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Transcriptome-wide association analyses
reveal the impact of regulatory variants on
rice panicle architecture and causal gene
regulatory networks

Luchang Ming 1,6, Debao Fu1,6, Zhaona Wu1, Hu Zhao1, Xingbing Xu1,
Tingting Xu1, Xiaohu Xiong1, Mu Li1, Yi Zheng1, Ge Li1, Ling Yang1, Chunjiao Xia1,
Rongfang Zhou1, Keyan Liao1, Qian Yu1, Wenqi Chai1, Sijia Li1, Yinmeng Liu1,
XiaokunWu1, JianquanMao1, JulongWei2, Xu Li1, Lei Wang1, ChangyinWu 1 &
Weibo Xie 1,3,4,5

Panicle architecture is a key determinant of rice grain yield and is mainly
determined at the 1-2 mm young panicle stage. Here, we investigated the
transcriptome of the 1-2 mm young panicles from 275 rice varieties and
identified thousands of genes whose expression levels were associated with
panicle traits. Multimodel association studies suggested that many small-
effect genetic loci determine spikelet per panicle (SPP) by regulating the
expression of genes associated with panicle traits. We found that alleles at
cis-expression quantitative trait loci of SPP-associated genes underwent
positive selection, with a strong preference for alleles increasing SPP. We
further developed amethod that integrates the associations of cis- and trans-
expression components of genes with traits to identify causal genes at even
small-effect loci and construct regulatory networks. We identified 36 puta-
tive causal genes of SPP, including SDT (MIR156j) andOsMADS17, and inferred
that OsMADS17 regulates SDT expression, which was experimentally vali-
dated. Our study reveals the impact of regulatory variants on rice panicle
architecture and provides new insights into the gene regulatory networks of
panicle traits.

Rice (Oryza sativa) is an important food crop that feeds billions of
people worldwide. Panicle architecture is a key factor in determining
rice grain yield, therefore identifying genes involved in panicle devel-
opment, exploring their natural variation, and understanding their

regulatory mechanisms are essential for breeding high-yielding rice
varieties1. Based on mutant analyses or bi-parental populations, sci-
entists have cloned several genes involved in panicle development,
such asOSH12, LAX13,Gn1a4,OsSPL145,6,DEP17, and FZP8. However, their
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regulatory networks are not fully understood, and for most of them,
the favorable alleles remain unexplored9. In recent years, genome-wide
association studies (GWAS) have been widely used in plants to explore
the abundant natural variations, andGWAS for panicle traits have been
reported in rice10–13. However, only a few genes under quantitative trait
loci (QTLs) have been identified by GWAS as the large linkage dis-
equilibrium (LD) decaydistanceof the ricegenomeand the complexity
of the genetic basis of panicle traits. Therefore, it is necessary to utilize
advanced genomic technologies and develop appropriatemethods for
a more comprehensive and effective understanding of the regulatory
mechanisms of rice panicle traits.

Gene expression variation regulated by non-coding cis-variants or
variations of trans-factors is a significant contributor to phenotypic
diversity amongvarieties14,15. In rice, several genes suchasGn1a4, IPA116,
and FZP17 have been reported to have cis-variants that regulate gene
transcription, leading to variation in panicle architecture. In humans,
the Genotype-Tissue Expression (GTEx) project collects and analyzes
transcriptome data of multiple tissues from different individuals,
demonstrating the effectiveness of population transcriptome data in
identifying genetic variations that can explain differences in gene
expression among individuals, known as expression quantitative trait
loci (eQTLs). Currently, we are running aRiceGTExproject that aims to
build a comprehensive resource to study tissue-specific gene expres-
sion and regulation in rice. This will help identify causal genes and
understand the molecular processes through which genetic variations
affect agronomic traits.

This study is part of the Rice GTEx project and focuses on devel-
oping analysis strategies appropriate for crops and understanding gene
regulation related to rice panicle traits. In this study,we collected young
panicle samples and conducted a transcriptomic study on 275 repre-
sentative rice varieties (Fig. 1). We identified thousands of genes whose
expression levels are associatedwithpanicle traits.Weexplored the role
of selection on gene expression. We further developed a methodmore
appropriate for crop studies to identify causal genes at even small-effect
GWAS loci and to construct regulatory networks. Finally, we demon-
strated the effectiveness of this method by validating OsMADS17 as a
causal gene that affects the number of spikelets per panicle (SPP) and
regulates the expression of another causal gene, SDT. Our study pro-
vides a valuable resource for understanding the regulatorymechanisms
of rice panicle traits and potential targets for molecular breeding.

Results
Genome-wide association studies reveal the complex genetic
structure of panicle traits
We conducted four field experiments across geographic regions and
years using a population of 529 representative rice varieties18 and
collected panicle traits including SPP, number of primary branches
(NPB), andpanicle length (PL) (SupplementaryData 1).We assessed the
consistency of the panicle traits and found that these traits were highly
consistent across locations and years, with Pearson’s correlation
coefficients (PCC) ranging from 0.45 to 0.85 (Supplementary
Fig. 1a–d). To yield more robust association results, we used the best
linear unbiased prediction (BLUP) model to combine phenotypes of
the four experiments, and then performedGWAS on the BLUP value of
panicle traits of 529 varieties. At a genome-wide significance threshold
of 2.54 × 10−8, only one, three, and eight significant QTLs were identi-
fied for SPP, NPB, and PL, respectively (Fig. 2a–c). However, there are
many apparent peaks at the threshold of 10-5 (Supplementary Data 2).
This is similar to the GWAS results of SPP in a previous study using this
population12, or studies using 950 rice varieties11 or 1495 hybrid rice
varieties19; that is, there are only a few genome-wide significant loci,
but there are more obvious peaks below the threshold line.

We estimated the heritability of the three traits based on genetic
variants using GCTA20 and found that all three traits had high herit-
ability (0.852, 0.820, and0.858 for SPP, NPB, andPL, respectively). This
result, combined with the results of association analysis of SPP and
NPB (lack of significant major effect loci but many peaks below the
significance threshold), suggests that SPP and NPB may be more
regulated by small-effect loci. To confirm this speculation, we used
LASSO21 to estimate the phenotypic variances explained by GWAS loci
identified at different thresholds (“Methods”). We found that the var-
iances of SPP and NPB explained by GWAS loci were relatively small at
the threshold of 10−7 (estimated by 10-fold cross-validation R2 between
the predicted and the observed phenotypes, hereafter R2

cv; 0.205,
0.161, and 0.419 for SPP, NPB, and PL, respectively; Fig. 2d–f). As the
GWAS threshold relaxed, the explained variances of SPP and NPB
increased (0.880, 0.876, and 0.868 for SPP, NPB, and PL, respectively,
at the threshold of 10−3). Further permutation tests confirmed that the
phenotypic variances explained by the small-effect loci of GWAS were
significant (Supplementary Fig. 2). We also performed GWAS on 275
varieties for which transcriptome data were acquired and obtained

Fig. 1 | Overview of the study.
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similar results (Supplementary Figs. 3 and 4). These results suggested
that variations in SPP and NPB in rice varieties are mainly regulated by
numerous small-effect loci.

Transcriptome-wide association studies reveal key genes
associated with panicle traits
To further explore the regulatory mechanisms of panicle traits and
characterize the variability of the transcriptomes in young panicles of
different varieties, we generated the transcriptome data for 275 rice
varieties with 1–2mm young panicles at the branch primordia differ-
entiation stage (SupplementaryData 3), which determines theNPB and
further affects the number of SPP22. Consistent differences at RNA
levels and genomic levels were observed among the varieties (Sup-
plementary Fig. 5a–e), indicating that the variability of the tran-
scriptomes aremainly caused by genetic variability and also indicating
the high quality of our data. A total of 30,869 genes (including
microRNA genes) were considered as expressed and used for further
analysis (“Methods”).

