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Maternal consumption of a Western-style diet (mWD) dur-
ing pregnancy alters fatty acidmetabolism and reduces in-
sulin sensitivity in fetal skeletal muscle. The long-term
impact of these fetal adaptations and the pathways under-
lying disordered lipid metabolism are incompletely under-
stood. Therefore, we tested whether a mWD chronically
fed to lean, insulin-sensitive adult Japanese macaques
throughout pregnancy and lactation would impact skeletal
muscle oxidative capacity and lipid metabolism in adoles-
cent offspring fed a postweaning (pw) Western-style diet
(WD) or control diet (CD). Although body weight was not
different, retroperitoneal fat mass and subscapular skin-
fold thickness were significantly higher in pwWD offspring
consistent with elevated fasting insulin and glucose. Maxi-
mal complex I (CI)-dependent respiration in muscle was
lower in mWD offspring in the presence of fatty acids, sug-
gesting that mWD impacts muscle integration of lipid with
nonlipid oxidation. Abundance of all five oxidative phos-
phorylation complexes and VDAC, but not ETF/ETFDH,
were reduced with mWD, partially explaining the lower
respiratory capacity with lipids. Muscle triglycerides in-
creased with pwWD; however, the fold increase in lipid
saturation, 1,2-diacylglycerides, andC18ceramidecompared
between pwCD and pwWD was greatest in mWD offspring.

Reductions in CI abundance and VDAC correlated with re-
ducedmarkers of oxidative stress, suggesting that these re-
ductionsmay be an early-life adaptation tomWD tomitigate
excess reactive oxygen species. Altogether, mWD, indepen-
dent of maternal obesity or insulin resistance, results in
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• In lean, active adolescent offspring, a postweaning
Western-style diet (pwWD) leads to shifts in body fat distri-
bution that are associatedwith poorer insulin sensitivity.

• Fatty acid–linked oxidative metabolism was reduced
in skeletal muscles from offspring exposed to mater-
nal Western-style diet (mWD) even when weaned to a
healthy control diet for years.

• Reduced oxidative phosphorylation complex I–V and
VDAC1 abundance partially explain decreased skele-
tal muscle respiration in mWD offspring.

• Prior exposure to mWD results in greater fold increase
with pwWD in saturated lipids and bioactive lipid mol-
ecules (i.e. ceramide and sphingomyelin) associated
with insulin resistance.
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sustained metabolic reprogramming in offspring muscle
despite a healthy diet intervention.

Intrauterine exposure to maternal obesity, diabetes, or a
poor-quality diet (i.e., Westernized high-fat, high-sugar diet
[WD]) during development is associated with increased risk
for cardiometabolic diseases in youth including insulin resis-
tance, nonalcoholic fatty liver disease, cardiovascular disease,
and type 2 diabetes (1,2). Skeletal muscle is a principle regu-
lator of insulin sensitivity and metabolic homeostasis, ac-
counting for the majority of systemic fatty acid oxidation
and insulin-mediated glucose disposal (3,4). As such, meta-
bolic dysregulation in muscle, in part due to reductions in
mitochondrial mass and function, is a primary contributor
to the development and progression of metabolic diseases in
adults (5–8). Specifically, skeletal muscle insulin resistance
has been associated with reduced mitochondrial abundance,
less oxidative phosphorylation (OXPHOS) capacity, blunted
lipid oxidation, increased de novo synthesis of bioactive fatty
acid species (e.g., diacylglycerides [DGs], ceramides) and/or
greater reactive oxygen species (ROS) production in adults
(3,9,10) with reduced mitochondrial function observed in
overweight children (11). Similar markers of metabolic dys-
regulation including reduced oxidative capacity, altered gene
expression, and development of insulin resistance have also
been observed in skeletal muscle of adult offspring exposed
to maternal obesity in rodents (12–15). Of concern, meta-
bolic dysregulation is already found in mesenchymal stem
cells isolated from umbilical cords of infants born to women
with obesity (16). However, few studies have evaluated
whether maternal (m)WD in the absence of obesity or insu-
lin resistance induces changes in offspring skeletal muscle.

