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PET/CT based cross-modal deep learning
signature to predict occult nodal metastasis
in lung cancer

Yifan Zhong 1,10, Chuang Cai2,10, Tao Chen1,10, Hao Gui3, Jiajun Deng1,
Minglei Yang4, Bentong Yu5, Yongxiang Song6, Tingting Wang7, Xiwen Sun8,
Jingyun Shi8, Yangchun Chen9, Dong Xie 1 , Chang Chen 1 &
Yunlang She1

Occult nodal metastasis (ONM) plays a significant role in comprehensive
treatments of non-small cell lung cancer (NSCLC). This study aims to develop a
deep learning signature based on positron emission tomography/computed
tomography to predict ONM of clinical stage N0 NSCLC. An internal cohort
(n = 1911) is included to construct the deep learning nodalmetastasis signature
(DLNMS). Subsequently, an external cohort (n = 355) and a prospective cohort
(n = 999) are utilized to fully validate the predictive performances of the
DLNMS. Here, we show areas under the receiver operating characteristic curve
of the DLNMS for occult N1 prediction are 0.958, 0.879 and 0.914 in the vali-
dation set, external cohort andprospective cohort, respectively, and for occult
N2 prediction are 0.942, 0.875 and 0.919, respectively, which are significantly
better than the single-modal deep learning models, clinical model and physi-
cians. This study demonstrates that the DLNMS harbors the potential to pre-
dict ONM of clinical stage N0 NSCLC.

In the era of molecular imaging, positron emission tomography/
computed tomography (PET/CT), which concurrently characterizes
metabolic and anatomic representations about lesions, hasemergedas
the most dependable non-invasive modality for clinical N staging of
non-small cell lung cancer (NSCLC)1. However, despite the tremendous
advances in staging modality, there are still 12.9%–39.3%2–4 of lymph
nodal metastasis that are not identified by this state-of-the-art proce-
dure and insteadareunexpectedly recognizedduring surgery, which is
defined as occult nodal metastasis (ONM).

Lymphnode staging includingN1 andN2 status plays a crucial role
throughout the whole process of management for NSCLC. Hence,
accurately recognizing ONM is critical in determining the optimal
therapeutic strategies for patients withNSCLC. In a presurgical setting,
nodal biopsy remains the gold-standard reference for defining the N
stage of NSCLC. The routine adoption of this procedure, however,
increases the risk of overdiagnosis, which is attributable to its invasive
nature, and potentially leads to missed diagnosis considering the
diagnostic pitfalls for N1 stations5–7. Accordingly, it is necessary to
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obtain the pretest probability of ONM to equipoise the superiority and
inferiority of this dual-nature procedure.

In terms of surgical decisions, substantial evidence has emerged
that sublobectomy and limited nodal dissection (LND), which pre-
serves more of the lung parenchyma, could deliver comparable
oncological efficacy to conventional lobectomy and systematic nodal
dissection (SND) in early-stage NSCLC. However, tumors with nodal
metastasis harbor a more aggressive behavior and greater malignancy
burden, making that sublobectomy and LND insufficient. Therefore,
lobectomy and SND should be conducted to ensure the adequacy of
surgical margins and radicality of nodal removals8–10.

In a postsurgical setting, the benefits of adjuvant therapy in early-
stage NSCLC has been passionately debated11,12. The occurrence of
nodal involvement heralds a more guarded prognosis13 and thereby
calls for more aggressive treatments10. For NSCLC with nodal metas-
tasis, surgery alone cannot confer sufficient oncological efficacy, and
adjuvant therapy, capable of eradicating the residual mircometastasis,
has been demonstrated to provide additional survival benefits14–19.
Therefore, it is of paramount importance to develop a robust instru-
ment for ONM prediction to recognize candidates for nodal biopsy,
lobectomy, SND and adjuvant therapy in clinical stage N0 NSCLC.

The deep learning technology which allows the high-dimensional
quantification of radiological images andgreater extraction of detailed
characterizations than the human vision, has been proposed as a
revolutionary approach for disease diagnoses, prognosis evaluations,
and therapeutic decisions20–22. PET/CT, which is capable of capturing
the anatomic and metabolic representations of tumors23, has been
leveraged as a dependable imaging modality to characterize malig-
nancy grade and metastasis burden24,25. Its multimodal nature, on the
one hand increases the feature dimensions and information abun-
dance, but on the other hand poses a higher requirement for the deep
learning algorithm.

With the development of multimodal algorithms, the current
deep learning technology has evolved to be an effective method for
PET/CT image analyzing26,27, which harbors the capability of taking full
advantages of the complementary information of PET and CT mod-
alities. It has been demonstrated that multimodal deep learning algo-
rithms shown potentials in cancer identification28, tumor
segmentation29,30, and risk quantification31 based on PET/CT imaging.
Despite these tremendous breakthroughs, the application of PET/CT
based deep learning for ONM prediction of lung cancer is limited. We
hypothesize that cross-modal dominance complementation based on
PET and CT imaging is capable of quantifying ONM probability to
support the comprehensive treatments of clinical N0 NSCLC, and the
captured ONM risks would be associated with histologic, genetic, and
microenvironment behaviors.

Therefore, this study aims to combine PET and CT radiomics to
construct a deep learning nodal metastasis signature (DLNMS) to
predict ONMand personalize comprehensive treatments of clinical N0
NSCLC, and tentatively explore the underlying biologic basis of
DLNMS, based on a large multicenter population.

Results
Study design and baseline information
The study design is described in Fig. 1. The baseline characteristics of
the internal cohort, external cohort and prospective cohort are
detailed in Table 1. The mean age of the entire cohort was 60.00 years
and 48.61% (n = 1587) of the population were male. There were 2776
(85.02%) adenocarcinomas and 340 (10.41%) squamous cell carcino-
mas. Themaximumstandarduptake value (SUVmax),metabolic tumor
volume (MTV), total lesionglycolysis (TLG)of theprimary tumorswere
5.43, 10.13 and 37.74, respectively. With respect to N status, 11.64%
(n = 380) and 8.42% (n = 275) of patients were diagnosed as occult N1
and N2 diseases. In addition, compared to the internal cohort, patients
in the external cohort were associated with significantly and older age

(61.78 years versus 59.42 years, p < 0.001) and patients in the pro-
spective cohort yielded an older age (60.46 years versus 59.42 years,
p =0.005), higher SUVmax of primary tumor (5.67 versus 5.25,
p =0.022) and larger tumor size (2.64 cm versus 2.53 cm, p =0.030).