We carried out transcriptome-wide association studies (TWASs)
by associating the expression values of each expressed gene in the
population with panicle traits. At a false discovery rate (FDR) of 0.05,
4175, 5844, and 6839 significantly associated genesweredetected for
SPP, NPB, and PL, respectively (Supplementary Data 4–6). Of the 20
genes most significantly associated with SPP, 10 are transcription
factors, including two YABBY transcription factors and six
MADS transcription factors (Supplementary Data 4). Of these, OsSh1
ranked first (p value = 7.31 × 10−14) and is a YABBY transcription factor
reported to control seed shattering and undergo parallel selection
during domestication in multiple cereals23. Another YABBY is
OsYABBY1 (p value = 1.76 × 10−10, rank = 17) which is specifically

expressed in the palea and lemma from their inception and controls
spikelets development24. The six MADS transcription factors
include OsMADS1 (p value = 6.85 × 10−12, rank = 8), OsMADS7
(p value = 2.32 × 10−11, rank = 12), OsMADS8 (p value = 5.88 × 10−12,
rank = 6), OsMADS3 (p value = 1.49 × 10−12, rank = 4), and two
AGAMOUS-LIKE6 genes (OsMADS6, p value = 1.51 × 10−10, rank = 16;
OsMADS17, p value = 1.77 × 10−10, rank = 18). These MADS genes have
been found to be important in controlling spikelet initiation and
spikelet organ development25–31. Our results show that the expression
of these genes is negatively correlated with SPP, which is also con-
sistent with the view that inhibiting the transformation of spikelets
prolongs the development time of branches and increases SPP32.
These results indicate the important value of our data in uncovering
the regulatory direction of genes for panicle traits.

We further surveyed the known panicle development-
related genes among the top 500 most significantly associated
genes and found OsSPL14 (p value = 4.06 × 10−8, rank = 87), OSH1
(p value = 8.59 × 10−8, rank = 104), OsPID (p value = 7.26 × 10−6, rank =
405), and PLA1 (p value = 5.38 × 10−7, rank = 184) were in the list (Fig. 3a
and Supplementary Fig. 6a, b). The ideal plant architecture gene IPA1,
which encodes OsSPL14, has been found to have a larger panicle size
and increased SPP under high expression conditions6,16. We found that
the expression level of IPA1 was positively correlated with SPP. IPA1 is
under the regulation of miR156 and miR529, so the up-regulation of
miR156 and miR529 inhibits the function of IPA1, which causes the
panicle to be smaller33. Our results are consistent with this, where the
expression levels of SDT34 (MIR156j) and MIR529a are negatively asso-
ciated with IPA1 (PCC = −0.32 and −0.42 for MIR156j and MIR529a,
respectively) and SPP (p value = 5.72 × 10−7 and 1.50× 10−12, rank = 185
and 5 for MIR156j and MIR529a, respectively). In addition, we also

Fig. 2 | GWAS andgenetic variance compositionofpanicle traits. a–cManhattan
plots of GWAS using linear mixed model for the number of spikelets per panicle
(SPP), the number of primary branches (NPB), and panicle length (PL). The red
dashed lines indicate the genome-wide significance threshold (2.54 × 10−8, multiple
comparisons corrected by 0.05/No. independent variants), and the red points
indicate lead variants of genome-wide significant QTLs. Genes that have been

reported to be related to panicle architecturewithin 100kbof significant loci at the
1 × 10−5 threshold aremarked out. d–f The phenotypic variance explained by GWAS
lead variants identified at different p value thresholds for SPP, NPB, and PL. The
explained phenotypic variances are assessed by tenfold cross-validation using
LASSO. R2: predicted values versus observed phenotypes.
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identified other miRNAs associated with panicle traits, such as
miR39635 (p value = 1.61 × 10−6, rank = 258 for SPP) and miR17233 (p
value = 6.07 × 10−5, rank = 1092 for NPB) which have been reported to
play an important role in panicle development.

We characterized the genes significantly associated with panicle
traits. We found that the positively associated genes (PAGs) of SPP
enriched for genes that were preferentially expressed in young
panicles (p value = 2.39 × 10−4) and genes that were progressively
down-regulated in panicle development (p value = 3.31 × 10−4),
while the negatively associated genes (NAGs) enriched for genes
that were progressively up-regulated in panicle development
(p value = 6.06 × 10−4, Fig. 3b, Supplementary Fig. 6e and Supplemen-
tary Data 7). GO enrichment analysis showed that NAGs of SPP were
enriched for functions such as flower development, meristem struc-
tural organization, and meristem determinacy, as well as for tran-
scriptional regulation, DNA methylation, histone methylation, and
miRNA production (Fig. 3e and Supplementary Data 8). These results
suggest that TWAS detected a large number of regulatory factors that
may be important for SPP and that the NAGs play a vital role during
panicle development. To further confirm that TWAS significant genes
contain many regulatory factors, we performed Gene Set Enrichment
Analysis (GSEA)36. We found that the NAGs of SPP were significantly
enriched for epigenetic factors and transcription factors (Fig. 3b and
Supplementary Data 7). Specifically, PAGs were enriched for tran-
scription factors from families such as B3, SBP, and NF-YA, and NAGs
were enriched for transcription factors from families such as MADS,
YABBY, TCP, andC2H2 (Fig. 3c and Supplementary Data 9), suggesting
that TWAS significant genes from these families may play important

roles in panicle development.We further performedmotif enrichment
analysis on the promoter sequences of TWAS significant genes using
Plant Regulomics37. We found that the NAGs of SPP were enriched in
motifs of families such as C2H2 zinc finger, MADS, and WRKY (Fig. 3d
and Supplementary Data 10), while PAGs of SPP were enriched in
motifs of families such as B3 and bZIP, while motifs of SBP and AP2
families were enriched in the regulatory sequences of both PAGs and
NAGs of SPP. The enrichment of B3, SBP, MADS, and C2H2 family
transcription factors in the TWAS significant genes of SPP and NPB, as
well as the enrichment of their binding motifs in the promoter
sequences of the TWAS significant genes, implies an underlying reg-
ulatory network of these transcription factors with downstreamgenes.
In conclusion, the results of TWAS suggest that our data are valuable in
uncovering panicle trait-related genes and their regulatory networks.

A large number of TWAS-significant genes are regulated by
numerous small-effect loci
When examining the expression of TWAS significant genes for panicle
traits in different varieties by heat map, we found that many genes
have similar expression patterns (Fig. 4a and Supplementary Fig. 7),
implying that these genes might be regulated by the same genetic loci
(i.e., eQTL hotspots) to some extent.Wewere particularly interested in
whether there are GWAS loci (pQTLs) that play a role in regulating the
expression of multiple TWAS significant genes, namely pQTL-eQTL
hotspots. We first associated TWAS significant genes (FDR <0.05) with
lead variants of pQTLs identified using the 529 varieties at the sug-
gestive threshold (p value = 5.07 × 10−7). However, for the SPP andNPB,
no pQTL were found to be associated with more than 10 TWAS

Fig. 3 | Transcriptome-wide association study (TWAS) for SPP and enrichment
analysis of TWAS significant genes. a Manhattan plot of TWAS for SPP. TWAS Z-
scores (y-axis) are plotted against gene positions (x-axis) on each of the chromo-
somes. The gray dashed lines indicate the Z-scores at the FDR of 0.05, and genes
exceeding this threshold are defined as TWAS significant genes in the following
analysis. Known genes related to panicle development are labeled and marked as
orange dots. bGene Set Enrichment Analysis for TWAS significant genes of SPP. All
genes were sorted in descending order (x-axis) by the TWAS Z-scores. The y-axis of
the bottom panel indicates the TWAS Z-scores. Genes from different gene sets are
shown in different colors. In the middle panel, a gene belonging to a certain gene

set is indicated by a colored vertical line. In the top panel, the enrichment scores36

(y-axis) for each gene set are plotted against the rank of TWAS Z-scores (x-axis).
High exp in YP: genes preferentially expressed in young panicles. Decrease exp in
YP: genes progressively down-regulated in panicle development. Increase exp in
YP: genes progressively up-regulated in panicle development. c–e Transcription
factor families (c), TF binding motifs (d), and gene ontology terms (e) enriched in
TWAS significant genes for panicle traits (FDR <0.05). NAGs and PAGs: negatively
and positively associated genes, respectively. The bubble size indicates the number
of overlapping genes and the bubble color indicates the −log10 FDR of the
enrichment.
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significant genes at the suggestive threshold, and pQTLs obtained
using the 275 varieties were similar, implying that the expression var-
iation of TWAS significant genes might not be regulated by the GWAS-
significant loci, which is different from the results reported in other
crops38,39. On the other hand, genetic correlation analysis suggests that
a large part of the correlation between TWAS significant genes and
panicle traits could be explained by genetic causes (“Methods”, Sup-
plementary Fig. 8a–f). Considering that SPP and NPB are mainly
regulated by small-effect loci fromour GWAS results, we hypothesized
that the expression variation of TWAS significant genes affecting the
panicle traits might also be mainly contributed by small-effect loci.