Previous studies in our established Japanese macaque
model of WD-induced maternal obesity identified meta-
bolic dysregulation in multiple tissues of fetal and juvenile
offspring (17–23) including reduced insulin sensitivity in
skeletal muscle (24) and decreased oxidative metabolism
in fetal muscle (18). In this model, we have consistently
observed that chronic WD consumption induces obesity
and insulin resistance in the majority of, but not all, adult
females (25). Leveraging this unique subset of lean and in-
sulin-sensitive dams, we tested whether a WD chronically
fed to lean, insulin-sensitive dams during pregnancy and
lactation would result in a persistent impairment in off-
spring skeletal muscle OXPHOS capacity and lipid metabo-
lism. We also evaluated whether weaning offspring exposed
to mWD onto a healthy chow diet (postweaning [pw]CD)
would attenuate programmed effects at 3 years of age (i.e.,
early adolescence).

RESEARCH DESIGN AND METHODS

Animals
All animal procedures were conducted under regulatory
compliance at the Oregon National Primate Research Cen-
ter (ONPRC) and Oregon Health & Science University,
which is accredited by the Association for Assessment and

Accreditation of Laboratory Animal Care (AAALAC) Inter-
national. Experiments were designed and reported with
reference to the Animals in Research: Reporting In Vivo
Experiments (ARRIVE) guidelines (26).

Experimental Design
Adult Japanese macaques were housed in indoor/outdoor
pens and fed a CD (15% of calories from fat primarily
from soybeans and corn, monkey diet no. 5000; Purina
Mills) or WD (37% of calories from fat primarily from corn
oil, egg, and animal fat, no. 5LOP, TAD Primate Diet; Test-
Diet and Purina Mills) ad libitum. Carbohydrate content
differed between diets, with sucrose and fructose consti-
tuting 19% of WD but only 3% of CD. Females consumed
WD for 1–3 years prior to and during the pregnancy from
which offspring were studied. Maternal prepregnancy demo-
graphics are presented by offspring cohort in Supplementary
Table 1. More extensive phenotyping of the adult female
macaques has previously been described (27). All births were
singleton and delivered vaginally after spontaneous labor.
Offspring remained in their home colony until weaning at
�7–8 months of age, when they were grouped with 6–10
similarly aged juveniles from both maternal diet groups and
1–2 adult females. These new social housing groups were fed
either CD orWD.

Offspring from 17 mCD dams and 17 mWD dams
were included in this study. The offspring groups include
13 mCD/pwCD (8 female [F], 5 male [M]), 6 mCD/pwWD
(2 F, 4 M), 13 mWD/pwCD (5 F, 8 M), and 9 mWD/pwWD
(5 F, 4 M). No more than two offspring from the same dam
were included in any offspring group per analysis. If two off-
spring from the same dam were included in the same group,
offspring were of the opposite sex. Offspring sex is indicated
in figures with use of different symbols.

Offspring Anthropometric Measures
Nonfat mass, fat mass, lean mass, and bone mineral con-
tent were measured with DEXA in offspring <1 month
prior to necropsy as previously described (23). Offspring
body mass, retroperitoneal fat pad mass, crown rump
length, and subscapular skin fold thickness were mea-
sured at necropsy.

Offspring Intravenous Glucose Tolerance Testing
Intravenous glucose tolerance tests (i.v. GTT) were con-
ducted within 2 months prior to offspring necropsy (at
�36 months of age) as previously described (23,24). Base-
line blood samples were obtained prior to the infusion and
at 1, 3, 5, 10, 20, 40, and 60 min after infusion. Glucose
was measured immediately with OneTouch Ultra blood
glucose monitor (LifeScan), and the remainder of the blood
was kept in heparinized tubes on ice for insulin measure-
ment. After centrifugation, samples were stored at �80�C
until assayed. Insulin measurements were performed
by the Endocrine Technologies Core at ONPRC using a
chemiluminescence-based automatic clinical platform (cobas
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e 411; Roche Diagnostics, Indianapolis, IN). HOMA of insulin
resistance (HOMA-IR) was calculated from fasting insu-
lin and glucose values with the following formula: (insu-
lin (mU/L) * glucose (mg/dL))/405.