Variables associated with ONM
As displayed in Table 2, in the training set, a younger age (odds ratio
[OR]: 0.967, 95% confidence interval [CI]: [0.951, 0.984], adjusted
p <0.001), pure solid type (OR: 2.525, 95% CI: [1.638, 3.891], adjusted
p <0.001), left location (OR: 1.512, 95% CI: [1.088, 2.100], adjusted
p =0.023), and central location (OR: 1.743, 95% CI: [1.202, 2.530],
adjusted p =0.007) were identified as independent predictors for
occult N1metastasis, and the pure solid type (OR: 3.389, 95%CI: [1.999,
5.745], adjusted p < 0.001) was independently related to occult N2
involvement. Most variables remained predictive for patients in the
validation set, external cohort and prospective cohort (Supplementary
Table 1). In addition, after incorporation of the DLNMS into analyses
(Supplementary Table 2 & 3), the DLNMSwas revealed as independent
predictors for both occult N1 and N2 involvements.

Predictive performance of DLNMS
With an increase of DLNMS scores, more cases with occult N1 and N2
tumorswere observed in the validation set (Supplementary Fig. 1A&B),
external cohort (Supplementary Fig. 1C & D) and prospective cohort
(Supplementary Fig. 1E & F). In addition, the DLMNS was represented
by conventional PET and CT texture features in ONM prediction,
implying the significant correlations between the DLNMS and PET/CT
texture features (Fig. 2).

As illustrated in Fig. 3A andB, Table 3 and Supplementary Fig. 2, in
the validation set, the abilities of the DLNMS to predict occult N1 and
N2 diseases were shown to have areas under the receive operating
characteristic curve (AUROCs) of 0.958 (95% CI: [0.923, 0.992]) and
0.942 (95% CI: [0.911, 0.973]), respectively, which were significantly
better than 0.873 (95% CI: [0.835, 0.911]) and 0.761 (95% CI: [0.680,
0.842]) of the PETmodel, 0.913 (95%CI: [0.875, 0.952]) and 0.887 (95%
CI: [0.823, 0.952]) of the CT model, 0.752 (95% CI: [0.685, 0.819]) and
0.690 (95% CI: [0.603, 0.776]) of the clinical model, 0.612 (95% CI:
[0.536, 0.689]) and 0.672 (95% CI: [0.574, 0.771]) of the senior physi-
cians, and 0.616 (95% CI: [0.544, 0.687]) and 0.556 (95% CI: [0.465,
0.647]) of the junior physicians (DeLong’s test: all p <0.05). The areas
under the precision-recall curve (AUPRC), sensitivity, specificity,
positive predictive value (PPV), positive predictive value (NPV) and
accuracy of the DLNMS for predicting occult N1 and N2 metastasis
were 0.882, 0.898, 0.928, 0.647, 0.984 and 0.924, and 0.876, 0.897,
0.842, 0.317, 0.990, and 0.846, respectively.

In the external cohort (Fig. 3C, D), the DLNMS achieved AUROCs
of 0.879 (95% CI: [0.813, 0.946]) and 0.875 (95% CI: [0.820, 0.930]) in
predicting occult N1 and N2 metastasis, respectively, and were sig-
nificantly superior than the PET model (0.790, 95% CI: [0.733, 0.847]
and0.727, 95%CI: [0.649, 0.805]), theCTmodel (0.826, 95%CI: [0.747,
0.905] and0.817, 95%CI: [0.748, 0.887]), the clinicalmodel (0.722, 95%
CI: [0.642, 0.802] and 0.723, 95% CI: [0.648, 0.797]), the senior phy-
sicians (0.676, 95%CI: [0.590, 0.763] and 0.645, 95%CI: [0.554, 0.735]),
and the junior physicians (0.633, 95% CI: [0.548, 0.719] and 0.594, 95%
CI: [0.503, 0.685]) (DeLong’s test: all p <0.05). In addition, the AUPRC,
sensitivity, specificity, PPV, NPV and accuracy of the DLNMS for pre-
dicting occult N1 and N2 metastasis were 0.853, 0.700, 0.905 0.483,
0.960 and 0.882, and 0.849, 0.857, 0.813, 0.333, 0.981, and 0.817,
respectively.

In the prospective cohort (Fig. 3E, F), the DLNMS achieved
AUROCs of 0.914 (95% CI: [0.877, 0.949]) and 0.919 (95% CI: [0.886,
0.942]) in discriminating occult N1 and N2 involvements, and were
evidently better than the PETmodel (0.796, 95%CI: [0.751, 0.841] and
0.712, 95% CI: [0.656, 0.768]), the CT model (0.828, 95% CI: [0.777,
0.879] and 0.835, 95% CI: [0.779, 0.891]), the clinical model (0.749,
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95% CI: [0.708, 0.791] and 0.675, 95% CI: [0.629, 0.721]), the senior
physicians (0.672, 95% CI: [0.623, 0.722] and 0.670, 95% CI: [0.613,
0.723]), and the junior physicians (0.645, 95% CI: [0.596, 0.693] and
0.635, 95% CI: [0.580, 0.691]) (DeLong’s test: all p < 0.05).

