 TGF-α (Peprotech, 100-16A), 100 ngmL−1 FGF7 (Peprotech,
100-19), 50ngmL−1 HGF (Peprotech, 100-39H), 1 × 10−6 M dex-
amethasone (Sigma, D4902), 10 ngmL−1 OncostatinM (Sigma, O9635).

Plasmids
Polymerase chain reaction (PCR)-amplified human PGC-1α was cloned
into pcDNA3.0-Flag vector. ZHX2-expressing vectors ZHX2 and Tet-
On-ZHX2 have been described previously27. The pSilencer-ZHX2
expression plasmid was constructed and maintained in our labora-
tory. Lentivirus expressing shRNA against ZHX2 and the control len-
tivirus bought from GenePharma were included for in vitro. Promoter
regions of ETC genes were amplified using the specific primers and
cloned to pGL3-Promoter vectors (Promega, E1761) to construct the
luciferase report vectors, respectively.

Mouse experiments
For the metformin-administered 2/3 PHx mice model, the Zhx2-KOhep

and Zhx2-WT mice were intraperitoneally injected with metformin
(400mg/kg/day in PBS) and vehicle (PBS). Seventy-two hours later,
these mice were operated with liver resection. Then, the mice were
sacrificed to calculate liver/body weight ratios and collect liver tissues
at 36 and 48 h after 2/3 PHx.

For the FCCP-administrated 2/3 PHx mice model, the Zhx2-KOhep

and Zhx2-WTmicewere intraperitoneally injectedwith FCCP (2mg/kg/
day inDMSO) and vehicle (DMSO). Seventy-twohours later, thesemice
were operated with liver resection. Then, the mice were sacrificed to
calculate liver/body weight ratios and collect liver tissues at 36 and
48 h after 2/3 PHx.

For PGC-1α activity inhibited 2/3 PHx mice model, the Zhx2-KOhep

and Zhx2-WT mice were intraperitoneally injected with SR18292
(50mg/kg/day in 2% DMSO in PBS) and vehicle (2% DMSO in PBS).
Forty-eight hours later, 2/3 of these mice livers were surgically
removed. After 36 and 48 h, themice were sacrificed to calculate liver/
body weight ratios and collect liver tissues.

Histological analysis
Liver tissues were fixed with 4% paraformaldehyde for 24 h and
embedded in paraffin. The 4-μm paraffin sections were depar-
affinized in xylene and concentrations of ethanol (100–50%). The
sections were stained with standard hematoxylin and eosin (H&E)
procedure. A blinded observer was assigned to evaluate the histo-
pathological liver injury of mice livers. Histopathology of samples
from patients with DILI was determined by three pathologists from
Qilu Hospital of Shandong University and Beijing Ditan Hospital
Capital Medical University.

TUNEL assay and Ki67 staining
Terminal deoxynucleotidyl transferase-mediated deoxyuridine tri-
phosphate nick-end labeling (TUNEL) staining was performed on
paraffin-embedded tissue sections using the In Situ Cell Death Detec-
tion Kit, Fluorescein (Roche, 11684795910). TUNEL-positive areas were
quantified with ImageJ.

For anti-Ki67 staining, deparaffinized tissue sections were treated
with sodium citrate antigen retrieval solution (Solarbio, C1032) in a
microwave oven to retrieve antigen. Then, tissue sections were
blocked with 5% BSA (Solarbio, A8020) in PBS for 30min. Liver sec-
tions were incubated with polyclonal antibody against Ki67 (Abacm,
ab15580, 1:200) in PBS with 1% BSA overnight at 4 °C followed by
incubating for 1 h at room temperature with a biotinylated anti-rabbit
IgG secondary antibody (Dako, K5007). At last, the positive signal was
detected by using Diaminobenzidine (DAB) Histochemistry Kit (Dako,
K5007). The images were captured and digitalized using an Olympus
microscope attached to an Olympus digital camera.