Offspring Activity Monitoring
Physical activity was continuously monitored in group-
housed offspring with Actical accelerometers (Mini Mitter,
Bend, OR) affixed to loose-fitting plastic collars (Primate
Products, Miami, FL) as previously described (28). These
monitors record the total number of activity counts, de-
tected as changes in acceleration in all directions per minute.
Activity count data over a 1-month period preceding nec-
ropsy are reported as average counts per hour for 24-h and
12-h day and night activities. All data were collected in late
spring or early summer to control potential seasonal
variability.

Offspring Necropsy Collection
Animals were sacrificed as previously described (28–30)
between 37 and 40 months of age. Blood was collected in
appropriate tubes for later analysis of insulin, triglycerides,
and cholesterol and stored at �80�C for batch analysis by
Endocrine Technologies Core at ONPRC. Skeletal muscles
including gastrocnemius (gastroc), soleus, vastus lateralis,
and rectus femoris were rapidly dissected of fascia and
portions were either flash frozen in liquid nitrogen or
transferred to a biopsy preservation solution (BIOPS) and
shipped overnight for respirometry experiments. Frozen
muscle was stored at �80�C until analysis.

Protein Analysis
Frozen gastroc and soleus muscles (50–100 mg) were ho-
mogenized mechanically in 0.6 mL buffer (24) with six
2.8-mm ceramic beads (VWR International) in a Bead
Ruptor (OMNI International, Kennesaw, GA) at a rate of
6 m/s for 2 × 30 s intervals kept at 4�C with a cryo-cool
instrument adaptor. Homogenate was then rotated for
1 h at 4�C on an orbital platform and then centrifuged at
13,000g for 15 min at 4�C. Protein concentration was
determined with a BCA kit (Pierce and Thermo Fisher
Scientific). Protein abundance was analyzed by capillary
immunoassay on a Wes instrument per manufacturer
instructions (ProteinSimple, Bio-Techne; San Jose, CA)
with 3 mL of 0.25 or 1.25 mg/mL of sample. Antibody
concentrations were optimized and multiplexed with tar-
get protein abundance quantified with Compass software
(ProteinSimple, Bio-Techne) and normalized to a loading
control protein. For OXPHOS analysis, abundance of in-
dividual complexes was normalized to an internal fluo-
rescent loading control. Equal loading of total protein in
soleus and gastroc homogenate was also measured with
Stain-Free technology (Bio-Rad Laboratories, Hercules,
CA) (Supplementary Figs. 1 and 2). Traditional Western
blot was used to measure HADHA and was normalized to
GAPDH, as previously described (18). Data were analyzed

with Image Lab 5.2 software (Bio-Rad Laboratories). Pri-
mary and secondary antibody information can be found
in Supplementary Table 2.

Citrate Synthase Activity Assay
Frozen gastroc and soleus muscles (20 mg) were homoge-
nized in 0.7 mL buffer and enzyme activity was measured
by spectrophotometry as previously described (18).

Muscle Lipid Analysis
Frozen offspring gastroc (�50 mg) was dissected of extra-
muscular adipose tissue and fascia, lyophilized, weighed,
and homogenized in 0.9 mL high-performance liquid
chromatography–grade water. Homogenate (0.75 mL)
plus methyl tert-butyl, as an internal lipid standard, was
added to 0.9 mL methanol, and lipid species were serially
extracted (18,31,32). Skeletal muscle lipid abundance and
composition were analyzed with liquid chromatography–
tandem mass spectrometry as previously described (31,32).