Additionally, the AUPRC, sensitivity, specificity, PPV, NPV and accu-
racy of the DLNMS for occult N1 andN2 prediction were 0.871, 0.793,
0.926 0.586, 0.971 and 0.911, and 0.863, 0.833, 0.828, 0.308, 0.982,
and 0.829, respectively.
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Fig. 1 | Flow chart illustrating study design. PET/CT, positron emission tomography-computed tomography; ROI, region of interest; DLNMS, deep learning nodal
metastasis signature; SND, systematic nodal dissection; LND, limited nodal dissection; ROC, receiver operating characteristic curve.
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In subgroup analyses regarding pathological types for patients in
the validation set, external cohort and prospective cohort, the DLNMS
achieved AUROCs of 0.916 (95% CI: [0.885, 0.947]) and 0.934 (95% CI:
[0.915, 0.953]) in adenocarcinoma population for occult N1 and N2
prediction, respectively. Additionally, for squamous cell carcinoma
population, the DLNMS yielded AUROCs of 0.904 (95% CI: [0.842,
0.966]) and 0.858 (95% CI: [0.779, 0.937]) for occult N1 and N2 pre-
diction, respectively (Fig. 3G, H).

For patients in the validation set, external cohort and prospective
cohort, the DLNMS could correct 38.30% occult N1, 73.11% benign N1,
78.13% occult N2, and 53.04% benign N2 diseases in those incorrectly
diagnosed by the PETmodel (Supplementary Fig. 3A&B). Similarly, for
those incorrectly predicted by theCTmodel, theDLNMS could correct
35.42% occult N1, 67.06% benign N1, 93.80% occult N2, and 41.18%
benign N2 diseases (Supplementary Fig. 3C, D).

The calibration curves revealed that the DLNMS yielded good
performances (Supplementary Fig. 4). Furthermore, we evaluated the
clinical usefulness of theDLNMS compared to single-modalmodels for
ONMdetection via decision curve analyses, indicating that the DLNMS
achieved better net benefits than othermodels nomatter for occult N1
or N2 prediction (Supplementary Fig. 5). As summarized in Supple-
mentary Table 4, the positive values of integrated discrimination
improvements (all adjusted p <0.05) and net reclassification index (all
adjusted p <0.05) for occult N1 and N2 predictions could be achieved
when comparing the DLNMS to single-modal models.

Decision support for nodal biopsy
For 366 patients receiving nodal biopsy (Supplementary Table 5), the
DLNMS yielded an AUROC of 0.853 (95% CI: [0.812, 0.895]) for pre-
dicting occult N2 diseases, which was significantly better than the PET

Table 1 | Baseline characteristics of patients in the internal cohort, external cohort and prospective cohort

Characteristics Entire Internal cohort External cohort Prospective cohort p1 value p2 value
(n = 3265) (n = 1911) (n = 355) (n = 999)

Age (years)

>65, n (%) 991 (30.35) 524 (27.42) 133 (37.46) 334 (33.43) <0.001 0.001

≤65, n (%) 2274 (69.65) 1387 (72.58) 222 (62.54) 665 (66.57)

Mean ± SD 60.00 ± 9.31 59.42 ± 9.31 61.78 ± 8.71 60.46 ± 9.42 <0.001 0.005

Sex, n (%) 0.949 0.985

Male 1587 (48.61) 917 (47.99) 171 (48.17) 479 (47.95)

Female 1678 (51.39) 994 (52.01) 184 (51.83) 520 (52.05)

Smoking, n (%) 0.986 0.858

Ever 491 (15.04) 286 (14.97) 53 (14.93) 152 (15.22)

Never 2774 (84.96) 1625 (85.03) 302 (85.07) 847 (84.78)

Radiologic type, n (%) 0.166 0.071

Pure solid 1860 (56.97) 1060 (55.47) 211 (59.44) 589 (58.96)

Subsolid 1405 (43.03) 851 (44.53) 144 (40.56) 410 (41.04)

PET parameters

SUVmax mean ± SD 5.43 ± 4.74 5.25 ± 4.69 5.72 ± 5.21 5.67 ± 4.66 0.086 0.022

MTV, mean ± SD 10.13 ± 15.62 9.84 ± 15.40 10.53 ± 12.36 10.53 ± 17.03 0.427 0.270

TLG, mean ± SD 37.74 ± 160.35 37.07 ± 153.29 37.73 ± 91.45 42.30 ± 190.10 0.938 0.422

Surgery procedure, n (%) 0.993 0.852

Sublobectomy 184 (5.64) 105 (5.49) 19 (5.35) 60 (6.01)

Lobectomy 3045 (93.26) 1785 (93.41) 332 (93.52) 928 (92.89)

Pneumonectomy 36 (1.10) 21 (1.10) 4 (1.13) 11 (1.10)

Location, n (%)

Left 1426 (43.68) 803 (42.02) 166 (46.76) 457 (45.7) 0.097 0.054

Right 1839 (56.32) 1108 (57.98) 189 (53.24) 542 (54.3)

Central 566 (17.34) 346 (18.10) 54 (15.20) 166 (16.62) 0.189 0.317

Peripheral 2699 (82.66) 1565 (81.90) 301 (84.80) 833 (83.38)

Radiological size (cm), mean ± SD 2.58 ± 1.26 2.53 ± 1.22 2.66 ± 1.39 2.64 ± 1.29 0.068 0.030

N1 involvement, n (%) 0.807 0.930

Yes 380 (11.64) 224 (11.72) 40 (11.27) 116 (11.61)

No 2885 (88.36) 1687 (88.28) 315 (88.73) 883 (83.39)

N2 involvement, n (%) 0.291 0.819

Yes 275 (8.42) 156 (8.20) 35 (9.90) 84 (8.41)

No 2990 (91.58) 1755 (91.80) 320 (90.10) 915 (91.59)

Pathological type, n (%) 0.764 0.566

Adenocarcinoma 2776 (85.02) 1633 (85.45) 302 (85.07) 841 (84.18)

Squamous cell carcinoma 340 (10.41) 197 (10.31) 35 (9.86) 108 (10.81)

Others 149 (4.56) 81 (4.24) 18 (5.07) 50 (5.01)