To confirm that speculation, we used LASSO to predict the
expression of the top 500 TWAS significant genes in different varieties
based on lead variants of pQTLs identified at different thresholds and
then calculated Pearson’s correlation coefficients between the pre-
dicted gene expression values and panicle traits (“Methods”). We
found that the correlations were low at the pQTL threshold of 10−7.
However, when the pQTL threshold was relaxed, the correlations

increased substantially (Fig. 4b–d and Supplementary Fig. 8g–i). Fur-
ther permutation tests showed that the correlations between panicle
traits and the predicted gene expression values were significant
(p value <0.002) at the relaxed pQTL thresholds (10−5, 10−4, and 10−3;
Supplementary Figs. 9 and 10). These results suggest that a large
proportion of the variation in the expression of TWAS-significant
genes is regulated by small-effect loci. In addition, we noted that the
correlations were higher for the 275 accession panel than for the 529
accession panel (for SPP, the highest mean R2 was 0.188 in the 529
varieties and 0.320 in the 275 varieties). It could be that there is still
some heterogeneity between the 529 varieties and the 275 varieties,
although the 275 varieties were selected as representative of the 529
varieties. Therefore, we used the GWAS results of the 275 varieties
panel if not specifically stated in the later analysis.

Since the effect of genetic loci affecting phenotypes as well as
TWAS significant genes may be relatively small, we attempted to
identify pQTL-eQTL hotspots under a more relaxed threshold (p value
<10-4 for both pQTLs and eQTLs). A pQTL is defined as a pQTL-eQTL

Fig. 4 | Associations between GWAS QTLs and TWAS significant genes.
a Expression patterns of the top 500 TWAS significant genes of SPP in the 275
varieties. Each column is a variety, and each row is a gene. b–d R2: the square of the
Pearson correlation coefficient between the panicle trait and the predicted
expression values of the top 500 TWAS significant genes of SPP (b), NPB (c), and PL
(d), respectively. Eachpoint represents a gene. The predicted expression values are
predicted using the LASSOmodel based on lead variants of GWAS QTLs identified
at different thresholds in the 275 varieties’ panel. For each box plot, the center line
represents themedian, the box’s lower and upper boundaries indicate the first and
third quartiles, and the whiskers extend to data points within 1.5 times the inter-
quartile range from the box. e Bar plot of the number of pQTL-eQTL hotspots for
TWAS significant genes. A GWAS QTL of panicle traits (pQTL, p value <1 × 10−4) is
defined as a pQTL-eQTLhotspot if it is an expression quantitative trait locus (eQTL,

p value <1 × 10−4) for many genes and these genes are significantly enriched for
more than 10 TWAS significant genes (BH-adjusted one-sided Fisher’s exact test
p value <0.05). The pQTL-eQTL hotspots are categorized according to the number
of TWAS significant genes in the associated targets and indicated by different
colors. f Associations between the expression levels of TWAS significant genes and
pQTLs for SPP. The genomic positions of TWAS significant genes (y-axis) are
plotted against the positions of lead variants of pQTLs (x-axis) for each significant
association. Knownpanicle development-relatedgenes associatedwith pQTL-eQTL
hotspots are labeled andmarked as orange dots. gThe number of TWAS significant
genes associated with each GWASQTL of SPP. The color of each bar represents the
−log10p value ofGWAS for thatQTL. Sourcedata underlying (b–g) are provided as a
Source Data file.
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hotspot if it is aneQTL formany genes and these genes are significantly
enriched for more than 10 TWAS significant genes (BH-adjusted Fish-
er’s exact test p value <0.05). We identified 37, 31, and 176 pQTL-eQTL
hotspots for the TWAS significant genes of SPP, NPB, and PL, respec-
tively (Fig. 4e and Supplementary Data 11), revealing a complex reg-
ulatory network for the panicle traits. The regulatory networks of
hotspots and target genes reveal possible important regulatory
mechanisms of panicle development. For example, one of the most
significant hotspots of SPP, hSPP.05.1, was found to be associated
with 105 TWAS significant genes, including several known panicle
development-related genes, such as MIR529a, MOC1, and OsMADS1
(Fig. 4f, g and Supplementary Fig. 11a–d). Another example, hNPB.09.1,
was found to be associated with 75 NPB TWAS-significant genes,
including several known panicle development-related genes, such as
Ghd2, OsNF-YA4, and OsGRF10 (Supplementary Fig. 11e–h). However,
the regulatory genes in these hotspots remain to be characterized.

Differential selection on derived alleles impacts gene expression
and panicle traits
Many studies have shown that gene expression is largely regulated
by cis-regulatory variants38,40, but whether cis-regulatory variants
are under selection during domestication or breeding, and how
the selection affects agronomic traits in crops has rarely been
studied41. To assess whether cis-regulatory variants tended to be under
selection, we identified derived alleles based on allele frequencies in
wild rice42 and analyzed the derived allele frequencies (DAF) of lead
variants of cis-eQTLs. We observed that as DAF increased, the pro-
portion of variants belonging to lead variants of cis-eQTLs gradually
increased, suggesting that cis-regulatory variants play an important
role as targets of natural or artificial selection in rice (Fig. 5a).

We further wondered how the selection for cis-regulatory variants
affects agronomic traits. We first examinedwhether the derived alleles
of cis-eQTLs for the TWAS significant genes also tended to be under
selection, and the results showed that the cis-eQTLs for the TWAS
significant genes had the same preference for high DAF (Supplemen-
tary Fig. 12a–c). We then divided TWAS significant genes according to
the direction of association with the panicle traits and analyzed the
effects of the derived allele of cis-eQTL on gene expression (Fig. 5b
and Supplementary Fig. 12d, e). We found that the derived alleles with
high-frequency preferred to up-regulate the expression of PAGs or

down-regulate the expression of NAGs, i.e., tended to have a positive
effect on the phenotype. This result suggests that during rice domes-
tication or breeding, derived alleles that improve panicle traits are
positively selected, resulting in higher frequencies, while derived
alleles that have negative effects on traits are negatively selected,
leading to lower frequencies.

Could such differences in selection be observed in the GWAS
signal of panicle traits? We assessed the GWAS signal distribution of
cis-eQTLs of PAGs and NAGs. Quantile-quantile plots showed that for
genes whose derived alleles of cis-eQTLs have a positive effect on SPP
(up-regulate PAGs or down-regulate NAGs), GWAS signals of cis-eQTLs
for genes with higher cis-eQTL DAF had a greater departure from an
expected p value distribution (Supplementary Fig. 12f); for genes
whose derived allele of cis-eQTLs may have a negative effect on SPP
(down-regulate PAGs or up-regulate NAGs), GWAS signals of cis-eQTLs
for genes with lower cis-eQTL DAF had a greater departure from the
null distribution (Supplementary Fig. 12i). These results suggest that
the selected cis-eQTLs of TWAS significant genes are enriched for
variants that have effects on panicle traits.

Multiple genes that may play important roles in panicle devel-
opment showed selection on cis-regulatory variants. For example, a
gene encoding a B3 transcription factor (LOC_Os06g42630), which is
positively associated with SPP (Supplementary Fig. 13a), is specifi-
cally expressed in youngpanicles43 and thusmayplay a role in panicle
development. The derived allele of the cis-eQTL (vg0625635377)
for this gene up-regulates the gene expression (Supplementary
Fig. 13b) and thus may have a positive effect on SPP. The DAF of
the cis-eQTL is 0.081 in wild rice and raised to 0.799 in cultivated
rice. Another example is that a gene containing the DUF567
domain (LOC_Os05g40630), the expression of this gene is negatively
associated with SPP (Supplementary Fig. 13d). The derived allele of
the cis-eQTL (vg0523822557) down-regulates the expression of this
gene (Supplementary Fig. 13e), thus the derived allele may have a
positive effect on SPP. Further evidence is provided by the cis-eQTL
and the variants in LDwith cis-eQTLwhich show a regional significant
association with SPP (Supplementary Fig. 13f). The DAF of this
cis-eQTL is 0.08 in wild rice and raised to 0.908 in cultivated rice.
These results provide insights and clues for studying the selection
and effects of domestication or breeding on gene expression and
phenotype.