Tissue immunofluorescence and multiplexed immuno-
fluorescence staining
The liver sections were deparaffinized by the same protocol as the
Ki67 staining. Briefly, the sections were incubated with 0.25% Triton-X-
100 in PBS for 10min at room temperature followed by incubating in a
blocking buffer (4%BSA, 2% serum inPBS) for 1 h at room temperature.
The sections were then incubated with diluted anti-BrdU (Abacm,
ab6326) in blocking buffer overnight at 4 °C. After washing in PBS, the
slides were further incubated with fluorescein-conjugated secondary
antibodies diluted in blocking buffer for 1 h at room temperature.
Finally, the sections were mounted with ProLong Diamond Antifade
Mountant with DAPI (Beyotime, C1002) to examine and capture ima-
ges on a Leica microscopy.

Multiplexed immunofluorescence staining of samples from
patients with DILI was performed using Opal Chemistry (AKOYA,
NEL861001KT) with antibodies. In brief, after deparaffinization, slides
were processed with microwave (4min 100% power, 15–20min 20%
power) in antigen retrieval buffer, and blocked with antibody diluent
for 10min at room temperature. Slides were incubated with the pri-
mary antibody for 30–60min, and subsequently incubated with HRP-
conjugated secondary antibody for 10min after removing the primary
antibody and washing in TBST buffer. Thereafter, slides were incu-
bated with Opal working buffer for 10min at room temperature and
then washed in TBST buffer. The above procedures were repeated for
other antibodies, and antibodies were removed by microwave treat-
ment (45 s 100% power, 15–20min 20% power) before another round
of stainingwas performed. Finally, we usedDAPI to highlight all nuclei.

Super-resolution structured illumination microscopy analysis
Cells were seeded in dishes with glass slides and incubated in DMEM
containing 10% FBS, then fixed in 4% paraformaldehyde (PFA)/PBS.
After that, cells were stained with TOM20 (Abclonal, A19403) at room
temperature for 2 h followed by washing in PBS. In the end, the slides
were further incubated with fluorescein-conjugated secondary anti-
bodies diluted in blocking buffer for 1 h and mounted with ProLong
Diamond Antifade Mountant with DAPI (Beyotime, C1002). Then
mitochondrialmorphologywas determined using Acquire SR software
on a DeltaVision OMX SR super-resolution imaging system (GE
Healthcare), and the images were further computationally recon-
structed and processed with Softworx (GE Healthcare). Images were
deconvolved and analyzed by using ImageJ.

Transmission electron microscopy
Cells were collected and fixed in a solution containing 2.5% glutar-
aldehyde in 0.1M sodium cacodylate for 2 h, fixed with 1% OsO4 for
1.5 h, and washed and stained in 3% aqueous uranyl acetate for 1 h. The
samples were then washed again, dehydrated with a graded alcohol
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series, and embedded in resin. Ultrathin sections were cut, counter-
stained with 0.3% lead citrate, and examined on a JEOL transmission
electron microscopy. Mitochondrial volume density was calculated as
previously described61.

Oxygen consumption rate (OCR) measurement
Huh7 cells were seeded at 1.5 × 105 cells per well into XF96-well plates.
Before measurement, cells were washed three times with XF-base
medium containing 2mM Glutamine (pH= 7.4 ± 0.05). Then, mito-
chondrial poisons (1.5μM oligomycin, 2μM FCCP, 0.5 μM rotenone,
and 0.5μM antimycin A) were added at the indicated time points.
Oxygen consumption rate were analyzed by Seahorse XFp Wave soft-
ware. In the end, cell lysis was harvested with western blot lysis buffer
and protein concentration was quantified using Pierce BCA Protein
Assay Kit (Thermo Fisher Scientific, 23225). OCR value was normalized
to the protein concentration in each well.

Extracellular oxygen consumption assay
Extracellular Oxygen Consumption Assay was measured using the
Oxygen Consumption Kit (Abacm, ab197243) according to the manu-
facturer’s protocol. Briefly, cells were seeded in a 96-well plate at a
density of 4 × 104 cells/well in 150 µL culturemedium.And Extracellular
Oxygen Consumption Reagent were added to wells. Data were deter-
mined by luminescence (PerkinElmer, Envision). Data were collected
from multiple replicate wells for each experiment and normalized to
protein concentration.