PET, positron emission tomography; SUV, standard uptake value;MTV, metabolic tumor volume; TLG, total lesion glycolysis; SD, standard deviation; p1 value for comparing the internal cohort with
the external cohort; p2 value for comparing the internal cohort with the prospective cohort; categorical variables were analyzed by Pearson χ2 test and Fisher exact test, continuous variables were
compared by Student t-test and Mann-Whitney U test.
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model (0.644, 95% CI: [0.573, 0.715]), the CT model (0.780, 95% CI:
[0.718, 0.841]), the clinical model (0.543, 95% CI: [0.471, 0.715]), the
senior physicians (0.621, 95% CI: [0.554, 0.688]), and the junior phy-
sicians (0.525, 95% CI: [0.457, 0.594]). The AUPRC, sensitivity, specifi-
city, PPV, NPV and accuracy of the DLNMS were 0.857, 0.919, 0.699,
0.436, 0.971 and 0.743, respectively (Fig. 4A & Table 3). In addition,
with an increase in the DLNMS scores, more patients with occult N2
tumors were observed in the nodal biopsy cohort (Fig. 4B). Moreover,
the DLNMS could correct 79.13% occult N2 and 56.41% benign N2
diseases in patients incorrectly diagnosed by the PET model (Fig. 4C).
Similarly, for those incorrectly predicted by the CTmodel, the DLNMS
could correct 100% occult N2 and 41.50% benign N2 diseases (Fig. 4D).

Decision support for surgical treatment
Survival analyses revealed that both N1 and N2 cutoff values could
significantly stratify the prognosis of patients in the validation set and
external cohort (Supplementary Fig. 6). In addition, patients with
clinical stage I NSCLC (including patients receiving LND) were divided
into low-risk (N1 score <0.362 and N2 score <0.356) and high-risk
(N1 score > 0.362 or N2 score > 0.356) groups. The baseline char-
acteristics of 654 clinical stage I patients receiving LND are provided in
Supplementary Table 6. As illustrated in Fig. 5, for the low-risk popu-
lation (Fig. 5A-D), sublobectomy did not compromise oncological
results to lobectomy (3-year overall survival [OS]: 98.1% versus 97.4%,
p =0.458; 3-year recurrence-free survival [RFS]: 90.0% versus 90.6%,
p =0.749), and LND could achieve similar survival outcomes to SND
(3-year OS: 98.1% versus 97.3%, p =0.428; 3-year RFS: 90.4% versus
93.0%, p =0.965). In contrast, for the high-risk population (Fig. 5E–H),
patients receiving lobectomy yielded improved prognosis compared
to those with sublobectomy (3-year OS: 90.9% versus 80.9%, p =0.011;

3-year RFS: 79.0% versus 59.0%, p < 0.001) and SND conferred superior
prognosis to LND (3-yearOS: 91.7% versus 81.7%, p = 0.008; 3-year RFS:
79.2% versus 62.8%, p = 0.001).

Decision support for adjuvant therapy
As illustrated in Fig. 6, for patients diagnosed as pathological stage I
NSCLC (including patients receiving LND), those without post-
operative adjuvant therapy achieved comparable prognosis to those
with postoperative adjuvant therapy in the low-risk group (3-year OS:
98.0% versus 97.5%, p =0.581; 3-year RFS: 91.3% versus 89.3%,
p =0.323) (Fig. 6A&B). Conversely, in the high-risk group (Fig. 6C&D),
patients receiving postoperative adjuvant therapy conferred sig-
nificantly superior oncological results than those without post-
operative adjuvant therapy (3-year OS: 95.9% versus 86.2%, p =0.034;
3-year RFS: 90.5% versus 76.1%, p =0.012).

Biologic basis of DLNMS
Both higher N1 andN2 scoreswere significantly related to the presence
of aggressive histologic patterns including lymphovascular invasion
(LVI), visceral pleural invasion (VPI), tumor spread through air space
(STAS), micropapillary component, and solid component (all
p <0.001) (Fig. 7A, B). In addition, among patients with available data
for common gene alternations, patients with high N1 scores were sig-
nificantly relevant to the higher frequency of BRAF mutation
(p < 0.001) and larger proportion of AKL mutation (p =0.004)
(Fig. 7C). Patients with high N2 scores yielded a significantly lower
mutation rate of EGFR (p < 0.001) (Fig. 7D). In the gene set enrichment
analysis (GSEA) and single sample gene set enrichment analysis
(ssGSEA) analysis (Fig. 7E–G), pathways related to tumors proliferation
such as signaling by GPCR, NTRKs and WNT in cancer were
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nodal metastasis signature; PET, positron emission tomography; CT, computed
tomography.
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significantly unregulated in patients with high N1 and N2 scores.
Finally, in the analyses of the tumor microenvironments, tumors with
high N1 scores showed more infiltrations of central memory CD4
T cells, mast cells and plasmacytoid dendritic cells. High N2 scores
were significantly associated with greater proportions of central
memory CD4 T cells and central memory CD8 T cells (Fig. 7H).

Discussion
Preoperative nodal staging is a critical determinant for individualized
treatments of patients with NSCLC10. For clinical stage N0 NSCLC, the
occurrence of ONMwould reduce the theoretical benefits of the initial
treatments, therefore inadvertently excluding patients from optimal
therapeutic strategies. In this regard, obtaining an accurate pretest

Fig. 3 | Predictive performances of the DLNMS for occult nodal metastasis in
clinical stage N0 non-small cell lung cancer. ROC curves and performance
metrics of models to predict occult N1 and N2 in the (A, B) validation set,
C, D External cohort and (E, F) prospective cohort. ROC curves and performance
metrics of the DLNMS to predict occult nodal metastasis in (G) adenocarcinoma
and (H) squamous cell carcinoma for patients in validation set, external cohort and
prospective cohort. n = 383, 355, and 999 biologically independent samples were

examined for the validation set, external cohort, and prospective cohort, respec-
tively. p values from Delong’s tests were adjusted by the Benjamini and Hochberg
corrections for 5 multiple comparisons. Source data are provided as a Source Data
file. ROC, Receiver operating characteristic curve; DLNMS, deep learning nodal
metastasis signature; PPV, positive predictive value; NPV, negative predictive value;
PET, positron emission tomography; CT, computed tomography.

