
A pan-grass transcriptome reveals patterns of cellular 
divergence in crops

Bruno Guillotin1,2, Ramin Rahni1, Michael Passalacqua3, Mohammed Ateequr Mohammed2, 
Xiaosa Xu3, Sunil Kenchanmane Raju1,4, Carlos Ortiz Ramírez1,†, David Jackson3, Simon 
C. Groen5, Jesse Gillis6, Kenneth D. Birnbaum1,2,*

1New York University, Center for Genomics and Systems Biology

2New York University Abu Dhabi, Center for Genomics and Systems Biology

3Cold Spring Harbor Laboratory

4Michigan State University, East Lansing, MI

5University of California, Riverside

6University of Toronto, Physiology Department

Abstract

Different plant species within the grasses were parallel targets of domestication, giving rise to 

crops with distinct evolutionary histories and traits1. Key traits that distinguish these species are 

mediated by specialized cell types2. Here, we compare the transcriptomes of root cells in three 

grass species—Zea mays (maize), Sorghum bicolor (sorghum), and Setaria viridis (Setaria). We 

first show that single-cell and single-nucleus RNA-seq provide complementary readouts of cell 

identity in both dicots and monocots, warranting a combined analysis. Cell types were mapped 

across species to identify robust, orthologous marker genes. The comparative cellular analysis 

shows that the transcriptomes of some cell types diverged more rapidly than others—driven, in 

part, by recruitment of gene modules from other cell types. The data also show that a recent whole 

genome duplication provides a rich source of new, highly localized gene expression domains that 

favor fast-evolving cell types. Together, the cell-by-cell comparative analysis shows how fine-scale 

cellular profiling can extract conserved modules from a pan transcriptome and shed light on the 

evolution of cells that mediate key functions in crops.
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Single-cell mRNA profiling has opened up new opportunities to study cellular evolution by 

comparing gene expression in specialized cells across species3,4. In plants, high-resolution 

cellular profiling also has the potential to associate cell-level transcriptional regulation to 

key agricultural traits, many of which are mediated by specialized cells5.

Zea mays (maize) is a staple crop and Sorghum bicolor (sorghum) is an important dryland 

crop and biofuel candidate that is closely related to maize, separated by about 12 million 

years6,7. However, the two species differ substantially in key traits such as drought 

and chilling tolerance, and release of root exudates that shape soil interactions8-10. The 

importance of the two crops, their evolutionary proximity, and their functional differences 

present a novel opportunity for comparative analysis of cellular evolution in plants11,12. 

In addition, since sharing a common ancestor with sorghum, maize underwent a whole 

genome duplication (WGD) 5 to 12 million years ago, likely following a hybridization 

(allopolypoidy)7,13. Comparing patterns of gene expression at the cell level in maize, 

sorghum, and outgroup Setaria viridis (Setaria) provides an opportunity to examine cellular 

evolution and the role of gene duplications, including the paralogous genes generated by the 

WGD (homeologs)7,14.

Cells Provide Depth, Nuclei Breadth

Single-cell analyses in plants have relied on the generation of protoplasts by enzymatic 

digestion of cell walls15. However, certain tissues and even some species like sorghum 

are quite recalcitrant to digestion. There is also historic concern about the effects of 

protoplast generation on the cellular transcriptome, leading to growing interest in nuclear 

profiling16-18. To assess the fidelity of nuclear profiling in detail across dicots and monocots, 

we first compared single-cell vs single-nucleus profiles in both Arabidopsis thaliana 
(Arabidopsis/At, a dicot model with plentiful resources, 15,967 cells and 17,373 nuclei) 

and maize (Zm, a monocot model, 4,235 cells19 and 2,668 nuclei; Supplementary Table 1).

The number of Unique Molecular Indices (UMIs) was 10 times (At) and 6 times (Zm) 

higher in cells compared to nuclei (Extended Data Fig. 1a), similar to animal studies20. 

Accordingly, the average number of genes detected was 2.7 times (At) and 1.4 times (Zm) 

higher in cells than in nuclei (Extended Data Fig.1b, Supplementary Table 1). However, 

despite the lower mRNA content, nuclear profiling detected 89% (At) and 88% (Zm) of total 

genes present in cells (Supplementary Table 1).

The “pseudo-bulked” transcriptomes of both cells and nuclei displayed a high correlation 

to whole-root transcriptomes (r ~ 0.7-0.8, Extended Data Fig. 1c), confirming that both 

sampling methods generally reflected expression patterns of intact tissue.

In both Arabidopsis and maize, cells and nuclei generated UMAP clusters corresponding 

to all the major cell identities21 (Fig. 1a-c; Extended Data Fig. 2, 3). However, in both 

species, the nuclear dataset generated fewer distinct clusters, often failing to distinguish 

between closely related or subcellular identities (Extended Data Fig. 2, 3). For example, 

in maize, stele cells contained a subcluster that we identified as xylem cells, whereas no 

such subcluster was apparent in the nuclear cluster analysis (Extended Data Fig. 3). Using 
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a down-sampling approach on each dataset, a general rule-of-thumb emerged that twice 

as many nuclei are needed to discover the same number of clusters as cells/protoplasts 

(Extended Data Fig. 4a,b). Thus, the shallower depth of nuclear profiles provides less 

resolution for classification of cell identity—a drawback that down-sampling showed we 

could rectify, at least in part, by increasing the number of nuclei.

Either simultaneous or independent analysis of cells and nuclei generated clusters that 

reflected the same underlying biological patterns (Fig. 1a-c, Extended Data Fig. 4c,d). 

The highest-scoring markers extracted from nuclei generally matched the highest-scoring 

ones from cells (Fig. 1c,d Extended Data Fig. 4d). In addition, the assignment of cells to 

specific clusters was stable when cells or nuclei were clustered either alone or together 

(Supplementary Table 2).

One advantage of nuclear profiles was their ability to capture cells from tissues that are 

recalcitrant to enzymatic digestion, giving a better representation of cell identities (Fig. 

1e, Extended Data Fig. 3d). For example, in maize, we detected a unique cluster in single-

nucleus profiling not present in single-cell profiling, which we confirmed as columella cells 

using previously published RNA-seq profiles of hand-sectioned root tissue19.

In Arabidopsis, we found that 14% of total genes (3,218) were differentially expressed 

between cells and nuclei in a cluster-by-cluster analysis (Supplementary Table 3). Cells 

showed a higher proportion of stress related genes (Fig. 1f, Extended Data Fig. 5a,b). A 

similar analysis in maize, sorghum and Setaria also supported a lower stress response in 

nuclei than cells (Supplementary Table 3). However, most of the differences between cell 

and nuclear profiling appeared to be related to compartmental RNA stability. For example, 

mRNAs enriched in nuclei vs. cells significantly overlapped with transcripts shown to have 

higher decay rates in the cytoplasm22 (p=1.98e−11; Extended Data Fig. 5c). We conclude 

that combining cell and nuclei profiles has the advantage of uncovering cell type-specific 

protoplast responsive genes, while also providing depth in transcriptional readouts.

Conserved Cell-type Markers in Cereals

Given the comprehensive coverage of a combined analysis, we generated both whole cell 

and nucleus profiling to investigate cellular evolution in the maize-sorghum-Setaria clade. 

Thus, we generated profiles for sorghum (3,510 cells and 7,620 nuclei) and Setaria (10,613 

cells and 12,192 nuclei, Supplementary Table 1). We took advantage of prior comparative 

genomic sequence analyses in maize, sorghum, and Setaria that mapped orthologs among 

the three species, including the homeologs created by WGD in maize11,14 (hereafter 

subgenome M1 and M2). We used a set of single-copy orthologs in the three species 

to cluster all cells and nuclei together in a single step and then predicted cell identity 

using known cell type-specific marker genes in maize19 (Fig. 2a, Supplementary Table 1, 

Methods).

To validate the mapping, we: 1. performed an independent MetaNeighbor analysis, which 

uses neighbor voting to quantify the similarity of cell clusters across datasets using a given 

marker set of genes and their orthologs; 2. employed an additional machine learning-based 
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clustering method, scGen, to confirm the cluster membership23 (Extended Data Fig. 6); 3. 

conducted whole mount in situ hybridizations in maize and sorghum (Fig. 2b, Extended 

Data Fig. 7, 8); 4. and performed spatial transcriptomics in maize (Fig. 2c, Extended Data 

Fig. 7), altogether confirming the maize-to-sorghum-to-Setaria mapping of cell identities. 

Thus, we could use the well-annotated maize cell type map for rapid generation of a 

high confidence cellular-resolution “pan-transcriptome” of these key crop species, including 

hundreds of new cell type-specific marker genes (Supplementary Table 4).

One potential use of cell type-specific pan-transcriptome data is to search for highly 

localized and conserved gene expression modules. We used MINI-EX to identify cell type-

specific networks across the three grass species24. The analysis revealed 15 transcription 

factors (TFs) and putative targets (regulons) conserved in specific cell types across all 

three species (Extended Data Fig. 9a, Supplementary Table 5). In five of the fifteen cases, 

mutants in predicted TFs or direct Arabidopsis orthologs have been shown to exhibit cell 

type-specific phenotypes corresponding to the conserved regulon localization25-29. These 

results highlight the ability of comparative cell type analyses to reveal conserved cellular 

mechanisms across species and connect specific genes to specific cellular functions.

Impact of Maize WGD on Cellular Identity

The cellular map across species also provided the opportunity to examine how homologous 

cell types have diverged over the millions of years since the three species split. We first 

focused on the effects of gene duplication, comparing homeologs from the WGD to several 

other duplicate classes not identified as within WGD segments: gene pairs that arose from 

tandem, transposon-mediated, proximal (separated by ≤10 genes), and dispersed (separated 

by > 10 genes) duplicate pairs (Methods)11.

