Skip to main content
. 2023 Nov 6;11:1308404. doi: 10.3389/fpubh.2023.1308404

Table 5.

Comparative performance analysis of CIDICXR-NET50 against other leading techniques.

Model Dataset Methodology Dataset size Classification Accuracy %
Sethy et al. (30) CXR Images TL ResNet50 + SVM 381 Multi-class 95.33
Pathak et al. (37) CT Images TL ResNet50 852 Binary-class 93.01
Ozturk et al. (34) CXR Images TL DarkCovidNet 1,127 Multi-class 87.02
Chowdhury et al. (49) CXR Images TL DenseNet-201 3,487 Binary-class 99.70
Chowdhury et al. (49) CXR Images TL DenseNet-201 3,487 Multi-class 97.94
Apostolopoulos & Mpesiana (29) CXR Images TL MobileNetV2 1,442 Multi-class 94.72
Wang et al. (28) CXR Images TL COVID-Net 13,975 Multi-class 93.3
Hemdan et al. (31) CXR Images TL COVIDX-Net 53 Binary-class 90
Jain et al. (Phase I) (35) CXR Images TL ResNet-50 1832 Multi-class 93
Jain et al. (Phase II) (35) CXR Images TL ResNet101 1832 Binary-class 97.78
Manokaran et al. (32) CXR Images TL DenseNet-201 8,644 Multi-class 92.19
Chakraborty et al. (33) CXR Images TL VGG-19 3,797 Multi-class 97.11
CIDICXR-Net50 (Proposed) CXR Images TL ResNet-50 3,923 Multi-class 99.11