Table 3 | Areas under precision-recall curves of different models for occult N1 and N2 prediction

Models Occult N1 prediction Occult N2 prediction

Validation set External cohort Prospective cohort Validation set External cohort Prospective cohort Biopsy cohort

DLNMS 0.882 0.853 0.871 0.876 0.849 0.863 0.857

PET model 0.756 0.731 0.748 0.753 0.710 0.741 0.752

CT model 0.779 0.751 0.764 0.765 0.746 0.755 0.761

Clinical model 0.656 0.612 0.627 0.694 0.635 0.648 0.695

Senior physicians 0.504 0.562 0.538 0.563 0.583 0.569 0.550

Junior physicians 0.582 0.590 0.599 0.514 0.555 0.534 0.514

DLNMS deep learning nodal metastasis signature; PET positron emission tomography; CT computed tomography.
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probability of ONM prior to treatments is of paramount importance.
The current study managed to develop a cross-modal deep learning
signature based on PET/CT images. The proposed DLNMS achieved
AUROCs of 0.958, 0.879 and 0.914 for occult N1 prediction, and 0.942,
0.875 and 0.919 for occult N2 prediction, in the validation set, external
cohort and prospective cohort, respectively. Moreover, high-risk
patients defined by the DLNMS could benefit from nodal biopsy,
lobectomy, SND and adjuvant therapy.

In clinical practice, clinical physicians mainly rely on certain clin-
ical characteristics especially imaging features to capture the ONM
risks of clinical stage N0 NSCLC. Evidences have emerged that meta-
bolic and morphologic parameters on PET/CT, such as tumor size,
central location, consolidation ratio, and metabolic value might pro-
vide efficient clues for ONM diseases32–35. Nevertheless, this subjective
evaluation yields low AUROCs of 0.525-0.676 due to heterogenous
experiences among physicians, and is incapable of comprehensively
estimating the probability of ONM, so as to convey a direct implication
to the management strategy for a given patient. The triumph of indi-
vidually quantifying ONM risks based on predictive models repre-
sented a crucial step. Predictive rules integrating clinical variables
could calculate the probability of ONM involvement in clinical N0
NSCLC. However, in spite of their higher accuracies than clinical phy-
sicians, these clinical models were far from meeting clinical require-
ments, resulting in AUROCs of 0.700-0.75636–38, which was also
observedby the current study, our clinicalmodel only yieldedAUROCs
of 0.675-0.794 for ONM identification. As such, more valuable radio-
graphic features for predicting ONM should be investigated to achieve
clinical utility.

Radiomics, which allows quantitative extraction of high-
dimensional radiological features, has provided a promising
approach for more accurate evaluation of the lymph node status of
lung cancer. Several studies have been successful in recognizing ONM

in early-stage NSCLC utilizing radiomics phenotypes, which yielded
AUROC values of 0.808 to 0.82039–41. Despite such inspiring success,
the above radiomics studies were limited in the CT modal, and the
added value of PET radiomics features for ONM prediction of NSCLC
are still ambiguous. With the development of multimodal algorithms,
the deep learning approach has been applied to analyze PET/CT
imaging26–31. Based on the main advancements of deep learning tech-
nology, multimodal fusion primarily involved three strategies: input-
level concatenation42,43, feature-level combination44, and output-level
average45. Our preliminary experiments investigated multiple deep
learning architectures and fusion strategies, revealing feature-level
fusion based on the ResNet 1846 backbone yield better efficiencies and
was finally utilized to generate our DLNMS. The current study
demonstrated that the cross-modal DLNMS incorporating PET and CT
radiomics features achieved AUROCs of 0.875-0.958, make it superior
to single-modalmodels based on PET or CT alone for ONMprediction.

In the domain of machine learning, one issue worthmentioning is
the method for performance evaluation. On an imbalanced dataset
with a low proportion of positive classifications, the PR curvemight be
more effective than the ROC curve in quantifying positive dis-
criminative ability47,48. However, what needs to be emphasized is that
the PR curve only focuses on the efficiency to identify diseased cases
but ignores those correctly predicted healthy cases49. Different from
conventional classification tasks, ONMrecognitionwould pose a direct
impact on treatment decisions, which emphasizes model’s dis-
criminative abilities for both positive and negative subjects. If a patient
diagnosed as healthy actually is ONM disease (false negative), this
patient would directly lose the opportunity of receiving optimal
treatments. The AUPRC is a summary indicator comprehensively
quantifying the positive and negative predictive capabilities50, we
therefore chose the Youden Index based on ROC curves to determine
the cutoff values of DLNMS.
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Fig. 5 | Prognosis of clinical stage I non-small cell lung cancer treated with
different surgical strategies for low-risk andhigh-riskpatients in thevalidation
set and external cohort. Survival comparisons between (A, B) sublobectomy
versus lobectomy and (C, D) LND versus SND in low-risk patients. Survival com-
parisons between (E, F) sublobectomy versus lobectomy and (G, H) LND versus

SND in high-risk patients. n = 1324 biologically independent samples were exam-
ined. Survival data were compared by the log-rank test. Source data are provided as
a Source Data file. SND, systematic nodal dissection; LND, limited nodal dissection;
OS, overall survival; RFS, recurrence-free survival.
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Whether a radiomics signature can be introduced into the clin-
ical workflow to optimize the treatment decision is the benchmark
for demonstrating its clinical utility. Distinguished from other
radiomics studies that are limited in model constructions and effi-
ciency evaluations, the current study took a further step to elucidate
the potential application scenarios of the proposed DLNMS. In a
presurgical setting, nodal biopsy serves as the gold-standard refer-
ence for N2 staging, but concurrently suffers from its invasive nature,
thus emphasizing the necessity of equipoising the superiority and
inferiority of this dual-nature procedure to individualize the
N2 staging of NSCLC5–7. The DLNMS maintained efficiencies in the
nodal biopsy population, therefore sparing patients with low
N2 scores from this invasive procedure and ensuring that patients
with high N2 scores receive nodal biopsy for adequate N2 staging.
Additionally, for surgical decisions, sublobectomy and LND, with
more lung preserves than conventional lobectomy and SND, have
been increasingly adopted in the surgical treatment of clinical stage I
NSCLC. However, if ONM occurs, lobectomy and SND are more
appropriate choices8–10. Our results demonstrated that sub-
lobectomy and LND were effective for patients with low ONM risks,
while lobectomy and SNDweremandatory in patients with high ONM
risks to achieve the oncological radicality. Finally, in a postsurgical
setting, adjuvant therapy eradicates the residual micrometastastic
disease, but simultaneously has significant side effects, thus calling
for appropriate patient selection to identify candidates for this
double-edged sword11,12. Based on our results, patients with low risks

would not benefit from adjuvant therapy. In contrast, adjuvant
therapy conferred survival superiority in patients with high risks.