Fig. 5 |Distributionofderivedallele frequency (DAF) at cis-eQTLsand impactof
derived alleles on the expressionof SPP TWAS-significant genes. a Variantswith
high DAF are enriched for cis-regulatory variants. All variants and lead variants of
cis-eQTLs were divided into different DAF intervals. The bar plot represents the
proportion of all variants (cyan) or lead variants of cis-eQTLs (sky blue) in each DAF
interval (left y-axis). The line indicates the relative ratio of the proportion of cis-
eQTLs to the proportion of all variants in each DAF interval (right y-axis). A total of
13,877 lead variants were used in this analysis. Derived alleles were identified based

on wild rice data (“Methods”). b High-frequency derived alleles at cis-eQTLs of SPP
TWAS-significant genes tend to have a positive effect on SPP. The cis-eQTLs of SPP
PAGs (left panel) and NAGs (right panel) are divided into different intervals (x-axis)
according to DAF, and the y-axis represents the proportion of cis-eQTLs whose
derived allele is up-regulating gene expression (red) or down-regulating gene
expression (blue). The numbers at the top of the bars indicate the number of TWAS
significant genes containing cis-eQTL in each interval. Source data are provided as a
Source Data file.
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Decomposition of gene expression identifies causal genes at
small-effect GWAS loci for panicle traits
GWAS can rapidly locate QTLs affecting phenotypes, but further
identification of candidate genes within the QTL regions remains a
challenge. This problem is particularly serious in rice due to the large
LD decay distance. Based on the population transcriptome data, we
proposed a method to combine information on cis- and trans-com-
ponents of gene expression to identify causal genes. As shown in the
model in Fig. 6a, the variation of gene expression caused by cis-reg-
ulatory variants is defined as the cis-expression component (cis-EC),
while the variation of gene expression caused by distal variants is
defined as the trans-expression component (trans-EC). If Gene B is
expressed variably among individuals and its cis-EC is associated with
variation in a phenotype, then Gene B may be a causal gene affecting
the phenotype, but it may also be a false positive simply due to LD
between cis-regulatory variants of Gene B and a nearby causal variant
of the phenotype. In contrast, if not only the cis-EC of Gene C is
associated with the phenotype, but also the trans-EC of Gene C is
associated with the phenotype, i.e., Gene C may be in a regulatory
network that affects the phenotype, and not only its cis-regulatory
variants may affect the phenotype, but it is also regulated by other
regulators (e.g., Gene A in the model) affecting the phenotype, then
Gene C is more likely to be a causal gene compared to Gene B.

Based on this idea, we first estimated cis-EC of each gene using
GCTAbasedon variantswithin 100 kbof the gene, and then subtracted
cis-EC from the gene expression and used the residuals as trans-EC
(Methods). At the threshold of 1.62 × 10−6 (Bonferroni corrected
p value <0.05), 14,392 genes with significant cis-genetic variance were
identified and used for subsequent analyses. We then associated cis-
and trans-ECs with panicle traits separately (defined as cis- and trans-
expression component-based association study, abbreviated as cis-
and trans-ECAS) and prioritized genes with both cis- and trans-EC
associated with phenotypes as candidate genes. Consistent with the
aforementioned results that panicle traits were primarily regulated by
small-effect loci, we found only two genes whose cis-EC was sig-
nificantly associated with SPP and none for NPB (FDR <0.05). At a
relatively relaxed threshold (p value <0.01), we identified 288, 259, and
477 genes with cis-EC associated with SPP, NPB, and PL, respectively.
Finally, by considering the results of trans-ECAS simultaneously
(FDR <0.01), we identified 36, 48 and 99 putative causal genes
(referred to as cis- and trans-ECAS genes) significantly associated with
SPP, NPB and PL, respectively (Fig. 6b and Supplementary Data 12).

Some of these candidate genes have been reported to be involved
in panicle development. For example, SDT34 encodes a small RNA
MIR156j, and studies have reported that miR156 regulates panicle size
by down-regulating IPA15,6. We found that both cis- and trans-EC of SDT
were negatively associated with SPP (p value = 4.39 × 10−6 for cis-ECAS
and 1.06 × 10−6 for trans-ECAS; Fig. 6c), indicating that SDT is a causal
gene that affects the phenotype of SPP in rice varieties. Using GWAS,
we detected variants around SDT that are associated with both SDT
expression and SPP (Fig. 6d), implying that these variants may affect
SPP by altering the expression of SDT. We further analyzed the natural
variation of SDT. We first examined the primary transcript of MIR156j
and found no variants. We then focused on the cis-regulatory variants
of SDT and found that only one SNP (SDT-V1: vg0626550198) located
within 5 kb upstream of the transcription start site (TSS) was sig-
nificantly associated with the expression of SDT. Besides, we found a
variant (vg0626555871) in the second intron of SDT, which is in LDwith
SDT-V1 but less significantly associated with SDT expression and SPP.
By checking 33 high-quality rice genome sequences44, we found that
this variant actually is an ~2.7 kb insertion rich in “CTAT” repeats.
Moreover, we noticed that two SNPs (SDT-V2: vg0626530751, SDT-V3:
vg0626534166) at ~24 kb and 20 kb upstream of the TSS were sig-
nificantly associated with SDT expression but not in LD with SDT-V1.
Since SDT-V2 was in LD with SDT-V3 andmore significantly associated

with SDT expression than SDT-V3, we finally prioritized SDT-V2 as well
as SDT-V1 as candidate causal variants. The three haplotypes formed
by SDT-V1 and SDT-V2 showed significant differences in cis-EC of SDT
and SPP (Fig. 6e and Supplementary Fig. 15a, b), suggesting a coordi-
nated effect of the two variants ongene expression and thephenotype.
Although the association p value between the lead variant SDT-V1 and
SPP is only 3.53 × 10−5, by integrating the association of cis- and trans-
EC with SPP, we were able to identify SDT as a causal gene. This
demonstrates the effectiveness of our method in identifying causal
genes at small-effect loci that affect the phenotype due to cis-reg-
ulatory variants.

OsMADS17 is an AGAMOUS-LIKE6 (AGL6) MADS-box gene, and
its paralog OsMADS6 was found to play an important role in reg-
ulating rice floral organ identity and floral meristem determinacy29,45,
while their function on SPP has not been reported. We found that
both the cis- and trans-EC of OsMADS17 were negatively associated
with SPP (p value = 1.61 × 10−3 for cis-ECAS and 5.46 × 10−10 for trans-
ECAS, Fig. 7a), suggesting thatOsMADS17maybe a negative regulator
of SPP. OsMADS17 had a significant cis-eQTL, but similar to SDT, the
local variants of OsMADS17 were only weakly associated with SPP
(p value = 7.36 × 10−5, Fig. 7c).

The associated cis-variants of OsMADS17 and SDT had only weak
associations with SPP, but both cis-ECs were more significantly asso-
ciated with SPP (rank = 64 and 1 for cis-ECs of all genes, respectively),
probably because their expressions were both regulated bymore than
one independent cis-variant. The fitted cis-EC combined the effects of
multiple cis-variants and thus had a higher power to detect associa-
tions compared to the associations between individual variants
and phenotypes. These results demonstrate the benefit of using
population-level transcriptome data to identify causal genes.

The examples of SDT and OsMADS17 prompted us to ask whether
the cis- and trans-ECAS genes tend to have stronger GWAS signals for
panicle traits. We found that indeed the GWAS signals of cis-eQTLs for
the cis- and trans-ECAS genes had a great departure from the null
distribution compared to the GWAS signals of all variants (Fig. 6g and
Supplementary Fig. 14a, b). Although the cis-eQTLs of the cis- and
trans-ECAS gene had a relatively weak GWAS signals, the departure
from the null distribution is significantly higher than (Kolmogorov-
Smirnov test, p value = 2.8 × 10−8) the GWAS signals of the cis-eQTLs of
the TWAS significant gene. This result suggests that the cis-regulatory
variants of the cis- and trans-ECAS genes have a stronger GWAS signal
compared to theTWAS significant genes and cis- and trans-ECAS genes
are more likely to be causal genes affecting panicle traits.