We used concordance between sorghum and Setaria to infer ancestral expression domains 

for each duplicate gene pair. We then developed a simple metric to represent the degree 

of overlap vs. complementarity in cellular domains between duplicate pairs, ranging from 

consistently higher expression of one homeolog (dominance), to co-expression, to regulatory 

subfunctionalization of homeolog pair expression30,31 (Fig. 2d). We then determined 

duplicated genes that expanded their expression domain to new cell types in comparison 

to ancestral domains (regulatory neofunctionalization, blue bars in Fig. 2d, Methods)32,33. 

We note that we cannot determine if differences in gene expression between duplicated 

genes occurred in the parent genomes or, more likely, after WGD13,32,34. In addition, herein, 

we use the terms neo- and sub-functionalization to refer strictly to patterns in transcriptional 

domains at the cell-type level.

Overall, WGD homeologs made a more prevalent contribution to expression domain 

expansion (neofunctionalization) than other classes of duplicates. This was because 

they had a relatively low proportion of the co-expressed category, which showed no 

neofunctionalization (Fig. 2e,f, Extended Data Fig. 9.b-d). Rather, WGD homeologs were 

enriched in both dominance and subfunctionalized categories, which both showed high 

levels of neofunctionalization in new cell types (Fig. 2e,f, Extended Data Fig 9.b-d). This 
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trend did not appear to be driven by the age of the duplication as other duplicate classes had 

similar mean Ks values to WGD35 (Methods, Extended Data Fig. 9.b-h).

In keeping with Genome Balance models, we observed that co-expressed WGD homeologs 

showed expression patterns indicative of dosage compensation36,37, while this pattern was 

weaker or non-existent in other duplicate classes (Fig. 3a, Extended Data Fig. 10a-c).

In addition, 66% percent of all regulatory neofunctionalization cases in the WGD came 

from the dominance category, with a slightly higher proportion from the M1 subgenome14,38 

(Supplementary Table 6). Furthermore, dominant homeologs showed significantly higher 

cell type-specificity than co-expressed homeologs (τ, Methods, Fig.3b). Together, these 

trends meant that gene pairs that exhibited dominance patterns after WGD made the largest 

contribution to transcriptional divergence of cell types.

As found in previous studies34,39, dominant members of a homeolog pair showed greater 

purifying selection (Fig. 3c). In addition, we found that homeologs in the WGD class 

showed a dramatic decrease in the conservation of intronic cis-regulatory sites between the 

dominant and non-dominant homeolog compared to homeologs in the co-expressed class—a 

feature not observed in other duplicate classes, nor in promotors (Fig. 3d; Extended Data 

Fig. 10d; Supplemental Table 6). This could represent a possible loss of intron-mediated 

expression enhancement in the non-dominant homeolog. These two genomic features are 

consistent with prior findings that suggest dominant homeologs may have retained ancestral 

gene function34,39, while non-dominant homeologs may adopt new functions or become 

pseudogenes.

However, pseudogenization appears to be a less likely possibility. When we analyzed the 

same duplicate homeolog pairs in single-cell profiles of the maize inflorescence40, we found 

that a subset (32%) of non-dominant homeologs in the root were instead dominant in cells 

of the inflorescence (Supplementary Table 6). Together, the relaxed purifying selection and 

the switch in dominance suggests that non-dominant homeologs may specialize in a subset 

of developmental contexts outside the root.

The dominance group showed an enrichment for GO-term annotations related to immunity 

and response to stimulus/stress, even after removal of all potential protoplast-induced genes 

(Fig. 3e, Supplementary Table 7, Methods). Thus, new cellular gene expression driven 

largely by WGD may contribute to tolerance to environmental stress, either constitutively or 

under our conditions.

In addition, while subfunctionalization of cell-type domains between homeolog pairs was a 

minor outcome, this category of homeologs showed the highest rate of neofunctionalization 

(59%) compared to any other duplicate class (e.g., Fig. 2e,f, Extended data Fig. 9b-d). 

The trend is consistent with models in which subfunctionalization is a transitory state 

that facilitates neofunctionalization41. Ultimately, 34% percent of all the neofunctionalized 

homeologs (i.e., those with new cell-type expression after the WGD) came from the 

subfunctionalized category. Thus, while subfunctionalization via adopting complementary 

expression domains was relatively rare, it appeared to provide a high-probability route to 

cell-type domain expansion (neofunctionalization). This propensity for neofunctionalization 
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made the subfunctionalized gene pair category a second major contributor to cellular 

divergence.

Finally, certain cell types appeared to be more likely domain-expansion destinations than 

others (Fig. 3f). The trends were similar for all duplicate classes, with the specialized 

vascular cells and root cap cells most frequently comprising the new expression domains. 

Cortex was the least frequent sink for new domains, although one of the most frequent 

source domains (Fig. 3f, Extended data Fig. 10e-h). Overall, the data shows how gene 

duplication, particularly WGD, frequently provides genetic material for the transcriptional 

divergence of specific cell types.

Root “Slime” Drives Cellular Divergence

To ask about cellular divergence more broadly, we next examined the entire transcriptome 

of each cell cluster to determine which cell types changed most dramatically in maize and 

sorghum compared to the outgroup Setaria. For all comparative analysis, we combined cell 

and nuclei datasets, using MetaNeighbor to compare cell identities across species (Fig. 4a).

The analysis showed that, in both maize and Setaria, the transcriptomes of columella, 

phloem, cortex subcluster 3, endodermis, pericycle, and stele cell types are the most 

divergent compared to Setaria (Fig. 4a). The shared divergence suggests that the function of 

these tissues diverged from Setaria before the maize-sorghum split. In addition, certain cell 

types—such as cortex subcluster 1 and 4, and several stele clusters—were significantly 

diverged between maize and sorghum, implying additional divergence after the maize-

sorghum split. We note that the fast-evolving cell types were largely consistent with the 

sink tissues favored for neofunctionalization by duplicate genes (compare Fig. 4a with 3f). 

Interestingly, in maize, columella was among the most divergent cell types relative to Setaria 
(Fig. 4a).

To further investigate the potential functions involved in columella divergence, we used 

a measure of co-expression conservation to identify transcripts within clusters of interest 

that showed divergent patterns of expression across species in co-expression networks42 

(Supplementary Table 8). We identified 443 genes displaying high expression divergence 

across species in columella cells. Many of these genes showed dramatic changes in cell 

type-localization between species, such as Downy Mildew Resistant 6 (DMR6), which 

is expressed in columella and epidermis in maize vs cortex and endodermis in sorghum 

(Extended Data Fig. 10i,j).

GO term analysis of the cortex-to-columella orthologs in maize showed enrichment 

in enzymes leading to the synthesis of mannose, raffinose, and oligosaccharides 

(Supplementary Table 8). These sugars and carbohydrates are key components of mucilage, 

also called slime, which can be secreted from many different cell types of the root and has 

multiple roles, such as the shaping of the root-associated microbiome and lubricating the 

root-soil interface8,43-45.
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We then examined all genes implicated in mucilage synthesis8,9,46, finding the same general 

pattern of cortical expression in sorghum and Setaria and columella expression in maize 

(Fig. 4b,c,d).

Overall, these results suggest that maize underwent a relatively rapid cellular divergence 

in columella, in part, by recruiting a mucilage gene expression module from a putatively 

ancestral expression pattern in the cortex. The most parsimonious model is that the 

recruitment of the mucilage module occurred before the maize WGD, as both maize 

homeologs in the mucilage-annotated genes tended to share expression in the columella. 

However, the set of mucilage genes showed a significant overlap with genes previously 

defined as under selection during domestication47 (Supplementary Table 8), suggesting they 

play a role in agricultural traits.

Prior studies in animals have shown cooption of gene modules from one cell type to another 

as a mechanism of cellular diversification48. We asked how frequently gene expression 

modules, such as the mucilage group, switched cellular localization by focusing on regulons 

that have different cell type-specific expression patterns in maize compared to sorghum 

and/or Setaria (swapped regulons). Although annotated regulons comprise just a subset of all 

potential TF-downstream targets, we identified more than 50 swapped modules across cell 

types. The swapped modules are prime candidates for genes that could mediate differences 

in cellular traits between maize and related species (Supplementary Table 5).

Overall, we identify two major trends in cellular divergence in a taxonomic span of 

50 million years49. First, after WGD duplication, gene pairs that take on dominant/non-

dominant patterns have the strongest role in cell type-specific divergence. However, 

the rare class of subfunctionalized genes have the most likely evolutionary route to 

neofunctionalization. Second, homologous cell types appear to diverge, in part, by swapping 

gene expression modules48, such as the mucilage genes found to be expressed in the maize 

columella. Finally, we illustrate here how single-cell techniques can rapidly generate a pan-

transcriptome for insights into plant cell type evolution and open new methods to explore the 

connection between genetic modules and cellular traits in important crops.