Several limitations of this study should be acknowledged. Firstly,
as a retrospective study, selection bias was inevitable, despite the
inclusion of a prospective cohort for validation, and whether our
findings are applicable to other territories remains unknown. To be
confirmed, an international clinical trial is required. Secondly, themain
histology of included cases were adenocarcinomas, and different
histologies are represented by discrepant radiological phenotypes and
tumor aggressiveness, contributing to their heterogeneity in the
metastasis nature. Thus, a future study with adequate sample sizes in
histologic subgroups should be conducted to validate the efficiency of
the DLNMS. Thirdly, high-resolution CT findings is necessary to ana-
lyze the subtle images, however, not all PET/CT equipment harbor the
capability of outputting such high-quality images, whichmight reduce
the clinical applicability of the DLNMS in certain institutions. Finally,
the main limitation of the current deep learning technique regarding
medical imaging analyses is that, its black-box setting has the problem
of interpretability. Despite our exploration of the biologic basis of the
DLNMS, its working rationale was ambiguous and the predictive fea-
tures were nameless. Therefore, studies deciphering the opaqueness
of deep learning features in future is warranted.

In conclusion, the developedDLNMS is reliable in predictingONM
of clinical stageN0NSCLC. Furthermore, theDLNMShas potentials for
guiding individualized decisions for nodal biopsy, surgery and adju-
vant therapy in clinical stage N0 NSCLC.
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Fig. 6 | Prognosis of pathological stage I non-small cell lung cancer with
adjuvant therapy and without adjuvant therapy for low-risk and high-risk
patients in the validation set and external cohort. Survival comparisons
between with adjuvant therapy versus without adjuvant therapy in (A) and (B)

low-risk and (C) and (D) high-risk patients. n = 1182 biologically independent sam-
ples were examined. Survival data were compared by the log-rank test. Source data
are provided as a Source Data file. POAT, postoperative adjuvant therapy; OS,
overall survival; RFS, recurrence-free survival.
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Methods
Study design and participants
This study was implemented under the approval of the Institutional
Review Board of Shanghai Pulmonary Hospital, The First Affiliated
Hospital of Nanchang University, Affiliated Hospital of Zunyi Medical
College and Ningbo HwaMei Hospital. Written informed consent was
waived for the internal and external cohorts and acquired for the
prospective cohort. The study design is described in Fig. 1. TheDLNMS
was developed using an internal cohort (entire: n = 1911, occult N1
proportion = 11.64%, occult N2 proportion = 8.42%; training: n = 1528,

occult N1 proportion = 11.45%, occult N2 proportion = 8.31%; valida-
tion: n = 383, occult N1 proportion = 12.79%, occult N2 proportion =
7.57%). Subsequently, a multicenter external cohort (n = 355, occult N1
proportion = 11.27%, occult N2 proportion = 9.90%) and a multicenter
prospective cohort (n = 999, occult N1 proportion = 11.64%, occult N2
proportion = 8.41%; ClinicalTrials.gov, NCT05425134) were adopted to
fully validate the predictive efficiencies of the DLNMS by benchmark-
ing the single-modal deep learning model, clinical model and physi-
cians. Moreover, the values of the DLNMS for guiding nodal biopsy,
surgery and adjuvant therapy decision-makings were explored via

0

50

Micropapillary (%)

So
lid

 (%
)

LVI (%)

VPI (%
)

STAS (%
)

25

0

50

Micropapillary (%)

So
lid

 (%
)

LVI (%)

VPI (%
)

STAS (%
)

25

High N1 scoreLow N1 score All p < 0.001 High N2 scoreLow N2 score All p < 0.001

19.0

6.8

13.0

3.6

8.2

7.1

13.2

26.1

28.5

43.4

18.2

6.9

12.3
7.0

3.2

7.6

12.8

26.5

25.7

37.8

Low High Low High Low High Low High Low High
0

2

4

6

8

10
40

50

60

70

80

1.1
0

1.1
0

4.94.9

11.7

0

3.3

0

3.3

7.4

5.0

7.4

5.0

72.0
66.7

Pe
rc

en
ta

ge
(%

)

EGFR KRAS BRAF ALK ROS1
p = 0.230 p = 0.340 p < 0.001 p = 0.004 p = 0.249

Low High Low High Low High Low High Low High
0

2

4

6

8

10
40

50

60

70

80

1.1
0

1.1
0

5.6

7.7

5.6

7.7

4.2

7.7

4.2

7.7
6.5

1.0

6.5

1.0

73.6

58.5

Pe
ce

nt
ag

e
(%

)

EGFR KRAS BRAF ALK ROS1
p < 0.001 p = 0.156 p = 0.590 p = 0.343 p = 0.227

DLNMS N1 score DLNMS N2 score

Platelet activation, signaling and aggregation

MyD88:MAL(TIRAP) cascade initiated on plasma membrane

Toll Like Receptor 2 (TLR2) Cascade

Signaling by NTRK1 (TRKA)

Signaling by NTRKs

RHOB GTPase cycle

Interleukin−17 signaling

Nuclear Events (kinase and transcription factor activation)