The number of favorable alleles on cis-regulatory variants of cis-
and trans-ECAS genes is a good predictor of panicle traits
Since the GWAS signal of cis-regulatory variants on phenotype is
relatively weak, we wanted to know whether these cis-regulatory var-
iants of cis- and trans-ECAS genes could explain the variation in phe-
notypes. We first defined alleles of cis-eQTLs that up-regulate PAGs or
down-regulate NAGs as “favorable alleles” and then counted the
number of favorable alleles ineach variety topredict phenotypes in the
remaining 254 of the 529 varieties for which the transcriptome data
were not available. The results show that the number of favorable
alleles of the cis and trans-ECAS genes in each variety for all three traits
are highly correlated with the corresponding phenotypes (Fig. 6h and
Supplementary Fig. 14c, d). These correlations are significantly higher
(p value <0.05) than the correlations between the phenotypes and the
number of favorable alleles for the same number of randomly selected
TWAS significant geneswith significant cis-genetic variance (Fig. 6i and
Supplementary Fig. 14e, f). These results indicate that the cis-eQTL of
cis- and trans-ECAS genes have better predictive power for phenotypes
and also suggest that cis- and trans-ECAS genes are more likely to be
causal genes affecting phenotypes in varieties. Thus, cis-regulatory
variants of cis- and trans-ECAS genes can be used as markers for
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molecular breeding, and aggregation of favorable alleles at these loci
may further improve rice yield.

Cis- and trans-EC-based associations help construct regulatory
networks for gene expression in panicle development
Similar to the identification of candidate genes affecting phenotypes,
it is still a challenge to identify regulatory genes affecting
gene expression. In the above sections, we demonstrated that cis-

and trans-ECAS can well identify genes affecting phenotypes. Simi-
larly, we can take the expression of a target gene as a molecular
phenotype (e-trait) and associate it with all genes' cis- and trans-EC to
identify putative upstream regulatory genes of the target gene.
Alternatively, we can also examine the association between the cis-
and trans-EC of a regulatory gene with the expression of all other
genes to identify putative downstream genes. In this way, we can
construct causal gene regulatory networks, which utilize information
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from genetic variation and are therefore more reliable than co-
expression networks.

Taking OsMADS17 as an example. ECAS analysis indicated that it
may be a causal gene that negatively regulates SPP (Fig. 7a), but its
regulatory mechanism is unclear. By performing ECAS using the cis-
and trans-EC of OsMADS17 with the expression of TWAS significant
genes (Methods), we found that OsMADS17 might be an upstream
regulator of 64 TWAS significant genes (Supplementary Data 13).
Among them, we noticed that the cis- and trans-EC of OsMADS17were
positively associated with the expression of SDT (p value = 3.08 × 10−5

for cis-ECAS and 8.43 × 10−16 for trans-ECAS, Fig. 7b). And when asso-
ciating the cis- and trans-ECof all genes (as independent variables)with
the expression of SDT (as dependent variable), the cis- and trans-EC of
OsMADS17 ranked 26th and 1st, respectively, in the ECAS results. These
results suggest that OsMADS17 might be a regulator of SDT and
negatively regulate SPP by up-regulating SDT expression.

To gainmore insight into the transcriptional regulation of SDT, we
collected young panicles of three varieties with different haplotypes
on SDT to perform the assay for transposase-accessible chromatin
using sequencing (ATAC-seq). From the ATAC-seq results, we noticed
that the chromatin accessibility of a distal open chromatin region
(dOCR) 4.2–4.4 kb upstream of the TSS of SDT (around the putative
causal variant SDT-V1) was consistent with expression variation of SDT
for the three varieties (Fig. 6f). Thuswe speculated that this dOCR is an
important cis-regulatory region for SDT. We conducted transient
expression assays using a dual-luciferase reporter system in rice pro-
toplasts. The relative luciferase activity results showed thatOsMADS17
failed to activate the expression of the reporter gene firefly luciferase
driven by the sequence of 0–4 kb or the dOCR upstream of the SDT
(Fig. 7d, e). In contrast, the relative luciferase activity showed higher
activity when driven by the 0–4.6 kb sequence upstream of SDT,
suggesting that OsMADS17 may upregulate the expression of SDT by
regulating the dOCR upstream of SDT. Electrophoretic Mobility Shift
Assays (EMSA) further confirmed that OsMADS17 can directly bind to
this dOCR (Supplementary Fig. 16a). In addition, qRT-PCR analysis
showed that SDT expression was moderately down-regulated in the
young panicle of the CR-osmads17 mutant compared to the wild-type
(Supplementary Fig. 16b), further demonstrating that SDT transcrip-
tion is positively regulated by OsMADS17.

The expression genome-wide association study (eGWAS) results
of SDT showed an obvious peak in the OsMADS17 region, which also
supports the regulation of SDTbyOsMADS17. However, the association
did not reach the genome-wide significance threshold (Fig. 7c),making
it difficult to detect such regulatory relationships by traditional eQTL
analysis. In contrast, cis- and trans-ECAS can efficiently identify the

regulatory relationship between SDT and OsMADS17, confirming the
efficacy of our approach in identifying gene regulators.

Besides being found to regulate SDT, OsMADS17 may also nega-
tively regulate RFL and OSH1 (Fig. 7j and Supplementary Data 13), but
whether the regulatory effect of OsMADS17 on these genes is direct or
indirect requires further investigation.

Validation and breeding application of OsMADS17
AsOsMADS17has not been reported to impact SPP in rice, we validated
its function using the CRISPR/Cas9 system. We observed a 19.2%
increase in SPP and a 25.2% increase in the number of secondary
branches (NSB) compared the knock-out line CR-osmads17 to wild
type, while no significant difference was found in NPB (Fig. 7f–i).

We further analyzed the natural variation of OsMADS17. We
found two variants in the coding region ofOsMADS17, one of which is
a synonymous SNP (vg0429308534) and the other (vg0429308367)
is a 65-bp long sequence inserted at the start codon of the ORF,
potentially shifting the ORF backwards by 15 bp. However, these two
variants are not associated with the SPP (p value >0.05). We also
identified 12 variants within 5 kb upstream of the TSS of OsMADS17
that were significantly associated with its expression level (p value
<10−5). Based on all 14 variants, we identified threemain haplotypes in
the OsMADS17 region (Supplementary Fig. 15c, d), with sig-
nificant differences in OsMADS17 expression and SPP between hap-
lotypes. Among the variants ofOsMADS17, a multi-allelic variant with
11-bp and 39-bp deletions (named OsMADS17-V1, composed by
vg0429307485 and vg0429307502) coincides to the three haplo-
types and ismost significantly associatedwith the expression level of
OsMADS17 (p value = 5.78 × 10−18). This variant also has the highest
functional impact score among the 12 non-coding variants predicted
by a deep learning-based approach in RiceVarMap46, suggesting that
it may be a functional variant that leads to changes in OsMADS17
expression. At this site, we observed that both types of deletions
were associated with down-regulation of OsMADS17 and an increase
in SPP (Fig. 7a and Supplementary Fig. 15d), indicating that they may
be superior alleles for breeding.

To explore whether the superior alleles of OsMADS17 have
breeding value, we introgressed the haplotype 3 of OsMADS17 (carry-
ing a 39-bp deletion on OsMADS17-V1 and with the highest SPP)
derived from the tropical japonica variety IRAT109 into a breeding line
1035with temperate japonicabackground, which carries the reference
genotype of OsMADS17. We selected a line heterozygous on
OsMADS17-V1 in a BC4F3 population and examined the phenotypes of
its segregating progenies based on the genotypes of OsMADS17-V1.
The results showed a 25.0% increase in NSB and an 18.5% increase in

Fig. 6 | Identification of putative causal genes by cis- and trans-expression
component-based association study (cis- and trans-ECAS). a A schematic dia-
gram of identifying putative causal genes by cis- and trans-ECAS. See main text for
details. b Scatter plot of the association of SPP with cis-EC (x-axis) and trans-EC (y-
axis) of genes. Red dots indicate genes whose both cis- and trans-EC are sig-
nificantly associated with SPP. c Correlations of SPP with cis-EC (left) and trans-EC
(right) of SDT. The colors of the dots represent different haplotypes which are the
same as in (e). The error bands indicate 95% confidence intervals. d Regional
association plots of GWAS for SPP (top) and SDT expression (eGWAS, bottom) in a
200-kb region centered on SDT. The colors of the dots represent the linkage dis-
equilibrium (measured by r2) of each variant with the lead variant of GWAS for SPP
(dark blue). p values of SDT-V1 and SDT-V2 were calculated using a multivariate
linear mixed model with SDT-V1 and SDT-V2 as independent variables, while p
values for the other variants were calculated using a linear mixed model with SDT-
V1 and SDT-V2 as covariates71. e Box plots of SDT expression and SPP of different
haplotypes. The x-axis indicates the haplotypes formed by combining genotypes of
SDT-V1 (A/G) and SDT-V2 (A/G). The definitions of the box plots are the same as
Fig. 4b. f Chromatin accessibility profiles of three varieties with different haplo-
types around the SDT. PTA, MH63, and Nipp indicate the varieties of Padi Tarab