Methods

Plant Growth Conditions

Seeds of Arabidopsis thaliana Col-0, Zea maize B73, Sorghum bicolor Btx623, and Setaria 
viridis A10.1 and PI 669942 (U.S. National Plant Germplasm System) were used in this 

study. Arabidopsis seeds were imbibed for 48 h at 4°C before being surface-sterilized and 

placed on a nylon mesh (110 μm) within plates containing agar with 1/2 × Murashige and 

Skoog salts (Sigma M5524), 0.5% sucrose, and 0.8% Agar (Sigma A1296). Plants were 

transferred vertically in growth chambers set to 23°C and a 16 h light/8 h dark cycle (400 

μmol m−2 s−1). Root tips were collected 7 days after transfer, cut with a feather scalpel 

at 150 μm from the tip, and directly transferred to either the protoplast solution at room 

temperature or the nuclei lysis buffer at 4°C.
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Maize and sorghum seeds were sterilized using bleach (1.5% active chloride) and 0.001% 

tween 20 for 20 mins and then 4% chloramine T for 20 mins. Setaria seed germination was 

induced by incubation in 4% liquid smoke (Colgin, Authentic Natural Hickory) at 29°C for 

24 h. Then, Setaria seeds were sterilized using bleach (1.5% active chloride) and 0.001% 

tween 20 for 20 mins. All seeds were placed between two layers of brown paper (Anchor 

Paper&Cie., 38# regular), rolled, and covered with aluminum foil to prevent roots from 

exposure to direct light. Rolls were placed in a bucket of tap water at 28/24°C and a 16 h 

light/8 h dark cycle (250 μmol m−2 s−1) for 7 days (15 days for Setaria) before harvesting 

the root tips. Primary and seminal root tips were cut using a fine scalpel at 0.5 cm from 

the tip for maize and sorghum, 0.2 cm from the tip for Setaria, and transferred either to the 

pre-incubation solution for single-cell processing or to the nuclei lysis buffer.

Protoplast Generation

Protoplasts were generated from primary and seminal roots as described previously50. For 

maize, sorghum and Setaria, roots were cut above the meristem as described above and 

placed in pretreatment solution containing L-cysteine for 40 mins (3% sorbitol, 2.5mM 

L-cysteine, 20mM MES, and pH 5.8 with Tris) to improve enzyme efficiency and cell 

wall digestion. Cell walls were digested for 90 mins in an enzyme solution optimized for 

monocot roots (Mannitol 8%, 400mM, MES 20mM, KCl 20mM, CaCl2 40mM, pH 5.8 with 

Tris, BSA 100 μg/ml; 2% cellulase “Onozuka” RS, 1.2% cellulase “Onozuka” R10, 0.4% 

macerozyme R-10 (all three Yakult Pharmaceutical Industry CO.); and 0.36% pectolyase 

Y-23 (MP Biomedicals)). Protoplasts were then filtered through a 40-μm cell strainer and 

transferred to microcentrifuge tubes for centrifugation.

For Arabidopsis, roots were cut above the meristem as described above and placed in 

an enzyme solution optimized for Arabidopsis (Mannitol 8%, 400mM, MES 20mM, KCl 

20mM, CaCl2 40mM, pH 5.8 with Tris, BSA 100 μg/ml, 1.2% cellulase “Onozuka” 

R10, 0.4% macerozyme R-10 (both Yakult Pharmaceutical Industry CO.). Protoplasts were 

then filtered through a 20-μm cell strainer and transferred to microcentrifuge tubes for 

centrifugation.

Protoplasts were centrifuged for 3 mins at 500 x g and the pellets were washed and 

resuspended in washing solution twice (Mannitol 8%, MES 20mM, KCl 20mM, CaCl2 

10mM, pH 5.8 with Tris, and BSA 100 μg/ml) and used immediately for single-cell 

RNAseq.

An aliquot of protoplasts was stained with trypan blue (0.2% final) and checked on a 

hematocytometer under the microscope to determine cell viability and concentration before 

loading into the 10x Chromium.

Nuclei Extraction

For all species, root tips were directly transferred to pre-chilled lysis buffer (0.3M sucrose, 

15mM Tris HCl at pH 8, 60mM KCl, 15mM NaCl, 2mM EDTA, 0.5mM Spermine, 0.5mM 

Spermidine, 15mM MES, 0.1% Triton, 5mM DTT*, 1mM PMSF*, 1% Plant Protease 

Inhibitors* 1 ml (Sigma P9599), BSA 0.4%*, RNase inhibitor 0.2 μg/μl*, (* added at the 

last minute). Roots were chopped on ice with scalpel blades for 5-10 mins and transferred 
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into a pre-chilled dounce homogenizer (Kimble, 885302). The pestle was moved up and 

down 10 times s back and forth, samples were then kept on ice for 10 mins before an 

additional 10 times of back and forth with the pestle. Root extracts were filtered at 20 μm 

into a centrifuge tube and centrifuged for 10 mins at 500 x g (maize, sorghum, and Setaria) 

or at 1000 x g (Arabidopsis). Pellets were washed once with washing buffer (0.3M sucrose, 

15mM Tris HCl at pH 8, 60mM KCl, 15mM NaCl, 0.5mM Spermine, 0.5mM Spermidine, 

15mM MES, 5mM DTT*, 1mM PMSF*, 1% Plant Protease Inhibitors* 1ml(Sigma P9599), 

BSA 0.4%*, RNase inhibitor 0.2u/ul* (* added at the last minute). Finally, nuclei were 

resuspended into a final buffer (0.3M sucrose, 15mM Tris HCl at pH 8, 60mM KCl, 

15mM NaCl, 0.5mM Spermine, 0.5mM Spermidine, 15mM MES, 5mM DTT*, 1% Plant 

Protease Inhibitors* 1 ml (Sigma P9599), BSA 0.4%*, RNase inhibitor 0.2 μ/μl*, (* added 

at the last minute) and filtered using a 10-μm filter. An aliquot of nuclei was stained with 

DAPI for quality control and nuclei were counted under the microscope. Nuclei were used 

immediately for single-nucleus RNA-seq.

Single-Cell RNA-seq

Per replicate 16,000 cells or nuclei were loaded in a Single Cell B Chip (10x Genomics). 

Single-cell libraries were then prepared using the Chromium Single Cell 3´ library kit, 

following manufacturer instructions. Libraries were sequenced with an Illumina NextSeq 

550 platform using a 1x150 high-output chip (2 libraries per chip) or Novaseq 6000 chip 

SP V2.5 (4 libraries per chip). Raw scRNA-seq data was analyzed by Cell Ranger 5.0.1 

(10x Genomics) to generate gene-cell matrices. Gene reads were aligned to the Arabidopsis 

TAIR10.38, Maize B73 v4, Sorghum bicolor v3 and Setaria viridis v2 reference genomes.

UMAP and ICI analysis

Replicates (see Supplementary Table 1) were integrated and cells mapped using the Seurat 

package v4.0 51 as follows: first, genes with counts in fewer than three cells were excluded 

from the analysis and their counts were removed. Second, low-quality cells were removed 

using threshold variable depending on the library quality (see supplementary Table 1). 

Clustering of cells or nuclei separately were done by log-normalized raw counts and the 

2000 most variable genes were identified for each replicate using the “vst” method in 

Seurat. Next, we used the FindIntegrationAnchors function to identify anchors between the 

three datasets, using 20 dimensions. A new profile with an integrated expression matrix 

containing cells from all replicates was produced with the IntegrateData function. For 

dimensionality reduction, the integrated expression matrix was scaled (linear transformed) 

using the ScaleData function, and Principal Component analysis (PCA) performed. The top 

30 principal components were selected. Cells or nuclei were clustered using a K-nearest 

neighbor (KNN) graph, which is based on the Euclidean distance in PCA space. The 

FindNeighbors and FindClusters function with a resolution of 0.5. was applied. Next, non-

linear dimensional reduction was performed using the UMAP algorithm with the top 30 

PCs.

For the co-clustering of cells and nuclei, either dataset were treated similarly, all replicates 

were integrated at once using the seurat 'SCT' approach52. First raw reads were normalized 
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using the SCTransform function, then SelectIntegrationFeatures was used to identify anchors 

between the datasets, using 3000 features.

For multiple species clustering, all orthologous genes names from11 were replaced by their 

corresponding maize ID in sorghum and setaria raw features.tsv.gz files (Gene conversion 

in Supplementary Table 1). Anchors are combined using PrepSCTIntegration and selected 

using FindIntegrationAnchors. For clustering of maize, sorghum and setaria together, all 

species were considered equally using the FindIntegrationAnchors function. Finally, a 

Principal Component analysis (PCA) is performed using the first 100 principal components 

and a non-linear dimensional reduction was performed using the UMAP algorithm with the 

top 100 PCs.

Identification of WGD and non-WGD One-To-One Gene Duplicate Pairs

We used prior studies to obtain a list of WGD homeologs in the maize1 and maize2 

genomes11,14. To identify the other types of duplicated genes, DIAMOND v2.0.6 was 

used to perform blastp for the target genome (Z mays) with itself, and the outgroup 

genome (Amborella trichopoda) retaining BLAST hits with e-value < 1e−5. These BLAST 

hits were filtered to remove hits from different orthogroups using a custom script 

(see dupgen_finder_sh). Duplicate gene pairs were called using DupGen_finder.pl and 

DupGen_finder-unique.pl from https://github.com/qiao-xin/DupGen_finder with the below 

parameters. -s 5 (requiring ≥ 5 genes to call a collinear block) -d 10 (≤ 10 intervening 
genes to call ‘proximal’ duplicates). Output files include 'pairs-unique' files (attached) for 

duplicate gene pairs derived from five modes of gene duplication, including whole-genome, 

tandem, proximal, transposed, and dispersed duplication. Another output, 'genes_unique' 

files from different types of duplication were combined into a single file with information 

on the duplication type for each gene in the genome (Maize_Dup_classified_genes.tsv). To 

avoid over-counting duplicate pairs within gene families, pairs with the lowest e-value were 

retained as unique pairs within each family using a custom R script (duplicate_similarity.R). 