FLT3 Signaling

Inositol phosphate metabolism

G alpha (12/13) signalling events

Diseases of glycosylation

CDC42 GTPase cycle

NCAM signaling for neurite out−growth

NRAGE signals death through JNK

RHOA GTPase cycle

GPCR downstream signalling

RAC1 GTPase cycle

Signaling by GPCR

G alpha (q) signalling events

1.50 1.75 2.00 2.25 2.50
NES

D
es

cr
ip

tio
n

0.010

0.015

0.020

0.025

0.030

p.adjust

setSize

0

50

100

150

200

RHOF GTPase cycle

Interleukin−3, Interleukin−5 and GM−CSF signaling

Cargo recognition for clathrin−mediated endocytosis

Toll Like Receptor 4 (TLR4) Cascade

NR1H2 and NR1H3−mediated signaling

Response to elevated platelet cytosolic Ca2+

Extracellular matrix organization

GPVI−mediated activation cascade

signaling by WNT in cancer

Post−translational protein phosphorylation

ISG15 antiviral mechanism

Antiviral mechanism by IFN−stimulated genes

Platelet activation, signaling and aggregation

Nuclear Events (kinase and transcription factor activation)

ECM proteoglycans

Toll−like Receptor Cascades

MyD88:MAL(TIRAP) cascade initiated on plasma membrane

Interferon Signaling

Signaling by NTRK1 (TRKA)

Signaling by NTRKs

1.50 1.75 2.00 2.25 2.50
NES

D
es

cr
ip

tio
n

setSize

0

50

100

150

200

0.010

0.012

0.014

p.adjust

ns ns ns ns ns ns ** ns ns ns ns ns ns ns ns ** ns ns ns ns ns ns * ns ns ns ns ns

0

2.5

5

7.5

10

Acti
va

ted
 B ce

ll

Acti
va

ted
 C

D4 T
 ce

ll

Acti
va

ted
 C

D8 T
 ce

ll

Acti
va

ted
 de

nd
riti

c c
ell

CD56
bri

gh
t n

atu
ral

 ki
lle

r c
ell

CD56
dim

 na
tur

al 
kill

er 
ce

ll

Cen
tra

l m
em

ory
 C

D4 T
 ce

ll

Cen
tra

l m
em

ory
 C

D8 T
 ce

ll

Effe
cto

r m
em

eo
ry 

CD4 T
 ce

ll

Effe
cto

r m
em

eo
ry 

CD8 T
 ce

ll

Eos
ino

ph
il

Gam
ma d

elt
a T

 ce
ll

Im
matu

re 
 B ce

ll

Im
matu

re 
de

nd
riti

c c
ell

Mac
rop

ha
ge

Mas
t c

ell

MDSC

Mem
ory

 B ce
ll

Mon
oc

yte

Natu
ral

 ki
lle

r c
ell

Natu
ral

 ki
lle

r T
 ce

ll

Neu
tro

ph
il

Plas
mac

yto
id 

de
nd

riti
c c

ell

Reg
ula

tor
y T

 ce
ll

T fo
llic

ula
r h

elp
er 

ce
ll

Ty
pe

 1 
T he

lpe
r c

ell

Ty
pe

 17
 T he

lpe
r c

ell

Ty
pe

 2 
T he

lpe
r c

ell

Types of immune cell

Pr
op

or
tio

n 
(%

)

Low N1 score High N1 score

ns ns ns ns ns ns * * ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns

0

2.5

5

7.5

10

Acti
va

ted
 B ce

ll

Acti
va

ted
 C

D4 T
 ce

ll

Acti
va

ted
 C

D8 T
 ce

ll

Acti
va

ted
 de

nd
riti

c c
ell

CD56
bri

gh
t n

atu
ral

 ki
lle

r c
ell

CD56
dim

 na
tur

al 
kill

er 
ce

ll

Cen
tra

l m
em

ory
 C

D4 T
 ce

ll

Cen
tra

l m
em

ory
 C

D8 T
 ce

ll

Effe
cto

r m
em

eo
ry 

CD4 T
 ce

ll

Effe
cto

r m
em

eo
ry 

CD8 T
 ce

ll

Eos
ino

ph
il

Gam
ma d

elt
a T

 ce
ll

Im
matu

re 
 B ce

ll

Im
matu

re 
de

nd
riti

c c
ell

Mac
rop

ha
ge

Mas
t c

ell

MDSC

Mem
ory

 B ce
ll

Mon
oc

yte

Natu
ral

 ki
lle

r c
ell

Natu
ral

 ki
lle

r T
 ce

ll

Neu
tro

ph
il

Plas
mac

yto
id 

de
nd

riti
c c

ell

Reg
ula

tor
y T

 ce
ll

T fo
llic

ula
r h

elp
er 

ce
ll

Ty
pe

 1 
T he

lpe
r c

ell

Ty
pe

 17
 T he

lpe
r c

ell

Ty
pe

 2 
T he

lpe
r c

ell

Types of immune cell

Pr
op

or
tio

n 
(%

)

Low N2 score High N2 score

Fig. 7 | Biologic basis of the DLNMS. A, B Radar charts illustrating histologic
patterns between low-score and high-score patients. C, D Bar charts showing fre-
quency of gene alternations between patients with low scores and high scores.
E, FDot plots showing the top 20 upregulatedmolecular pathways in patients with
high scores, p values were adjusted by the Benjamini and Hochberg corrections.
G, H Boxplots comparing proportions of infiltrated immune cells between low-
score and high-score patients. The centre of box denotes the 50th percentile, the
bounds of box contain the 25th to 75th percentiles, the whiskers mark the max-
imum and minimum values, values beyond these upper and lower whiskers are

considered outliers and marked with dots. n = 144 biologically independent sam-
ples were examined. Source data are provided as a Source Data file. DLNMS, deep
learning nodal metastasis signature; LVI, lymphovascular invasion; VPI, visceral
pleural invasion; STAS, tumor spread through air space; NES, normal enrichment
score; EGFR, epidermal growth factor receptor; KRAS, kirsten ratsarcoma viral
oncogene homolog; BRAF, v-raf murine sarcoma viral oncogene homolog B1; ALK,
anaplastic lymphoma kinase; ROS1, c-ros oncogene 1; MDSC, myeloid-derived
suppressor cells.
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efficiency evaluations in a nodal biopsy cohort (n = 366) and survival
stratifications on different risk groups. Finally, the biologic basis of
DLNMS was investigated by comparing histologic patterns, common
genetic alternations, genetic pathways, and infiltrations of immune
cells inmicroenvironments between patients with low and high scores.
Patient selection details are provided in Supplementary Method 1 and
Supplementary Fig. 7.