Oroboros 2K oxygraph assay
The mitochondrial respiratory function was assayed by measuring
oxygen consumption rates (OCRs). We used a real-time high-resolu-
tion respirometry (Oxygraph-2k; Oroboros Instruments, Innsbruck,
Austria) under a variety of substrate conditions and respiratory states
to examine differences in respiratory capacity, collect cells immedi-
ately loaded into an Oroboros 2K oxygraph chamber filled with Miro6
buffer equilibrated at 25 °C. In each of these protocols, Oxygen con-
sumption rates were measured before and after addition of the fol-
lowing sequence of substrates and specific inhibitors: (1) 5mM
pyruvate (Sigma-Aldrich, P4562), 2mM malate (Sigma-Aldrich,
M1000) in flies, followed by 2.5mM ADP (Sigma-Aldrich, 117105) to
determine complex I-driven phosphorylating respiration (CI
OXPHOS). (2) 10mM succinate (Sigma-Aldrich, S2378) to determine
the phosphorylating respiration driven by simultaneous activation of
complex I and II (CI+II OXPHOS). (3) Titrating concentrations of the
mitochondrial uncoupler 0.5μM CCCP (Sigma-Aldrich, C2759) to
reach the maximal, uncoupled respiration (CI+II electron transfer
system, ETS). (4) 0.5μM rotenone (Sigma-Aldrich, R8875) to fully
inhibit complex I-driven respiration and measure complex II-driven
uncoupled respiration (CII electron transfer system, CII ETS). (5)
2.5μM Antimycin A (Sigma-Aldrich, A8674) to block mitochondrial
respiration at the level of complex III. Residual oxygen consumption
was always negligible.

Luciferase reporter assay
Transcriptional regulation analyses were evaluated using a dual luci-
ferase reporter assay system (Promega, E1960), the ETCgenespromoter
regionswere cloned topGL3-basic vector, or three repeatedmotifswere
cloned to pGL3-promoter vector. Huh7 cells pre-cultured on 24-well
plates were transfected with a combination of ZHX2-expressing plas-
mid, luciferase reporter plasmid, and pRL-TK. The cells were lysed and
collected for analysis of firefly luciferase activity according to the man-
ufacturer’s protocol and normalized to Renilla luciferase activity.

Electrophoretic mobility shift (EMSA)
ZHX2 overexpressed and control Huh7 cells were cultured in 100mm
plates with DMEM containing 10% FBS for 48 h. The nuclear extracts

were prepared by using a Nuclear Extraction Kit (Beyotime, P0028).
The repeated motif (5’-AGGCTGAGAGGCTGAGAGGCTGAG-3’) were
labeled at 3’ (GENEWIZ) and annealed as the probes. Then, the nuclear
extracts and probes were incubated according to the protocol of Light
Shift Chemiluminescent EMSAkit (Beyotime, GS009). Inbrief, 20μL of
1 × EMSA/Gel-Shift buffer, 4μg of nuclear extracts, and 0.2μM of
labeled probes with or without 10μM of unlabeled competitor oligo-
nucleotides were applied and incubated at room temperature for
20min, respectively. ThenDNA-protein complexeswere loaded onto a
4% non-denaturing polyacrylamide gel for blotting.

Biotinylated pull-down assay
The repeated motif (5’-AGGCTGAGAGGCTGAGAGGCTGAG-3’) were
biotinylated at 5’ (GENEWIZ) and annealed as the probes. Then, nuclear
extracts, biotin-labeled probe, and streptavidin magnetic beads
(Thermo Fisher Scientific, 11205D) was incubated, spin column for 2 h
on a rocking platform. The spin-down beads were used to collect the
binding protein by boiling. The bound protein was loaded in SDS-
PAGE, and the signal was detected by enhanced chemiluminescence
(ECL) reagent (Millipore, IPVH00010) using the DNR Bio-Imaging
Systems. Unlabeled probes incubated with nuclear extracts and
streptavidin magnetic beads as negative control.