To filter out pericentric gene pairs that are unlikely to be expressed, these duplicate gene 

pairs were merged with genic methylation classifications of Z. mays genes using a custom 

R script retaining only those pairs where both paralogs had methylation data. This procedure 

identified duplicates that were either not a part of the WGD (e.g., in genome segments that 

were not retained) or duplicated after the WGD. It also filters out many ancient duplications 

whose one-to-one relationship becomes obscured over time. Finally, we removed all genes 

having more than one duplicate.

GO-Term Analysis

All GO enrichment were performed using shinyGO V0.61 (http://

bioinformatics.sdstate.edu/go/) with an FDA of 0.05.

Cis-regulatory element prediction

Cis-regulatory element were predicted using the Meme suite FIMO algorythm v5.5.1 

(https://meme-suite.org/meme/tools/fimo) on 500bp in the promoters or introns. Maize TF 

binding sites database used in FIMO was downloaded from http://plantregmap.gao-lab.org
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Gene Expression Analysis Across Species

Whole-root transcriptomes were obtained from Ortiz-Ramírez et al., 202119 for maize and 

Hernández Coronado et al., 202153 for Arabidopsis. Gene expression was normalized for 

each species using the Normalizedata function from Seurat. Then the average expression 

per cluster was calculated using AverageExpression from Seurat. Ka and Ks values were 

taken from a previous report 54. Low, mid and high Ks values were calculated from WGD 

Ks distribution using the 1/3 quartiles. Tau (τ) was calculated as described in Yanai et al., 

200555 τ = ∑i = 1
N (1 − xi)
N − 1 , where N is the total number of cell types and xi is the expression 

profile component normalized by the maximal component value.

MetaNeighbor cell type validation across species

To determine how well the cell clusters characterized the shared identities of cells in 

their own clusters and the overlaps with the identities of all other cells, we utilized the 

MetaNeighbor package in Python (https://github.com/gillislab/pyMN)56,57. MetaNeighbor 

measures the replicability of cell types by learning a model in one dataset (or subset) 

and testing for its ability to reconstruct cell type clusters in the other dataset. First, we 

labeled all cells and nuclei by the technology used to sequence the transcriptome, by 

the cluster identity, and by the plant species to which they belonged. Then, we used the 

PyMN.variable_genes function from MetaNeighbor to subset the gene list to variable genes. 

This generates a list of genes that are variable across the technology and species. Next, 

we employed the PyMN.MetaNeighborUS function to measure how well the transcriptional 

profiles of cells from clusters in one division of the dataset (e.g., technology) predict the 

identities of cell clusters in the other fraction of the data. This generates pairwise AUROCs 

for each combination of clusters. To generate the heatmaps, the PyMN.plotMetaNeighborUS 

was used with a Brown Blue-green color map. This plots the pairwise AUROCs generated 

previously.

Validation of Integration using scGEN

To evaluate the integration of nuclei and cells across three plant species, we 

repeated the integration using the supervised integration method scGEN23. We utilized 

scGEN version 2.1 to train a model using the scgen.train function, and utilized the 

scgen.model.batch_removal function to correct our data. Following correction, we utilized 

the ScanpyV1.958 calculate the nearest neighbors using scanpy.pp.neighbors, and generated 

a 2D projection using UMAP, via sc.tl.umap. We then used sc.tl.leiden clustering algorithm 

at a .6 resolution to identify clusters, which we evaluated for mixing and accuracy of 

integration.

Identification of Single Cell Regulatory Networks using MINI-EX

We utilized MINI-EX, a pipeline specialized for inferring cell-type specific gene regulatory 

networks in plants24 to identify the gene regulatory networks in our samples. As gene 

regulatory network inference is dependent upon datasets containing transcription factors and 

binding sites not available in Sorghum and Setaria, we used maize transcription factors 

with 1-1 matches to Sorghum and Setaria genes for those species. This converted list of 
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transcription factors was used as the TF_list parameter in the miniex.config file. We ran the 

MINI-EX pipeline using the default parameters but modified it to run on 32 CPU cores.

Co-Expression Conservation Between Maize Subgenomes and Sorghum.

To generate co-expression conservation scores between the two maize sub-genomes and the 

sorghum genome (Supplementary Table 8), we used our existing aggregated co-expression 

networks42. In brief, these networks are built by taking all publicly available data and 

calculating average correlations between gene pairs within experiments, standardizing 

within experiments, and then averaging to construct robust meta-analytic networks. We 

filtered these networks to a previously generated list of gene triplet pairs for the maize sub-

genomes and the sorghum genome. Next, for each gene, we compare the top co-expression 

partners across species to determine the degree of functional conservation, as described 

in more detail in previous work 59. We calculated this by taking the ranks of a gene’s 

co-expression strength to all other genes in one species and using it to predict that gene’s 

top 10 co-expressed partners in the second species. This was then done again in the reverse 

direction, and the two scores were averaged (calculated as an AUROC). We then selected 

genes with the lowest co-expression scores (0.34 < FC.Score) and highest cell specificity 

(τ > 0.8) in the root cap (Supplementary Table 8; Extended Data Fig. 10i).

Formulation of a Dominance-Co-Expression-regulatory subfunctionalization Metric

To calculate the Dominance vs. regulatory subfunctionalization score, for each ortholog 

triplet (S, M1, M2) we calculated the number of cells in which M1 or M2 was dominant 

or co-expressed together in the same cells where the sorghum and Setaria ortholog was 

expressed. We defined dominance if the average expression of one of the two duplicate is 

two time superior as the average expression of the other duplicate in the same cell type. Co-

expression was defined when both duplicates were expressed in the same cell type and their 

respective expression was below a 2-fold range difference. Regulatory subfunctionalization 

was defined when both duplicates are dominant in different cell types. Regulatory Neo-

functionalization was defined when one or both duplicates are expressed in cell type in 

which the sorghum and Setaria ortholog were not expressed. In this dataset, a gene is defined 

as expressed if its expression is above the first quartile among genes detected in that cell 

type, this is necessary to normalize for cell type quality (certain cell types display more 

UMI and more gene detected per cells than others). The procedure also helps remove the 

background of very lowly expressed genes that results from noise generated by combining 

cells and nuclei together.

Score = (number of cells in which M1 is dominant * number of cells in which M2 is 

dominant) - (number of cell of the dominant ortholog - number of cell of the non dominant 

ortholog)

If the score is negative, the score is normalized by

NormScore = Score
# of cell in which M1 and M2 are expressed

If the score is positive, the score is normalized by dividing it by:
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NormScore = Score
(# of cell in which M1 and M2 are expressed ∗ 0.5)2

Cell Type Marker Identification

Each species marker genes were identified using FindAllmarkers functions from Seurat, 

log.FC= 0.25, pt.1 > 0.750 pt.2 < 0.250. Differential gene expression was done using the 

Findmarkers function from Seurat with default parameter function. For Fig2 e, Extended 

Data Fig. 4 c, 10 a, statistical analysis was performed on R using a pairwise Wilcoxon test 

with p.adjust method "BH" as data is not normally distributed.

Correlation analysis on Extended Data Fig 1 c was performed using Pearson correlation 

function on R between whole-root data coming from and single cell or single nuclei. Briefly 

averaged gene expression was calculated for each gene while combining every cell type 

using the AverageExpression function from Seurat.

For Fig 4 a, to generate p-values for evaluating the significance of the differences between 

each pair of AUROCs generated by MetaNeighbor, we utilized the two-sided Hanley McNeil 

test, which produces a Z-score for the difference60. As each MetaNeighbor AUROC is 

the averaged AUROC from two reciprocal tests between a pair of cell clusters, we chose 

the smaller of the two clusters as the number of true positives (NTP) to generate the 

most conservative p-value. The number of true negatives was the total number of cells, 

less the number of true positives. Following the calculation of Z-scores for each pairwise 

combination of AUROCs, we utilized the scipy.stats.norm.sf function in Python to convert 

the Z-scores into p-values for a two sided test.

“Half Mount” in situ Hybridization

Probes (Hairpin Chain Reaction (HCR) RNA-FISH) and reagents (including the Probe 

Hybridization Buffer, Probe Wash Buffer and Amplification buffer) are ordered from 

Molecular Instruments (https://www.molecularinstruments.com/shop)(Supplementary Table 

9).

For fixation, germination paper containing 7-day old maize or sorghum roots are unrolled 

and small volume of fixative FAA (4% formaldehyde, 5% glacial acetic acid, 50% ethanol 

in RNAse free water) is pipetted onto each root. Then longitudinal sectioning of root 

tips is performed using a 15° microscalpel. Roots are cut up to ~3cm from the tip, then 

immediately fixed by transferring to FAA in 5ml screw caps and put under vacuum several 

times until they no longer float. Roots are then agitated at RT for at least 1 hour in a tube 

revolver. (All washes in the protocol are performed in a tube revolver or stated otherwise.)

Samples are dehydrated in a series of washes at RT: 70% ethanol for 15 min, 90% ethanol 

for 15 min, 100% ethanol 2x for 15 min each, 100% methanol 2x for 15 min each. Samples 

can then be stored at −20°C for several weeks. Samples are washed 2x for 15 min in 100% 

ethanol at RT before being permeabilized for 30 min in 50% Histo-Clear II / 50% EtOH at 

RT. Then they are incubated 2x for 30 minutes in a solution of 100% Histo-Clear II at RT. 