Arab, Minghui63, and Nipponbare, respectively, which belong to the three haplo-
types in (e) (G_G, A_G, and A_A, respectively). The y-axis values are Counts Per
Million mapped reads (CPM) of ATAC-seq. The gray rectangular area indicates the
distal open chromatin region (dOCR) surrounding SDT-V1 (blue line), where
changes in chromatin accessibility are consistent with variations in SDT expression.
g Q-Q plot of GWAS signals for SPP for different groups of variants. h The corre-
lation between SPP and the number of favorable alleles at cis-eQTLs for the cis- and
trans-ECAS significant genes of SPP in each variety. The analysis included 254
varieties, for which transcriptome data were not acquired. Alleles that up-regulate
PAGs or down-regulate NAGs are defined as favorable alleles. Pearson’s correlation
coefficient is used for the test. iHistogram of the correlations between SPP and the
number of favorable alleles at cis-eQTLs for randomly selected TWAS significant
genes. The same number of genes as the cis- and trans-ECAS genes were selected
each time from TWAS significant genes with significant cis-genetic variance and
repeated 1000 times. The blue triangle indicates the 0.95 quantiles of the corre-
lations, and the red dots indicate the correlation between phenotypes and the
numbers of favorable alleles at cis-eQTLs for the cis- and trans-ECAS genes. Source
data underlying (b, c, e, h) are provided as a Source Data file.
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Fig. 7 |OsMADS17 regulates SDT transcription and affects SPP. a Correlations of
SPP with cis-EC (left) and trans-EC (right) of OsMADS17. The colors of the dots
represent different genotypes of the OsMADS17-V1 variant: reference type
(orange), 11-bp deletion type (blue), and 39-bp deletion type (purple). The error
bands indicate 95% confidence intervals. b Correlations of SDT expression with cis-
EC (left) and trans-EC (right) of OsMADS17. The colors of the dots represent dif-
ferent genotypes of OsMADS17-V1, as in (a). c Regional association plots of GWAS
using linear mixed model for SPP (top), SDT expression (middle) and OsMADS17
expression (bottom) in a 200-kb region centered on OsMADS17. d Schematic dia-
gram of the effector and reporter constructs used for transient transcriptional
activity assay in (e). Firefly luciferase gene LUC, driven by the 4-kb and 4.6-kb
promoters of SDT aswell as dOCR (4.2–4.4 kbupstreamof SDT, as shown in Fig. 6f),
was used as the reporter. e Transient transcriptional activity assay showing that
OsMADS17 transactivates SDT transcription and this transactivation requires the

dOCR upstream of SDT. All data are means ± SEM (9 biologically independent
samples for OsMADS17 + control and 3 for the others). f Panicle morphologies of
CR-osmads17 mutant and WT. WT wild-type. Scale bar, 2 cm. g–i Quantification of
the number of primary branches (g), number of secondary branches (h), and spi-
kelets per panicle (i) in the main panicle of CR-osmads17mutant and WT. Data are
means ± SEM. Comparisons are made by two-tailed Student’s t test. j Gene reg-
ulatory networks constructed using cis- and trans-ECAS. The SPP TWAS-significant
genes (FDR <0.01) were used as e-traits, and the network centered on SDT and
OsMADS17 (SDT and OsMADS17 as regulatory genes) is shown. The color of the
nodes indicates the regulatory direction of genes for SPP: light salmon for positive
correlation and blue for negative correlation. The size of each node circle indicates
the number of nodes it connects to. Solid lines represent the regulatory relation-
ships validated in this study and those previously reported. Source data underlying
(a, b, e, g–i) are provided as a Source Data file.
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SPP for lines with the 39-bp deletion on OsMADS17-V1 compared to
lines with the reference genotype (Supplementary Fig. 16c–f), sug-
gesting that this superior allele ofOsMADS17 could be used to improve
NSB and SPP in rice varieties.

We examined the distribution of the 39-bp-deletion allele of
OsMADS17 in varieties using RiceVarMap46. This superior allele has the
highest frequencies in tropical japonica (0.905) and lower frequencies
in temperate japonica and indica (0.087 and 0.028, respectively)
which have larger planting areas. Similarly, the superior haplotype of
SDT (G_G) has a higher frequency in tropical japonica (0.687) but a
lower frequency in other subgroups (<0.1). These results suggest that
the superior alleles ofOsMADS17 and SDT have not beenwidely used in
breeding and have great potential for enhancing grain number in the
main cultivars.

Discussion
In this study, we identified a large number of genes whose expression
levels were associated with panicle traits in rice for the first time.
Although association is not causation, these information provide new
insights and resources to further resolve the regulatory networks
of panicle development. Among those genes associated with SPP,
NAGs are enriched in negative regulators of SPP and might provide
abundant targets for improving rice yield using genome editing tech-
niques such as CRISPR-Cas47. Meanwhile, which of these associated
genes are causative and the regulatory networks among these genes
are unclear, appropriate methods are needed to overcome these
limitations.

In humanmedical studies, several methods have been developed
in recent years to identify causal genes affecting phenotype based on
the correlation between the cis-component of gene expression and the
phenotype48. However, genes identified by this approach are also
prone to be false positives due to LD between cis-regulatory variants
and phenotypic causal variants49,50. We developed a method to inte-
grate the association of cis- and trans-components of gene expression
with phenotype to screen for causal genes affecting phenotypes or
gene expression. This method is particularly useful for crop research,
as it is relatively easy to obtain expression data and phenotype data for
the same population simultaneously. To enhance the power of iden-
tifying causal genes, we recommend: (1) integrating phenotype
data across years or locations; (2) obtaining phenotype data from
samples grown in the same environment as transcriptome samples; (3)
acquiring high-quality transcriptomes from as many varieties as
possible.

We found that cis-variants of SDT and OsMADS17 affect panicle
traits and further demonstrated that OsMADS17 regulated the
expression of SDT. Since SDT encodes MIR156j which is the negative
regulator of IPA15,6, our study reveals a regulatorymechanismbywhich
OsMADS17 up-regulates SDT and thus negatively regulates IPA1 to
reduce SPP. The superior alleles ofOsMADS17 and SDTmight provide a
useful resource for breeding. In addition, despite the weak GWAS
signals of SDT and OsMADS17 (p value >10−5), the results of cis- and
trans-EC associations strongly support that they are causal genes,
demonstrating the ability of our method to identify causal genes in
small-effect loci. The identified cis- and trans-ECAS genes are worth
further experimental validation.

The genomic footprint of domestication or breeding processes in
crops hasbeenwidely studied39,51,52, butwhether cis-regulatory variants
affecting gene expression are under selection during domestication or
breeding, and how the selection affects agronomic traits in crops has
rarely been studied. We found that the variants with higher DAF are
more likely to be cis-eQTLs of genes, indicating that cis-regulatory
variants of gene expression were subject to positive selection, which is
consistent with our previous study finding that high-impact regulatory
variants in rice are subject to positive selection46. However, unlike the
study in maize finding that domestication and breeding processes

prefer to increase gene expression41, we found that the selection
direction of the derived alleles of cis-eQTL is differentiated and related
to gene function. The derived alleles with high-frequency prefer to up-
regulate the expression of PAGs or down-regulate the expression of
NAGs, i.e., tend to have a positive effect on SPP. In contrast, derived
alleles of cis-eQTL which have a negative effect on SPP tend to have
lower frequencies. This difference in selection is further supported by
the difference in GWAS signals for lead variants of cis-eQTL with
positive and negative effects of the derived alleles on the SPP pheno-
type. This indicates that domestication and improvement rewired
gene expression to increase grain numbers in rice.