Immunoprecipitation and immunoblotting assay
The extraction of proteins was collected using a modified buffer
(Beyotime, P0013) from cultured cells and followed by immunopre-
cipitation and immunoblotting analyses using corresponding
antibodies62. For immunoprecipitation, one microgram of protein was
incubated with 2μg antibodies. After overnight incubation at 4 °C,
protein G-magnetic beads (Bimake, B23202) were added and incu-
bated for another 3 h. Then, the beads were washed by the lysis buffer
for four times. Immunocomplexes were analyzed by immunoblotting
assay with indicated antibodies.

Measurement of mtDNA content
Total DNA was extracted from indicated cells by using TIANGEN
Genomic DNA Purification Kit (TIANGEN, DP304) according to the
manufacturer’s instructions. To quantify mtDNA copy number, real-
time PCR was performed using a Real-Time PCR system from BioRad
C1000 Thermal Cycler CFX96 Real-Time System against the mito-
chondrial D-loop region orMT-ND1 as the standard formtDNA. Beta-2-
MicroglobuliN (B2M) was used as the nuclear gene (nDNA) normalizer
for the calculation of the mtDNA/nDNA ratio63,64. The relative mtDNA
content was calculated using the formula: mtDNA content = 1/2ΔCt,
where ΔCt =CtmtDNA-CtB2M.

ATP, AMP, ATP/AMP and ATP/ADP measurements
ATP and AMP levels, and ATP/AMP ratio were determined using the
ATP Determination Kit (Abacm, ab83355) and AMP Determination Kit
(Abacm, ab273275) according to the manufacturer’s protocol. Briefly,
cells were homogenized in lysis buffer supplemented with protease
and phosphatase inhibitors. The colorimetric intensity of 50μL lysis
was determined by microplate reader (TECAN). Then, the ATP/AMP
ratio was calculated using above measured ATP and AMP levels. ATP/
ADP ratio was assessed and calculated by an ADP/ATP Ratio Assay Kit
(Abcam, ab65313), 100μL prepared reaction mix was added in control
wells and the background luminescence was read, then 50μL sample
was added and after 2min the luminescence was read.

Flow cytometry (FCM) analysis
Cells were incubated with 1μM Mito Tracker deep Red FM probe
(Thermo Fisher Scientific, M22426), 2μM MitoProbe™ JC-1(Thermo
Fisher Scientific, M34152) or 20μM MitoProbe™ TMRM (Thermo
Fisher Scientific, M20036) at 37 °C for 30min, respectively. After
staining was completed, the cells were gently washed three times with
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warm PBS, and detached to a single-cell suspension. Analyze the
samples by flow cytometry using CytoFLEX S flow cytometer
(Beckman).

Chromatin immunoprecipitation (ChIP) and ChIP-qPCR
Huh7 cells were transfected with ZHX2-HA, and harvested for ChIP
assay by using the EZ-Magna ChIP™ A/G Chromatin Immunoprecipi-
tation Kit (Millipore, 17-10086) according to the manufacturer’s
instructions. Briefly, cells were fixed to extract total DNA. And the DNA
was sonicated to 200~1000bp followed by incubatingwith antibodies,
anti-HA antibody (MBL, M180-3) and rabbit IgG (Santa Cruz, sc-2027).
As input, 1/100th of the starting chromatin was used to extract DNA.
Specific primers were used for conventional PCR and qPCR for further
analysis. Primer for qPCR, see Supplementary Table 1.

ChIP sequencing (ChIP-seq)
Huh7 cells were transfectedwith ZHX2-HA, and harvested by using the
EZ-Magna ChIP™ A/G Chromatin Immunoprecipitation Kit. DNA
sequencing was carried out by Novogene following their standard
protocols. TheChIP-seqdata in this publicationhavebeendeposited in
the National Center for Biotechnology Information Sequence Read
Archive and are accessible through accession PRJNA798889.

RNA sequencing and proteomics sequencing
Liver tissue fromZhx2-WT and Zhx2-KOhepmice after 48 h 2/3 PHxwere
harvested. RNA sequencing and proteomics sequencing were carried
out by The Beijing Genomics Institute (BGI) following their standard
protocols. Libraries were sequenced on the BGISEQ-500 platform. The
RNA-seq data in this publication have been deposited in the National
Center for Biotechnology Information Sequence Read Archive and are
accessible through accession PRJNA754419. The iTRAQ proteomics
data havebeendeposited to the ProteomeXchangeConsortiumvia the
PRIDE partner repository with the dataset identifier PXD027897.