Each time, vacuum is applied for the first 10 minutes.
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Samples are rehydrated through a series of washes: 50% Histo-Clear II / 50% EtOH for 15 

min, 100% EtOH for 15 min, 50% EtOH / 50% DPBS-T (0.1% Tween20, 1x DPBS) for 

15 min (roots will float up then settle after a few minutes), 100% DPBS-T 2x for 15 min 

(roots will float up again). Samples are incubated with Proteinase K (0.1 M Tris-HCl (pH 

8), 0.05 M EDTA (pH 8), Proteinase K 80 μg ml−1 final) at RT under vacuum for 5 min 

then digested with Proteinase K for 25 min in a 37°C water bath with manual agitation every 

5-10 minutes (roots should turn a little yellow after this step). Samples are washed 2x for 15 

min in DPBS-T at RT then incubated with Fixative II (4% formaldehyde in DPBS-T) under 

gentle vacuum for 10 min then in a tube revolver for 30 mins at RT. They are then washed 

2x for 15 min each in DPBS-T at RT. Roots are aliquoted into 2 mL Eppendorf tubes and 

incubated in 500 μL of HCR Probe Hybridization Buffer, vacuum is applied for 10 mins then 

roots are incubated for 1 hour at 37°C in a thermomixer with agitation (1000 rpm).

Samples can then be stored in Probe Hybridization Buffer at −20°C up to several weeks.

Probe buffers are made by adding 0.8 pmol of each probe set (e.g. 2 μL of the 1 μM stock) to 

500 μL of HCR Probe Hybridization Buffer at 37°C. Pre-hybridization solution is removed 

and replaced with probe solution. Samples are hybridized by incubating overnight (~20h) 

at 37°C in a thermomixer with agitation (1000 rpm). The following day, excess probes are 

removed by washing 4x for 15 min each with 1 mL of HCR Probe Wash Buffer at 37°C in a 

thermomixer with agitation. Samples are washed 2x for 5 min each with 1 mL of 5x SSC-T 

(25% 20x SSC, 0.1% Tween20) at RT in a thermomixer with agitation. SSC-T is replaced 

with 500 μL of amplification buffer, gentle vacuum is applied in a fume hood for 10 minutes 

and then samples are pre-amplified by incubating in a tube rotator at RT for 50 min. While 

samples pre-amplify, 6 pmol of hairpin h1 and 6 pmol of hairpin h2 (i.e. 5 μL of the 3 μM 

stocks) are prepared, each in its own separate tube. Hairpins are snap-cooled by heating at 

95°C for 90 seconds then kept in a dark drawer at RT for 30 min. Amplification solution 

is prepared by combining snap-cooled h1 and h2 hairpins in 250 μL of HCR Amplification 

Buffer at RT. Pre-amplification solution is removed and and replaced with amplification 

buffer containing hairpin solution overnight (~20h) in the dark at RT in a thermomixer with 

agitation (1000 rpm). Excess hairpins are removed by washing with 1 mL of 5x SSC-T at RT 

in a thermomixer with agitation, 2x for 5 min each, then 2x for 30 min each, 1x for 5 min. 

Samples are transferred onto a glass slide (in 5x SSC-T) and cut using a 30° microscalpel 

and arranged so that the cut face of the roots is facing upwards. They are then covered with 

coverslip and imaged on confocal microscope.

Statistics and Reproducibility

HCR-RNA-FISH experiment were performed:

Figure 2b: 
1 experiment
transverse: 2 strong, 1 weak
longitudinal: 2 strong, 4 weak

Extended Data Figure 7:
a: 5 experiments
7 outer cap, 11 transverse, 32 longitudinal - all consistent

l: 1 experiment
outer cap: 1 weak
longitudinal: 3 weak, 1 imaged too low
m: 1 experiment
transverse: 5 moderate
longitudinal: 3 moderate, 1 no signal
n: 3 experiments
outer cap: 7 strong
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c: 1 experiment
transverse: 4 moderate signal
longitudinal: 5 moderate signal
d: 1 experiment
transverse: 2 no signal, rest moderate-to-strong
longitudinal: 1 too high, 5 moderate-to-strong
e: 1 experiment
transverse: 4 weak, 11 none
longitudinal: 2 weak
f: 1 experiment
transverse: 2 strong 1 weak
longitudinal: 2 strong, 4 weak
g: 3 experiments
transverse: 2 weak, 1 very weak, 1 no signal
longitudinal: 2 weak, 8 no signal
h: 2 experiments
transverse: 1 weak
longitudinal: 4 weak, 5 no signal
i: 1 experiment
transverse: 4 moderate
longitudinal: 1 moderate, 1 no signal
j: 1 experiment
outer cap: 2 weak
transverse: 2 weak, 3 no signal
longitudinal: 3 weak
k: 1 experiment
transverse: 4 weak
longitudinal: 5 weak

transverse: 3 strong, 1 no signal
longitudinal: 25 strong

Extended Data Figure 8
a: 4 experiments
2 outer, 5 transverse, 20 longitudinal - all consistent
c: 2 experiments
transverse: 3 strong, 2 moderate, 1 weak, 1 no signal
longitudinal: 6 strong, 2 moderate, 4 weak, 11 none
d: 3 experiments
transverse: 7 strong, 2 no signal
longitudinal: 7 strong, 1 moderate, 5 imaged too low, 1 
none
e: 1 experiment
transverse: 3 weak
longitudinal: 3 weak
f: 1 experiment
transverse: 3 no signal
longitudinal: 5 weak
g: 1 experiment
outer: 1 moderate
longitudinal: 4 moderate
h: 1 experiment
transverse: 1 very weak, 2 no signal
longitudinal: 2 weak, 2 no signal
i: 2 experiments
transverse: 4 strong
longitudinal: 8 strong, 7 imaged too low

Spatial transcriptomics

Tissue fixation and embedding was performed as described previously61.

Sample slide preparation: Formaldehyde-fixed paraffin-embedded tissue sections (10 

μm) were placed within capture areas on Resolve Bioscience slides and incubated on a hot 

plate for 10 min at 60 °C to attach the samples to the slides. Slides were treated to allow 

deparaffinization, permeabilization, acetylation, and refixation. After complete dehydration 

of the samples, a few drops of SlowFade-Gold Antifade reagent (Invitrogen) were added to 

the sections and covered with a thin glass coverslip to prevent damage during shipment to 

Resolve BioSciences (Germany).

Sample pre-treatment and priming: In preparation for hybridization, the coverslip 

is removed and the mounting reagent is washed twice in 1x PBS for 30 min 4 °C, 

followed by one min washes in 50% Ethanol and 70% Ethanol at room temperature. 

Samples were primed, after the aspiration of ethanol, by the addition of buffer BST1 for 

optimal hybridization of probes during the Molecular Cartography™ procedure, which uses 

a combination of probes and single-molecule fluorescence in-situ hybridization to identify 

100 separate transcripts. Tissues were hybridized overnight at a constant temperature with 

all probes specific to the target genes. Samples were washed the next day to remove excess 

probes and fluorescently labeled in a two-step procedure. Regions of interest were imaged 

as described below and fluorescent signals were removed after imaging via a decolorization 

procedure. Color development, imaging, and decolorization were repeated over several 

cycles to develop a unique combinatorial code for every target gene that was derived from 

raw images as described below.
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Probe design: The probes for 100 genes were designed based on full-length 

protein-coding transcript sequences (Supplementary Table 9). Probe design is based the 

manufacturer’s proprietary algorithm, with probes available from the Resolve. After 

screening to generate probe candidates and discard ambiguous ones, the probes were 

mapped to the background transcriptome using ThermonucleotideBLAST, and probes with 

stable off-target hits were discarded.

Imaging: Samples were imaged by Resolve BioSciences on a Zeiss Celldiscoverer 7, 

using the 50x Plan Apochromat water immersion objective with an NA of 1.2 and the 0.5x 

magnification changer, resulting in a 25x final magnification. Standard CD7 LED excitation 

light source, filters, and dichroic mirrors were used together with customized emission filters 

optimized for detecting specific signals. Excitation time per image was fixed at 1000 ms 

for each channel, 20 ms for DAPI, and 1 ms for Calcofluor White. A z-stack was taken at 

each region with a distance per z-slice according to the Nyquist-Shannon sampling theorem. 

A custom CD7 CMOS camera (Zeiss Axiocam Mono 712, 3.45 μm pixel size) was used. 

The imaging for the cell-wall specific stain, Calcofluor White, was done at the end of 

all primary imaging. Before the preprocessing of the images, all images were corrected 

for background fluorescence. Based on the raw data image, the 20% darkest local pixel 

values and positions were determined and copied to a new empty image (background image) 

having the same size as the image to be corrected. The remaining 80% of pixels of the 

background image were generated based upon the surrounding existing pixel values using 

a distance-weighted average value. Finally, the background-corrected image (bc-image) was 

created by subtracting the background image values from the raw data image values.

Extraction of features: In the first step, a target value for the allowed number of maxima 

was calculated based on the area of the slice in μm2 multiplied by an empirically optimized 

factor (0.5x). The resulting target value was used to adapt the threshold for the algorithm 

iteratively searching local 2D-maxima. The threshold leading to the closest number of 

maxima equal to or smaller than the target value was used for further steps and the 

respective maxima were stored in a reiterative process for every image slice independently. 

Maxima that did not have a neighboring maximum in an adjacent slice (termed as z-group) 

within a radius of one pixel were excluded. For the resulting list of maxima, the absolute 

brightness (Babs), the local background (Bback), and the average brightness of the pixels 

surrounding the local maximum (Bperi) were measured and stored. The resulting maxima 

list was further filtered in an iterative loop by adjusting the allowed thresholds for (Babs-

Bback) and (Bperi-Bback) to reach a feature target value based on the total volume of the 

3D image. Only maxima still in a z-group with a size of at least 2 passed this stringent filter 

step. Each z-group was counted as one hit and the members of the z-groups with the highest 

absolute brightness were used as features to resemble 3D point clouds.