In conclusion, our study provides insights into the complex
genetic structure and regulatory networks of panicle architecture and
has potential implications for molecular breeding in rice. In addition,
the methods and strategies developed in our study can efficiently
identify causal genes affecting agronomic traits, even those at small
effect GWAS loci, which are expected to facilitate research in other
crops as well.

Methods
Plant materials, RNA extraction and sequencing
A set of 529 varieties was used in our previous study18,53. The varieties
were selected to represent both the genetic diversity in Asian culti-
vated rice (O. sativa L.) and their usefulness in breeding. Based on
genetic distance among varieties, we further selected 300 varieties
from them to obtain young panicles. We first selected a fixed set of
varieties (those with high quality genomes) and then iteratively
selected the variety with the maximum distance to any variety in the
current set of varieties. This process continues until 300 varieties have
been selected. These varieties were planted in four batches in the
experimental field of Huazhong Agricultural University during the
summer at Wuhan (30.4°N, 114.2°E), China. One variety, Zhenshan 97,
was planted in all four batches and its young panicles were collected
each time. Total RNA was extracted from young panicles (1–2mm) of
275 rice varieties using the TRIzol reagent (Invitrogen). Totally 278
paired-end libraries (one library for each of 274 varieties and
four libraries for Zhenshan 97) were constructed and sequenced using
the Illumina HiSeqX platform at Novogene to obtain >9 Gb of
PE150 sequencing data for each library. The high correlations between
the four replicates of Zhenshan 97 indicate that the effect of planting
batch on the transcriptome is small (Supplementary Fig. 5a–d).

RNA-seq data processing
We first counted the read numbers of RGAP (Rice Genome Annotation
Project) annotated genes54 for each sample separately using Salmon55.
To quantify miRNAs, we extended the primary transcript sequences of
miRNAs annotated inmiRBase56 by 200-bp each to the left and right as
reference transcripts andused Salmon to quantify the readnumbers of
the extendedmiRNA transcripts. Then the read numbers of genes and
miRNAswere incorporated into one file for each sample, and the TPMs
(transcript per million) were calculated to correct for differences in
library size across samples. The TPMs of different transcripts belong-
ing to the samegenewere combined as the gene’s TPM.Then theTPMs
were added by one, and log2 transformed as gene expression levels.
We screened genes with expression levels greater than 0.5 in more
than 14 varieties (5% of the 275 varieties) as expressed genes and
obtained 30,869 expressed genes. To control system bias, we used
PEER57 to exclude the first three factors, and the residuals were used as
corrected gene expression levels. Then a rank-based approach was
used to transform the distribution of expression levels of each gene in
the population into a normal distribution.

Phenotype data processing
The 275 rice varieties forwhich young panicle transcriptome data were
obtained were also investigated for panicle phenotypes. Phenotypic
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data for each variety were obtained from five independent plants. The
main panicles of five independent plants were collected, the primary
and secondary branches were separatedwith tape andpasted onwhite
paper, and RGB pictures were taken and saved by a camera. Further
statistics were conducted on spikelets per panicle (SPP), number of
primary branches (NPB), and panicle length (PL). To integrate pub-
lished phenotypic data from Hainan 2013, Wuhan 2013, and Wuhan
201412,Weused the lmer function in theRpackage lme458 tofit thebest
linear unbiased prediction model (BLUP) with both year and variety as
randomeffects, and then used a rank-based approach to transform the
phenotypic values of the BLUP to a normal distribution.

Genome-wide association studies for panicle traits
Genotype data were obtained fromRiceVarMap V246, and variants with
minor allele frequency (MAF) greater than 0.05 and the number of
minor alleles greater than six were used for subsequent analysis, with a
total of 10,567,425 variants in the 529 varieties panel. We used linear
mixed models for association studies, EMMAX59 was used to imple-
ment the calculations, and all variants withMAFgreater than0.05were
used to calculate the kinship matrix by PLINK60. The genome-wide
significance threshold for GWAS was determined by the significance
threshold corrected for multiple hypothesis testing, and the GEC61

showed a total of 1,970,782 independent variants in 529 varieties
panel, and the number of independent variants in 275 varieties panel
for which transcriptome data were obtained was quite similar
(1,967,882), thus the genome-wide significance threshold was set at
2.54 × 10−8 and the suggestive threshold was set at 5.07 × 10−7.

Transcriptome-wide association studies for panicle traits
The panicle traits were associated with the expression levels of each
expressed gene to uncover panicle development-related genes. The
following linear mixed model were used:

y∼ βx, σ2
GKG + σ

2
e I

� � ð1Þ

Here, y denotes the phenotypes of a trait across varieties, x
denotes the expression levels of a gene across varieties, β is the effect
of the gene on the phenotype, and KG is the kinship matrix. EMMAX59

was used to implement the calculations. Genes with FDR less than0.05
were considered to be significantly associated with the trait.

Analysis of variance compositions of panicle traits and TWAS
significant genes
SNP heritability for panicle traits was estimated using GCTA20. All
common variants were used to calculate the genetic relationshipmatrix
(GRM), with the parameter “--autosome --maf 0.05 --make-grm-inbred”.
Then, the restricted maximum likelihoodmethod was used to estimate
SNP heritability. Genetic correlations between the expression of genes
and panicle traits were also estimated using GCTA, with the parameter
“--reml-bivar 1 2 --reml-bivar-nocove --reml-bivar-lrt-rg 0”. To estimate
the phenotypic variances explained by GWAS loci identified at different
thresholds, we first screened all lead variants which association p values
smaller than 10−3. Then regression models for phenotypes were con-
structed using variants exceeding different p value thresholds (10−7,
10−6, 10−5, 10−4, 10−3), respectively. The regression models were fitted by
LASSO and implemented using the cv.glmnet function in the glmnet
package62, and the 10-fold cross-validation R2 was employed to repre-
sent the explained phenotypic variance. To evaluate the significance of
phenotypic variances explained by the GWAS loci identified at different
thresholds,wepermuted thephenotypesofpanicle traits 500 times and
performed GWAS for each permuted trait. Then, the samemethod was
used to estimate the variance of thepermutedphenotypes explainedby
the GWAS loci identified at different thresholds. To demonstrate that
the expression variations of TWAS significant genes affecting the
panicle traits are mainly contributed by small-effect GWAS loci, we

predicted the expression of the top 500 TWAS significant genes in
different varieties using the GWAS loci identified at different thresholds
(10−7, 10−6, 10−5, 10−4, 10−3). The regressionmodelwasfitted by LASSO for
each gene at each GWAS threshold. Then, the R2 (square of Pearson’s
correlation coefficient between predicted gene expression and panicle
trait) was used to represent the genetic-caused expression variation of
TWAS significant gene affecting panicle trait. For the permutation test,
TWAS was also performed for each of the permuted trait, and then the
same analysis as for the panicle trait was performed using the top 500
TWAS genes and the GWAS loci of the permuted trait.

Enrichment analysis of TWAS significant genes
Gene Set EnrichmentAnalysis (GSEA)wasperformedusing theGSEApy
package36. We calculated the ratio of the average expression in young
panicles to the average expression inother tissues for eachgene, genes
with a ratio greater than 0.95 quantiles of all genes were considered to
be preferentially expressed in young panicles. The genes preferentially
expressed in young panicles in ZS97 and MH6343 and Nipponbare63

were merged. Gene sets with progressively up-regulated and pro-
gressively down-regulated expression in young panicles were from the
CREP43. The list of transcription factors is from PlantTFDB64, and the
list of chromatin modification-related genes is from Ensembl
BioMarts65. Fisher’s exact test was used to examine the TWAS sig-
nificant genes enriched transcription factor family. GO enrichment
analysis and TF binding motif enrichment analysis of TWAS significant
genes were performed on the web service of Plant Regulomics37.

pQTL-eQTL hotspots of TWAS significant genes
To identify pQTL-eQTL hotspots that affect phenotype and regulate
multiple TWAS significant genes, we performed an association analysis
of GWAS pQTLs (GWAS p value <10−4) with the expression level of all
expressed genes. We then analyzed the enrichment of associated
genes (p value <10−4 for the association between pQTL and gene
expression) with TWAS significant genes for each pQTL. The pQTLs
whose associated genes were significantly enriched for TWAS sig-
nificant genes were defined as pQTL-eQTL hotspots (number of
overlapped genes >10, BH-adjusted Fisher’s exact test p value <0.05).