Data acquisition and deep learning algorithm
Clinical informationwas retrieved frommedical records, and follow-up
data were acquired from outpatient visits and telephone interviews.
The pathologic nodal status in the internal cohort, external cohort and
prospective cohort was defined based on surgically resected speci-
mens and that in the nodal biopsy cohort was defined based on nodal
biopsy specimens. SND was defined as dissected N2 stations ≥ 3 with
complete N1 dissection according to National Comprehensive Cancer
Network guidelines10. Follow-up protocol details are described in
Supplementary Method 2. The region of interest of the primary tumor
was annotated by a junior thoracic radiologist (T.W., with 5 years of
experiences) and confirmedby an expert thoracic radiologist (J.S., with
25 years of experiences). Details regarding the parameters of PET/CT
scanners and tumor annotation are summarized in Supplementary
Method 3 & 4. The structure of the DLNMS was illustrated in Supple-
mentary Fig. 8. Two ResNet18 backbone networks46 with the same
structure were used to extract features from PET and CT images
separately. Then, the PET and CT features were fused using the concat
operation and input into a fully connected layer for classifications of
ONM. The DLNMS consisted of two separate models predicting occult
N1 and N2, respectively. For occult N1 prediction, data were divided
into N1 metastasis and non-N1 metastasis. Similarly, in N2 prediction,
data were divided into N2metastasis and non-N2metastasis. Details of
image preprocessing and model construction procedures are pro-
vided in Supplementary Method 5-8. All computer codes for pre-
processing and training are summarized at https://github.com/
zhongthoracic/DLNMS.

Cutoff calculation
Based on the maximum Youden index in the training set, the cutoff
values of all models were determined to calculate the performance
metrics and define the risk groups. The cutoff values of the DLNMS for
occult N1 and N2 were calculated as 0.362 and 0.356, respectively.
Therefore, patients with N1 scores > 0.362 and <0.362 were considered
tohavehigh and lowoccultN1 probabilities, respectively, and thosewith
N2 scores > 0.356 and <0.356 were considered to have high and low
occult N2 probabilities, respectively. Finally, by combining the N1 and
N2 scores, patients were divided into high-risk (N1 scores > 0.362 or
N2 scores >0.356) and low-risk (N1 scores <0.362 andN2 scores <0.356)
groups.

Benchmarking
The predictive efficiency of the DLNMS was compared to the PET
model, CT model, clinical model, senior physicians and junior physi-
cians. The PET model and CT model were developed by the deep
leaning algorithm based on the PET modality and CT modality,
respectively. The clinical model was constructed by logistic analyses
on the training set. For physicians, 3 senior radiologists and 3 junior
radiologists blinded to pathological information were required to
classify the ONM status based on imaging data. Benchmarking details
are summarized in Supplementary Method 9.

Comprehensive treatments support
For nodal biopsy decisions, the predictive efficiency and performance
metrics of the DLNMS in the nodal biopsy cohort were evaluated. For
surgery decisions of clinical stage I NSCLC, ONM risks for patients
receiving LND were predicted by the generated DLNMS and included

into analyses (Supplementary Method 10). The prognosis of patients
receiving lobectomy versus sublobectomy and SND versus LND was
compared between the DLNMS defined low-risk and high-risk groups,
respectively. For adjuvant therapy decisions of pathological stage I
NSCLC, the oncological results of patients receiving adjuvant therapy
versus not receiving adjuvant therapy were compared between the
low-risk and high-risk groups.

Biologic basis exploration
According to the cutoff values, distributions of patients with
N1 scores < 0.362 versus N1 scores > 0.362 and N2 scores < 0.356
versus N2 scores > 0.356 in aggressive histologic patterns (LVI, STAS,
VPI, micropapillary component, and solid component) and common
genetic alternations (EGFR, KRAS, BRAF, ALK, and ROS1) were com-
pared, respectively. Additionally, based onpatients with NSCLC in the
radiogenomics dataset (a public dataset comprising paired PET/CT
and RNA sequencing data, https://wiki.cancerimagingarchive.net),
the GSEA and ssGSEA were implemented to reveal heterogeneity in
genetic pathways and infiltration of immune cells in tumor micro-
environment between patients with different ONM scores. GSEA and
ssGSEA procedures are detailed in Supplementary Method 11 & 12.

Statistical analysis
Categorical variableswere analyzedbyPearson χ2 test andFisher exact
test, continuous variables were compared by Student t-test andMann-
Whitney U test. The clinical model was generated based on the logistic
regression analyses using a p-value level of 0·1. Survival data were
assessed using the Kaplan-Meier method, log-rank test and Cox
regression analyses. Predictive efficiency was evaluated by the AUROC
and AUPRC. AUROCs among models were compared using the
Delong’s test. Performance metrics containing sensitivity, specificity,
accuracy, PPV, and NPV were generated based on cutoff values
determinedby themaximumYouden index in the training set. CIswere
computed by 10, 000 bootstrap replicates. The Benjamini and Hoch-
berg method was utilized to correct p values from multiple compar-
isons. Analyses mentioned above was conducted using SPSS (version
25.0, IBM SPSS Statistics) and R program (version 4.1.3, http://www.
Rproject.org). A p < 0·05 was regarded as having statistical
significance.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The PET/CT imagingdata in the current study arenot publicly available
for patient privacy purposes. However, if researchers wish to access
our data solely for scientific research purposes and arewilling to sign a
data transfer agreement, the corresponding author can share the
relevant data. Source data are provided with this paper.

Code availability
Are provided at GitHub (https://github.com/zhongthoracic/DLNMS).
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