Determination of transformation matrices, pixel evaluation, and decoding: To align the 

raw data images from different imaging rounds, these images had to be corrected for the 

6 degrees of freedom in 3D-space The extracted feature point clouds were used to find 

the transformation matrices to align the raw data images. Based on the transformation 

matrices, the corresponding images were processed by a rigid transformation using trilinear 
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interpolation. The aligned images were used to create a profile for each pixel, which were 

then filtered for a variance from zero normalized by the total brightness of all pixels in 

the profile. Matched pixel profiles with the highest score were assigned as an ID to the 

pixel to further group the neighboring pixel with the same ID. The local 3D-maxima of 

the groups were determined as potential final transcript locations, which were additionally 

evaluated by the number of maxima in the raw data images where a maximum was expected. 

The finalized maxima were decoded by the fit to the corresponding code to be written to 

the results file and considered to resemble transcripts of the corresponding gene. The ratio 

of signals matching to codes used in the experiment and signals matching to codes not 

used in the experiment were used as estimation for specificity (false positives). Final image 

analysis was performed in ImageJ using the Polylux tool plugin from Resolve BioSciences 

to examine specific Molecular Cartography signals.

All raw RNA-seq data is available under GEO accession GSE225118.

Extended Data

Extended Data Fig. 1: Quality control and fidelity analysis of RNA-seq profiles using violin plots.
a Distribution of the number of UMI detected among cells vs. nuclei. b Distribution of 

the number of genes detected among cells vs. nuclei. c Pearson correlation distributions of 

gene expression from single-cell or single-nucleus compared to whole-root RNAseq data in 

Arabidopsis and maize. The distributions are derived by randomly sampling 2,000 genes 

for correlation analysis between cells and nuclei. The random sampling was repeated 250 

times to generate the distribution of correlation values. Violin plots display show the kernel 

probability density of the data at different values, boxplot inside display as the middle 
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black line is the median, exact media is displayed on the graphs, the lower and upper 

hinges correspond to the first and third quartiles (Q1,Q3), extreme line shows Q3+1.5xIQR 

to Q1-1.5xIQR (interquartile range-IQR). Dots beyond the extreme lines shows potential 

outliers.

Extended Data Fig. 2: Evaluation of agreement in nuclear and cell type profiles.
a, b UMAP clustering in Arabidopsis single-cells (a) and single-nuclei (b) clustered 

independently, showing clusters with the same diagnosed cell identities. c, d Dot plots 

showing expression levels per cluster and expression in percent of cells of the same set of 

cell-type specific markers in cells (c) or nuclei (d). The markers are in the same order in both 

plots.
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Extended Data Fig. 3: Analysis of sensitivity of nuclear and cell profiles in distinguishing clusters 
and identifying markers.
a Arabidopsis down sampling analysis shows the number of cells needed to resolve 

different clusters. A branch signifies that a new cluster with a known cell type identity 

was distinguished at a given sample size. b A similar analysis using the single nucleus 

RNA-seq dataset, showing that more nuclei are needed to resolve the same number of 

clusters compared to cells in (a). Tracking the branches of graphs in (a) vs. (b) leads to a 

rule-of-thumb that two-fold more nuclei than cells are needed to identify clusters. c UMAP 

of the combined maize single-cell and -nuclei datasets, clusters are colored by cell type 

identity. d Dotplot of maize marker genes in cells (blue) or in nuclei (red), showing overall 

concordance of marker gene expression in the two datasets.
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Extended Data Fig. 4: Analysis of differentially regulated genes and cell capture efficiency in 
nuclear vs. cellular profiles.
a, b Heatmaps of genes known to be induced by protoplast generation (Birnbaum et al., 

2003) showing their expression in cells (a) vs. nuclei (b). The analysis shows that stress-

induced genes also have higher expression in cells vs. nuclei, with a bias in specific cell 

types. c Distribution of expression levels of genes annotated for mRNA decay in cells or 

in nuclei, decay values from Sorenson et al., 2018. A significant increase in expression 

of mRNA decay-related genes was detected in nuclei, (n=1965 genes, Wilcoxon rank sum 

test, two-sided, p-value = 1.98e-11), the boxplots display the middle line is the median, 

the lower and upper hinges correspond to the first and third quartiles (Q1,Q3), extreme 

line shows Q3+1.5xIQR to Q1-1.5xIQR (interquartile range-IQR). Dots beyond the extreme 

lines shows potential outliers. d Proportion of cells vs nuclei present in each cell type 

cluster.
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Extended Data Fig. 5: Analysis of marker gene identification in maize single nucleus vs. cell 
profiles.
a, b UMAPs of maize single-cell and single-nucleus RNA-seq data clustered independently. 

Only the single nucleus RNA-seq dataset displays a cluster annotated as columella, which 

is absent in the single-cell dataset. c, d Dotplot of maize marker genes for each cell type 

cluster, showing expression in cells (c) and in nuclei (d) datasets independently. Markers for 

columella outlined in the red box are only present in the single nucleus dataset.
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Extended Data Fig. 6: Analysis of overall expression similarity among all cellular and nuclear 
clusters in the three monocot species studied.
a AUROC test comparing every cell type in all species for both cell and nuclei datasets, 

showing that clusters discovered in either cell or nuclei group by like cell type and not by 

either species or source of material (cells or nuclei). b-c UMAPs generated by additional 

integration of the dataset using a Python supervised integration method scGen. This method 

uses a variational autoencoder to learn the underlying latent space for the cell types. b 
Different colors represent the clusters identified by the Seurat integration mapped onto the 

new scGen integration, showing Seurat classification was in relative agreement with the 

scGen classification. i.e., scGEN clusters have relatively homogenous coloration. c The 

same UMAP as in (b), this time showing the species distribution. Overall, each cluster has 

cells from each of the three species.
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Extended Data Fig. 7: In-situ hybridization corroborating evidence for marker localization in 
single cell/nuclei RNA-seq profiles in maize.
a-n in situ hybridization using Hairpin Chain Reaction (HCR) probes labeling various 

transcripts. Cross sections are on the left and longitudinal sections are on the right. UMAPs 

showing each transcript’s cluster localization are displayed next to each probe’s fluorescent 

image. Additionally, spatial transcriptomics imaging data of the same probe is shown in the 

right column for (c-e). The minimum/maximum values for each fluorescence channel (grey: 

autofluorescence, magenta: HCR probes) have been adjusted to show the localization more 

clearly in the merged image.
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Extended Data Fig. 8: In-situ hybridization corroborates evidence for localization of marker 
gene expression from single-cell RNA-seq profiles in sorghum.
a-i In situ hybridization using Hairpin Chain Reaction (HCR) probes labeling various 

transcripts. Cross sections are on the left and longitudinal sections on the right (a,c,d,e). 

Longitudinal sections are shown in (f,g,h,i). UMAPs showing each transcript’s cluster 

localization are shown next to each probe’s fluorescent image. The minimum/maximum 

values for each fluorescence channel (grey: autofluorescence, magenta: HCR probes) have 

been adjusted to show the localization more clearly in the merged image.
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Extended Data Fig. 9: Regulon conservation across species, and distribution of gene pair 
expression patterns.
a Conserved regulons found using MINI-EX and their pattern of expression. The regulon is 

labeled by the transcription factor that putatively regulates it in each row. b-d Distribution 

of genes pairs on the dominance vs. regulatory subfunctionalization scale for transposed, 

tandem and proximal duplicate pairs. In blue, neofunctionalized duplicates are shown as a 

percentage of the bar. e-g Distribution on the dominance to regulatory subfunctionalization 

scale for dispersed gene duplicate pairs binned in thirds by their Ks value. The graphs 

suggest that duplicates tend to lose co-expressed patterns and gain dominance over time. 

h Boxplot of Ks values showing the distribution among all the duplicate classes used 

in the analysis. In h, statistical analysis was performed using a Kruskal-Wallis one-way 

ANOVA followed by the Tukey test for all pairwise comparisons. Not sharing a letter 

represents statistical significance at p < 0.05. In boxplots the middle line is the median, 

the lower and upper hinges correspond to the first and third quartiles (Q1,Q3), extreme 

line shows Q3+1.5xIQR to Q1-1.5xIQR (interquartile range-IQR). Dots beyond the extreme 
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lines shows potential outliers. h. n=10,104 WGD, n=860 Proximal, n=3,154 Transposed, 

n=7,552 Dispersed, n=1,448 Tandem.

Extended Data Fig. 10: Overall analysis of expression conservation in duplicate classes and 
analysis of columella expression across species.
a-c Dosage compensation analysis representing the expression ratios of maize over sorghum 

orthologous genes in tandem, transposed, and dispersed duplicate pairs. The first two 

boxplots represent cases in which a sorghum ortholog is expressed in the same homologous 

cell type as only a single maize duplicate (either M1 or M2). The third and fourth boxplots 

represent cases in which both homeologs are expressed in the same cell and a sorghum 

homolog is expressed in a homologous cell type. The last boxplot shows the ratio when 

both of the co-expressed homeologs are added together in the numerator, showing a 

mean ratio close to 1. The higher expression in the first two boxplots compared to the 

second two indicates dosage compensation. d Conservation rate of cis-regulatory elements 

between WGD homeolog pairs in promoters. The plot shows no major differences between 
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co-expressed and dominant gene pairs, and no major differences among the different classes 

of duplication. e-h Distribution of maize genes displaying regulatory neofunctionalization of 

expression into new cell types. Colors signify the cell type of origin. i Heatmap of maize 

columella markers, with the orthologous gene expression in the maize cluster of the other 

two species. j Example of the gene DMR6 switching its expression between columella 

in maize to epidermis / cortex in sorghum. a-c, statistical analysis was performed using 

ANOVA followed by the Tukey test for all pairwise comparisons, Not sharing a letter 

represents statistical significance at p < 0.05. In boxplots the middle line is the median, 

the lower and upper hinges correspond to the first and third quartiles (Q1,Q3), extreme 

line shows Q3+1.5xIQR to Q1-1.5xIQR (interquartile range-IQR). Dots beyond the extreme 

lines shows potential outliers. a-h: n=10,104 WGD, n=860 Proximal, n=3,154 Transposed, 

n=7,552 Dispersed, n=1,448 Tandem.
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Supplementary Tables 6 and 7. Cellular divergence analysis is provided in Supplementary 

Table 8 and in-situ probe information is provided in Supplementary Table 9.