Derived allele frequencies of lead variants of cis-eQTLs
To assess the effect of rice domestication and breeding improvement
processes on gene expression, we obtained the derived alleles and
allele frequencies of variants from RiceVarMap V246. Alleles that differ
from the major allele of the wild rice population42 were defined as
derived alleles. Variants with missing rates greater than 0.5 in wild rice
or variants in which both the major allele and minor allele in 529
germplasm were not identical to the ancestral allele (major allele in
wild rice) were removed. For the remaining variants, a total of 1,275,135
variants located within 10 kb of the TSS of genes were used for cis-
eQTL analysis. The most significantly associated variant for each gene
was taken as the lead variant of cis-eQTL, and a total of 13,877 genes
were identified with cis-eQTL under the threshold of 10−5.

Cis- and trans-expression component-based association study
(cis- and trans-ECAS) for panicle traits
We propose a novel strategy to identify causal genes that affect phe-
notype.We first calculated the genetic relatednessmatrix (GRM) using
variants within 100 kb of the gene. Then, based on the GRM, BLUP was
performed for the expression levels of each gene using GCTA20 to
obtain the gene expression levels predicted by cis-genetic variations
(defined as cis-expression component, abbreviated as cis-EC). We did
not estimate trans-expression component (trans-EC, gene expression
levels predicted by trans-genetic variations) directly, but used the
residuals of gene expression after subtracting cis-EC as trans-EC, since
estimating trans-EC of genes may be imprecise66. And the plant
materials for our transcriptomedata of all varieties were planted in the
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same field, thus the variation in gene expression after removal of cis-EC
was mainly from trans-EC and random errors. At the threshold of
1.62 × 10−6 (Bonferroni corrected p value <0.05), 14,392 genes had
significant cis-genetic variance andwere used for subsequent analyses.
We then used the following linear mixed models to associate the
panicle traits with the cis- and trans-EC of each gene, respectively:

y∼ βEcis, σ
2
GKG + σ

2
e I

� �
, ð2Þ

y∼ βEtrans, σ
2
GKG + σ

2
e I

� � ð3Þ

Here, y denotes the phenotypes of a trait across varieties, Ecis

denotes the cis-EC of a gene across varieties, Etrans denotes the trans-
EC of a gene across varieties, and KG is the kinship matrix. Then the
genes for which both cis-EC and trans-EC were associated with the
phenotypewereprioritized as candidate genes (cis-ECASp value <0.01,
trans-ECAS FDR <0.01).

Identification of upstream regulators of genes by cis- and trans-
ECAS using gene expression as phenotypes
Weapplied the samemethod as for identifying causal genes for panicle
traits, cis- and trans-ECAS, to identify upstream regulators of genes.
The expression values of each TWAS significant gene (FDR <0.01) were
used as molecular phenotype (e-trait). We associated the e-trait with
the cis- and trans-EC of all other genes with significant cis-genetic
variance, and the genes for which both cis- and trans-EC were sig-
nificantly associated with e-trait (cis-ECAS p value <0.001, trans-ECAS
FDR <0.001) were prioritized as possible upstream regulators.

Dual-luciferase reporter assay
The coding sequences of OsMADS17 were amplified with primer pair
NONE-OsMADS17-F/R and then cloned into NONE to generate NONE-
OsMADS17 as the effector. The SDT truncated promoters were ampli-
fiedwith primer pair SDT-promoter-4kb-F/R, SDT-promoter-4.6kb-F/R,
and SDT-dOCR-F/R, and then cloned into 190-LUC, respectively, to
generate 190-LUC-SDT-Pro 4kb, 190-LUC-SDT-Pro 4.6kb, 190-LUC-SDT-
dOCR, as reporter. The sequences of primers are listed in Supple-
mentaryData 14. For each assay, theplasmids containing reporters and
effectors were co-transformed with 35S-REN by the ratio of 6:6:1 in
ZH11 green seedling protoplasts, with REN activity as the internal
control. After incubating for 12–16 h at 25 °C, the relative luciferase
activity was measured using the DLR assay system (Promega) and the
TECAN Infinite M200 microplate reader.

Creation of osmads17 mutant
To obtain the osmads17 mutant, the sgRNA-CAS9 plant expression
vectors were constructed as described previously67. Two target
sequences (SupplementaryData 14) of the guideRNAwere designed to
target theOsMADS17 gene. Above the constructs were introduced into
Agrobacterium tumefaciens EHA105 and were transformed into the
callus derived from japonica cultivar ZH11 by Agrobacterium-mediated
transformation as previously described68. Primers (Supplementary
Data 14) were designed to amplify target DNA fragments of transgenic
plants and PCR products were sequenced using Sanger sequencing to
determine genotypes.

EMSA
For EMSA, two complementary oligonucleotides were synthesized,
labeled with biotin at 5’ end, and annealed to form DNA probes. The
corresponding unlabeled DNA probes were used as competitors.
EMSAwas performedusing the LightShift Chemiluminescent EMSAKit
(Thermo Fisher Scientific). In the experimental group, 20 fM biotin-
labeled probes were incubated with HIS-OsMADS17 in the binding
buffer (10mM Tris, 50mM KCl, 1mM EDTA, 5mM MgCl2, 1mM DTT,

50 ng/µL Poly [dI.dC], 2.5% Glycerol, and 0.05% NP-40) for 30min at
room temperature, meanwhile, HIS protein was used as a negative
control. In competition reaction, 2 pM (100×), 4 pM (200×) and 8 pM
(400×) un-labeled probes were mixed with 20 fM biotin-labeled
probes, the mixture incubated with HIS-OsMADS17 protein in the
binding buffer for 30min at room temperature. The DNA-protein
complex was subjected to 6% native polyacrylamide gel electrophor-
esis at 4 °C. After gel electrophoresis separation, the biotin-labeled
probes were detected using the Chemiluminescent Nuleic Acid
Detection Module (Thermo Fisher Scientific) according to the manu-
facturer’s protocol. All the primers for EMSA were listed in Supple-
mentary Data 14.

Quantitative RT-PCR
Total RNA was extracted from young panicle (3mm) of rice using the
TRIzol reagent (Invitrogen) according to the manufacturer’s instruc-
tions, and first-strand cDNA was synthesized from 1–5μg total RNA
withHiScript III 1st Strand cDNA Synthesis Kit (+gDNAwiper) (Vazyme,
R312-01). qRT-PCR was performed with the Applied Biosystems 7500
real-time PCR detection system using SYBRGreenMasterMix (Applied
Biosystems). The data were analyzed using the relative quantification
method69. Ubiquitin was used as a control for normalization. All the
primers used for qRT-PCR were listed in Supplementary Data 14.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data supporting the findings of thiswork are availablewithin the paper
and its Supplementary Information files. RNA-seq data generated in
this study have been deposited in the Genome Sequence Archive
under the BioProject accession number PRJCA012684. Genotype data,
variant impact scores, and subgroup classification of the varieties are
available in RiceVarMap V2 (https://ricevarmap.ncpgr.cn/). Rice gen-
ome sequence and gene annotation information were obtained from
RGAP (http://rice.uga.edu/). Annotation information for microRNAs
was obtained from miRbase (https://mirbase.org/). The expression
profiles of the entire life cycle are available in CREP (http://crep.ncpgr.
cn/) for ZS97 and MH63, and in RiceXPro (https://ricexpro.dna.affrc.
go.jp/) or Gene ExpressionOmnibus (GSE21494, GSE39426, GSE39427,
GSE39432) for Nipponbare. The list of transcription factors is available
in PlantTFDB (http://planttfdb.gao-lab.org/). The list of chromatin
modification-related genes is available in Ensembl BioMarts (http://
plants.ensembl.org/biomart/martview/). The genotype data of wild
rice germplasm used to identify derived alleles are available at
RiceHap3 (http://server.ncgr.ac.cn/RiceHap3/), and the sequencing
data are available at European Nucleotide Archive under accession
number ERP001143 (https://www.ebi.ac.uk/ena/browser/view/PRJEB
2829). Source data are provided with this paper.

Code availability
The codes for identifying causal genes affecting phenotypes and for
constructing regulatory networks of functional genes have been
deposited in Zenodo (https://doi.org/10.5281/zenodo.10004834) and
in Github (https://github.com/Minglc/CisTrans-ECAS)70.
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