Gene expression studies
Gene expression data were obtained fromGEO omnibus (https://www.
ncbi.nlm.nih.gov/geo/), including liver regeneration (GSE63742),
nonalcoholic fatty liver disease (NAFLD) (GSE49541) and liver failure
(GSE168049). Gene expression of liver hepatocellular carcinoma data
was downloaded from Cbioportal (https://www.cbioportal.org/).
These data were used to analyze the correlation of ZHX2 with ETC
genes. Peak browsing and representative snapshots capturing were
performed using the Integrative Genomics Viewer (IGV; IGV2.4.10,
Broad Institute).

Protein half-life assay
After transfection, 500μg/mL cycloheximide (Selleck, S7418) was
added into themedium to stopprotein synthesis andmaintained for 0,
1, 2, 3, 4 and 5 h, respectively. Cell lysis was collected to analyze the
protein levels of PGC-1α by western blot. Quantification of expression
of PGC-1α protein was normalized to β-actin under different time
points by ImageJ software.

Ubiquitination analysis
Huh7 cells were co-transfected with indicated plasmids. After 24 h,
cells were added with 10μM MG132 (Sigma-Aldrich, M7449) for 6 h,
then were collected for western blot. Ub antibody was used to deter-
mine the ubiquitination of PGC-1α.

Primary hepatocyte isolation
Primary hepatocytes were isolated from8-week-oldmice by a two-step
collagenase perfusion method. HBSS (Thermo Fisher Scientific,
14175095) was used to perfuse the liver at 10mL/min speed until the
liver turned pale. Afterward, the liver was perfused with HBSS diges-
tion buffer (30mg/100mL collagenase IV (Worthington, LS004189), 2

tablet/100mL protease inhibitor) at 15mL/min speed for 18min. After
sequential flows, cells were smashed through 100μm strainer and
washed withWilliams’Medium E (Thermo Fisher Scientific, 22551089).
Hepatocytes were isolated by density gradient centrifugation using
percoll (Pharmacia, Sweden). Primary hepatocytes were cultured for
the following experiments.

Liver organoid culture and lentivirus infection
Human liver organoids were established from single cells from
colleganse-digested liver biopsies and cultured in the organoid culture
medium. Organoids at passage 8 were removed from Matrigel (Bio-
Techne, BME001) and digestedwith trypsin into single cells. Cells were
resuspended in 1mL of lentivirus solution with 2μg/mL Polybrene
(GeneChem, REVG0001) and subsequently plated in 24-well wells with
centrifugation at 500 g for 1 h at room temperature. Then organoid
cells were incubated at 37 °C for 4 h and reseeded in the mixture of
Matrigel and culture medium. RNA, DNA and proteins were collected
from organoids 48 h after infection.

Statistical analysis
Flow cytometry data was analyzed using FlowJo software. Statistical
analysis was carried out with GraphPad Prism 8 software. N represents
the number ofmice per group used in each experiment, the number of
biologically independent experiments performed with cells unless
specified otherwise. For single comparisons, the statistical significance
was analyzed using Student’s t-test. Formultiplemeans of comparison,
a two-way analysis of variance coupled with Tukey was performed.
Data analysis. p value of less than 0.05 was considered statistically
significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The RNA-seq data generated in this study have been deposited in the
National Center for Biotechnology Information Sequence Read
Archive and are accessible through accession PRJNA754419 and the
ChIP-seq data generated in this study have been deposited in the
National Center for Biotechnology Information Sequence Read
Archive and are accessible through accession PRJNA798889. The
proteomics data have been deposited to the ProteomeXchange Con-
sortium via the PRIDE partner repository with the dataset identifier
PXD027897. All other data supporting the findings of this study are
available within the article and its supplementary information files or
from the corresponding author upon reasonable request. Source Data
are provided with this paper.
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