Material requests should be addressed to K.D.B.

References

1. Woodhouse MR & Hufford MB Parallelism and convergence in post-domestication adaptation in 
cereal grasses. Philos. Trans. R. Soc. B Biol. Sci 374, (2019).

2. Rich-Griffin C et al. Single-Cell Transcriptomics: A High-Resolution Avenue for Plant Functional 
Genomics. Trends Plant Sci. 25, 186–197 (2020). [PubMed: 31780334] 

3. Marioni JC & Arendt D How Single-Cell Genomics Is Changing Evolutionary and Developmental 
Biology. Annu. Rev. Cell Dev. Biol 33, 537–553 (2017). [PubMed: 28813177] 

4. Shafer MER Cross-Species Analysis of Single-Cell Transcriptomic Data. Front. Cell Dev. Biol 7, 
175 (2019). [PubMed: 31552245] 

5. Kajala K et al. Innovation, conservation, and repurposing of gene function in root cell type 
development. Cell 184, 3333–3348.e19 (2021). [PubMed: 34010619] 

6. Swigonova Z et al. On the tetraploid origin of the maize genome. Comp. Funct. Genomics 5, 
281–284 (2004). [PubMed: 18629160] 

7. Swigonova Z Close Split of Sorghum and Maize Genome Progenitors. Genome Res. 14, 1916–1923 
(2004). [PubMed: 15466289] 

8. Kozlova LV, Nazipova AR, Gorshkov OV, Petrova AA & Gorshkova TA Elongating maize root: 
zone-specific combinations of polysaccharides from type I and type II primary cell walls. Sci. Rep 
10, 1–20 (2020). [PubMed: 31913322] 

9. Ma W et al. The mucilage proteome of maize (Zea mays L.) primary roots. J. Proteome Res 9, 
2968–2976 (2010). [PubMed: 20408568] 

10. Schittenhelm S & Schroetter S Comparison of Drought Tolerance of Maize, Sweet Sorghum and 
Sorghum-Sudangrass Hybrids. J. Agron. Crop Sci 200, 46–53 (2014).

11. Zhang Y et al. Differentially regulated orthologs in sorghum and the subgenomes of maize. Plant 
Cell 29, 1938–1951 (2017). [PubMed: 28733421] 

12. Zheng Z et al. Shared Genetic Control of Root System Architecture between Zea mays and 
Sorghum bicolor1[OPEN]. Plant Physiol. 182, 977–991 (2020). [PubMed: 31740504] 

13. McKain MR et al. Ancestry of the two subgenomes of maize. BioRxiv (2018). doi:10.1101/352351

14. Schnable JC, Springer NM & Freeling M Differentiation of the maize subgenomes by genome 
dominance and both ancient and ongoing gene loss. Proc. Natl. Acad. Sci. U. S. A 108, 4069–4074 
(2011). [PubMed: 21368132] 

15. Bawa G, Liu Z, Yu X, Qin A & Sun X Single-Cell RNA Sequencing for Plant Research: Insights 
and Possible Benefits. Int. J. Mol. Sci 23, (2022).

16. Farmer A, Thibivilliers S, Ryu KH, Schiefelbein J & Libault M Single-nucleus RNA and ATAC 
sequencing reveals the impact of chromatin accessibility on gene expression in Arabidopsis roots 
at the single-cell level. Mol. Plant 14, 372–383 (2021). [PubMed: 33422696] 

17. Long Y et al. FlsnRNA-seq: protoplasting-free full-length single-nucleus RNA profiling in plants. 
Genome Biol. 22, 1–14 (2021). [PubMed: 33397451] 

18. Marand AP, Chen Z, Gallavotti A & Schmitz RJ A cis-regulatory atlas in maize at single-cell 
resolution. Cell 184, 3041–3055.e21 (2021). [PubMed: 33964211] 

19. Ortiz-Ramírez C et al. Ground tissue circuitry regulates organ complexity in maize and Setaria. 
Science (80-. ). 374, 1247–1252 (2021).

20. Ding J et al. Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. 
Nat. Biotechnol 38, 737–746 (2020). [PubMed: 32341560] 

21. Evert Ray F.. Esau’s Plant Anatomy, Meristems, Cells, and Tissues of the Plant Body: their 
Structure, Function, and Development. 3rd edn. 99, (2006).

Guillotin et al. Page 28

Nature. Author manuscript; available in PMC 2023 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



22. Sorenson RS, Deshotel MJ, Johnson K, Adler FR & Sieburth LE Arabidopsis mRNA decay 
landscape arises from specialized RNA decay substrates, decapping-mediated feedback, and 
redundancy. Proc. Natl. Acad. Sci. U. S. A 115, E1485–E1494 (2018). [PubMed: 29386391] 

23. Lotfollahi M, Wolf FA & Theis FJ scGen predicts single-cell perturbation responses. Nat. Methods 
16, 715–721 (2019). [PubMed: 31363220] 

24. Ferrari C, Manosalva Pérez N & Vandepoele K MINI-EX: Integrative inference of single-cell gene 
regulatory networks in plants. Mol. Plant 15, 1807–1824 (2022). [PubMed: 36307979] 

25. Donner TJ, Sherr I & Scarpella E Regulation of preprocambial cell state acquisition by auxin 
signaling in Arabidopsis leaves. Development 136, 3235–3246 (2009). [PubMed: 19710171] 

26. Wang S et al. RppM, Encoding a Typical CC-NBS-LRR Protein, Confers Resistance to Southern 
Corn Rust in Maize. Front. Plant Sci 13, (2022).

27. Ingram GC, Magnard JL, Vergne P, Dumas C & Rogowsky PM ZmOCL1, an HDGL2 family 
homeobox gene, is expressed in the outer cell layer throughout maize development. Plant Mol. 
Biol 40, 343–354 (1999). [PubMed: 10412912] 

28. Li Z, Tang J, Srivastava R, Bassham DC & Howell SH The transcription factor bZIP60 links the 
unfolded protein response to the heat stress response in maize. Plant Cell 32, 3559–3575 (2020). 
[PubMed: 32843434] 

29. Guo Z et al. MRG1/2 histone methylation readers and HD2C histone deacetylase associate in 
repression of the florigen gene FT to set a proper flowering time in response to day-length 
changes. New Phytol. 227, 1453–1466 (2020). [PubMed: 32315442] 

30. Grover CE et al. Homoeolog expression bias and expression level dominance in allopolyploids. 
New Phytol. 196, 966–971 (2012). [PubMed: 23033870] 

31. Lynch M & Force A The Probability of Duplicate Gene Preservation by Subfunctionalization. 
Genetics 154, 459–473 (2000). [PubMed: 10629003] 

32. Chaudhary B et al. Reciprocal silencing, transcriptional bias and functional divergence of 
homeologs in polyploid cotton (Gossypium). Genetics 182, 503–517 (2009). [PubMed: 19363125] 

33. Hughes TE, Langdale JA & Kelly S The impact of widespread regulatory neofunctionalization 
on homeolog gene evolution following whole-genome duplication in maize. Genome Res. 24, 
1348–1355 (2014). [PubMed: 24788921] 

34. Zhao M, Zhang B, Lisch D & Ma J Patterns and consequences of subgenome differentiation 
provide insights into the nature of paleopolyploidy in plants. Plant Cell 29, 2974–2994 (2017). 
[PubMed: 29180596] 

35. Li L et al. Co-expression network analysis of duplicate genes in maize (Zea mays L.) reveals no 
subgenome bias. BMC Genomics 17, 1–16 (2016). [PubMed: 26818753] 

36. Birchler JA & Veitia RA Gene balance hypothesis: Connecting issues of dosage sensitivity 
across biological disciplines. Proc. Natl. Acad. Sci. U. S. A 109, 14746–14753 (2012). [PubMed: 
22908297] 

37. Muyle A, Marais GAB, Bačovský V, Hobza R & Lenormand T Dosage compensation evolution in 
plants: theories, controversies and mechanisms. Philos. Trans. R. Soc. B Biol. Sci 377, (2022).

38. Walsh JR, Woodhouse MR, Andorf CM & Sen TZ Tissue-specific gene expression and protein 
abundance patterns are associated with fractionation bias in maize. BMC Plant Biol. 20, 1–11 
(2020). [PubMed: 31898482] 

39. Renny-Byfield S, Rodgers-Melnick E & Ross-Ibarra J Gene fractionation and function in the 
ancient subgenomes of maize. Mol. Biol. Evol 34, 1825–1832 (2017). [PubMed: 28430989] 

40. Xu X et al. Single-cell RNA sequencing of developing maize ears facilitates functional analysis 
and trait candidate gene discovery. Dev. Cell 56, 557–568.e6 (2021). [PubMed: 33400914] 

41. Rastogi S & Liberles DA Subfunctionalization of duplicated genes as a transition state to 
neofunctionalization. BMC Evol. Biol 5, 28 (2005). [PubMed: 15831095] 

42. Lee J, Shah M, Ballouz S, Crow M & Gillis J CoCoCoNet: Conserved and comparative co-
expression across a diverse set of species. Nucleic Acids Res. 48, W566–W571 (2021).

43. Van Deynze A et al. Nitrogen fixation in a landrace of maize is supported by a mucilage-associated 
diazotrophic microbiota. PLoS Biol. 16, 1–21 (2018).

Guillotin et al. Page 29

Nature. Author manuscript; available in PMC 2023 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



44. Galloway AF, Knox P & Krause K Sticky mucilages and exudates of plants: putative 
microenvironmental design elements with biotechnological value. New Phytol. 225, 1461–1469 
(2020). [PubMed: 31454421] 

45. Werker E & Kislev M Mucilage on the root surface and root Hairs of Sorghum: Heterogeneity in 
structure, manner of production and site of accumulation. Ann. Bot 42, 809–816 (1978).

46. Voiniciuc C, Guenl M, Schmidt MH-W & Usadel B Highly Branched Xylan Made by IRX14 and 
MUCI21 Links Mucilage to Arabidopsis Seeds. Plant Physiol. 169, pp.01441.2015 (2015).

47. Wang B et al. Genome-wide selection and genetic improvement during modern maize breeding. 
Nat. Genet 52, 565–571 (2020). [PubMed: 32341525] 

48. Arendt D The evolution of cell types in animals: Emerging principles from molecular studies. Nat. 
Rev. Genet 9, 868–882 (2008). [PubMed: 18927580] 

49. Wang X et al. Genome alignment spanning major poaceae lineages reveals heterogeneous 
evolutionary rates and alters inferred dates for key evolutionary events. Mol. Plant 8, 885–898 
(2015). [PubMed: 25896453] 

Methods References

50. Efroni I, Ip P-L, Nawy T, Mello A & Birnbaum KD Quantification of cell identity from single-cell 
gene expression profiles. Genome Biol. 16, 9 (2015). [PubMed: 25608970] 

51. Stuart T et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888–1902 e21 (2019). 
[PubMed: 31178118] 

52. Hafemeister C & Satija R Normalization and variance stabilization of single-cell RNA-seq 
data using regularized negative binomial regression. Genome Biol. 20, 296 (2019). [PubMed: 
31870423] 

53. Hernández Coronado M et al. Repel or Repair: Plant Glutamate Receptor-Like Channels Mediate a 
Defense vs. Regeneration Tradeoff. SSRN Electron. J (2021). doi:10.2139/ssrn.3818443

54. Raju SKK, Ledford SM & Niederhuth CE DNA methylation signatures of duplicate gene evolution 
in angiosperms. bioRxiv 2020.08.31.275362 (2021).

55. Yanai I et al. Genome-wide midrange transcription profiles reveal expression level relationships in 
human tissue specification. Bioinformatics 21, 650–659 (2005). [PubMed: 15388519] 

56. Crow M, Paul A, Ballouz S, Huang ZJ & Gillis J Characterizing the replicability of cell types 
defined by single cell RNA-sequencing data using MetaNeighbor. Nat. Commun 9, 884 (2018). 
[PubMed: 29491377] 

57. Fischer S, Crow M, Harris BD & Gillis J Scaling up reproducible research for single-cell 
transcriptomics using MetaNeighbor. Nat. Protoc 16, 4031–4067 (2021). [PubMed: 34234317] 

58. Wolf FA, Angerer P & Theis FJ SCANPY: large-scale single-cell gene expression data analysis. 
Genome Biol. 19, 15 (2018). [PubMed: 29409532] 

59. Crow M, Suresh H, Lee J & Gillis J Coexpression reveals conserved gene programs that co-vary 
with cell type across kingdoms. Nucleic Acids Res. 50, 4302–4314 (2022). [PubMed: 35451481] 

60. Hanley JA & McNeil BJ A method of comparing the areas under receiver operating characteristic 
curves derived from the same cases. Radiology 148, 839–843 (1983). [PubMed: 6878708] 

61. Jackson D, Veit B & Hake S Expression of maize KNOTTED1 related homeobox genes in the 
shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 
120, 405–413 (1994).

Guillotin et al. Page 30

Nature. Author manuscript; available in PMC 2023 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1: Cell and nucleus profiles identify the same markers but show different sensitivities and 
artifacts.
a, b UMAP of combined Arabidopsis cells and nuclei with clusters colored according to 

assigned cell identity (a) or cell vs. nuclei origin (b). c Dot plots of Arabidopsis marker 

genes in cells (blue) or nuclei (red), showing all the cell types defined from clusters in 

this study. d Heatmaps of the 10 highest-scoring marker genes for each cell type found 

using Seurat. Upper row shows highest scoring markers found in the single-cell dataset 

(left) with their expression in the single nucleus dataset shown (right). Lower row shows 

highest-scoring markers found in single nucleus dataset (left) and their expression in the 

single cell dataset (right). e Proportion cells vs nuclei present in each cell type cluster. f 
Pie charts showing the difference in the prevalence of Gene Ontology (GO) terms among 

differentially expressed genes in each cluster between cells (top) vs. nuclei (bottom).
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Fig. 2: Mapping cell identities from maize to sorghum and gene duplicate analysis.
a UMAP of combined maize cell and nucleus profiles. Clusters are colored and labeled 

according to cell identity. b In-situ hybridization in maize (top) and sorghum (bottom). 

The maize phloem marker is orthologous to the sorghum phloem marker. Cyan coloration 

in the lower panel corresponds to a sorghum endodermal marker that highlights the stele 

boundary. The minimum/maximum values for each channel in the fluorescence images have 

been adjusted to show the localization more clearly in the merged image. UMAPs next to 

images show the respective expression of each gene in the maize-sorghum co-clustered 

single-cell profiles, which were used initially to determine their expression pattern. c 
Molecular Cartography, which allows simultaneous hybridization of multiple probes to a 

tissue section, here showing markers used for the cell-cluster annotation of clusters in maize. 

Guillotin et al. Page 32

Nature. Author manuscript; available in PMC 2023 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



d Conceptual schematic of hypothetical expression patterns between duplicate gene pairs 

following a metric with a scale ranging from full dominance (−1) to equal co-expression 

(0) to regulatory subfunctionalization (1). Example intermediate states are also shown. Blue 

shows regulatory neofunctionalization. e-f Distribution of duplicate gene expression patterns 

using the metric described in (d) for WGD homeologs (e) and dispersed duplicate (f) 

pairs having similar with median Ks. Number of genes: 10,104 (WGD homeologs); 7,552 

(dispersed duplicates).
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Fig. 3: Detection of dosage compensation and cellular destination of regulatory neofunctionalized 
genes.
a Dosage compensation analysis with expression ratios of maize over sorghum orthologous 

genes in the two duplication classes. The first two boxplots represent cases where a 

sorghum ortholog is expressed in the same cell type as a single maize homeolog (either 

M1 or M2). The third and fourth boxplots represent cases in which both homeologs are 

expressed in the same cells. The last boxplot shows the ratio when both of the co-expressed 

homeologs are added in the numerator over sorghum expression level in the denominator. 

Dosage compensation is inferred from a pattern in which lone expression of a homeolog 

is higher than co-expressed homeologs. b Tau (τ) value reflecting degree of cell specificity 

in different expression categories within a cell, if M1 or M2 is dominant or if M1 and 

M2 are co-expressed. c Ka/Ks distribution of WGD homeologs, when either M1 or M2 
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is dominant in a cell type they display stronger purifying selection than the non-dominant 

homeolog. d Cis-regulatory element conservation rate between duplicate pairs in introns 

split into co-expressed and dominant categories. e GO-terms enriched within each category 

expression category. S, M1, M2 = unique expression of the sorghum ortholog or one maize 

homeolog. S-M1 or S-M2 = one maize homeolog expressed in the same cell type as the 

sorghum ortholog. S-M1-M2 = both homeologs expressed in the same cell type as the 

sorghum ortholog. f Regulatory neofunctionalized genes categorized by their new expression 

domains. Colors within a bar graph show their ancestral cell-type domain (Methods). In 

a-d, n=10,104 WGD, n=860 Proximal, n=3,154 Transposed, n=7,552 Dispersed,n=1,448 

Tandem. In a,b, statistical analysis was performed using an one-way ANOVA followed 

by the Tukey test for all pairwise comparisons, Not sharing a letter represents statistical 

significance at p < 0.05, in c Wilcoxson test, two-sided, in d, Wilcoxon signed-rank test, 

two-sided, with pvalue adjusted with Benjamini & Hochberg (1995) (BH). In boxplots 

the middle line is the median, the lower and upper hinges correspond to the first and 

third quartiles (Q1,Q3), extreme line shows Q3+1.5xIQR to Q1−1.5xIQR (interquartile 

range-IQR). Dots beyond the extreme lines shows potential outliers.
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Fig. 4: Differential divergence of cell types in maize compared to Setaria.
a MetaNeighbor analysis showing a quantification of transcriptome divergence among cell 

types in maize and sorghum compared to the outgroup Setaria. Statistical significance 

between maize and sorghum was performed using the two-sided Hanley McNeil test 

(Methods, p *<0.05,**<0.01,***<0.001). Error bars, s.e. b, c Mucilage gene expression 

heatmaps for maize (b) and sorghum (c) and Setaria (d) in their respective columella cells 

and cortex layers.
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