Permeabilized Muscle Fiber Bundle Preparation and
Respirometry
Mitochondrial respiratory function was measured in permea-
bilized muscle fiber bundles (PMFBs) with high-resolution
respirometry with an Oxygraph-2k system (Oroboros Instru-
ments, Innsbruck, Austria). Muscles fiber bundles (3–5 mg)
were dissected from gastroc and soleus and then permea-
bilized with 30 mg/mL saponin in BIOPS for 30 min,
washed, blotted dry, and weighed. All respirometry data
were collected at 37�C in a superoxygenated environment
(200–400 mmol/L O2), and two titration protocols were
run in parallel to measure respiration with lipid and non-
lipid substrates as previously described (18). Mitochondrial
integrity was confirmed by measurement of respiratory re-
sponses to cytochrome c.

Gene Expression
RNA was isolated from frozen gastroc and soleus (25 mg)
with Direct-zol RNA MiniPrep kits (Zymo Research, Irvine,
CA). cDNA was synthesized from extracted RNA with
qScript cDNA Synthesis Kit from Quantabio (Beverly,
MA) in a thermal cycler (Eppendorf, Enfield, CT). Expres-
sion of target genes were measured with PerfeCTa SYBR
Green FastMix (Quantabio) using a CFX384 PCR Detec-
tion System (Bio-Rad Laboratories). Gene expression was nor-
malized to the geometric mean of three housekeeping genes,
and fold change was calculated with DDCt analysis (33).
Primer sequence, efficiencies, genome of origin, and experi-
mental conditions per target/control genes can be found in
Supplementary Table 3.

Lipid Peroxidation
Malondialdehyde (MDA) was measured in gastroc (50 mg)
with a commercially available kit (no. 700870; Cayman
Chemical) according to the manufacturer’s protocol and as
previously described (18). Briefly, sample reaction mixture
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was loaded in duplicate onto a 96-well plate with standards
and measured fluorometrically. MDA concentration is ex-
pressed relative to protein content.

Protein Carbonylation
Protein carbonyl content in gastroc (�40 mg) was mea-
sured with a commercially available kit (ab126287; Abcam)
per the manufacturer’s instructions. Sample homogenate
was loaded in duplicate onto a 96-well plate, and data were
normalized to total protein content of reaction mixture
with the BCA method.

Statistical Analysis
Individual-sample data points with group minimum, maxi-
mum, median, and interquartile range are graphed. We
calculated sample size using variance from previously pub-
lished fetal muscle respirometry data, a primary outcome
for the current study. For detection of a medium effect size
with a = 0.05 and 80% power, this study requires �11 off-
spring (n) for main effects (i.e., m diet or pw diet). Using a
factorial design, we tested for interactions of sex by treat-
ment [i.e., m or pw diet] in main outcome measures as pre-
viously described [34]) (Supplementary Tables 4 and 5).
Sexes were combined when no interactive effect of sex was
identified. In subsequent analysis, data were analyzed with
a two-way ANOVA for fixed effects of m diet and pw diet,
and the interaction (m diet × pw diet). When significant
main effects or interactions were identified, a Sidak post
hoc analysis was used to test for significance within sub-
groups. Significant main effects (P < 0.05) are listed above
each graph. For post hoc analysis, carets (�) indicate signifi-
cant differences between m diets within the same pw diet
group, while asterisks (*) indicate significant differences be-
tween pw diets within the same m diet group. An unpaired
t test was used to compare data sets with only two groups.
OXPHOS and VDAC protein abundance were correlated to
oxidative stress markers (protein carbonylation and/or lipid
peroxidation content) in the following groupings: all off-
spring, all mCD offspring, and all mWD offspring. All P val-
ues for OXPHOS (CI–CV and CI1III) protein abundance and
lipid peroxidation were adjusted for multiple comparisons
with Bonferroni correction (Supplementary Table 6). All anal-
yses were completed with Prism 9.2 software (GraphPad).

Data and Resource Availability
All data files are available by request.

RESULTS

Adolescent Offspring Physiology Is Altered by mWD
and pwWD
At 3 years of age, offspring body weight, nonfat mass, and
crown-rump length were not different by group (Table 1).
Surprisingly, total fat mass was reduced in offspring con-
suming pwWD (Table 1). Despite less total fat mass, retro-
peritoneal fat mass and subscapular skinfold thickness were
significantly higher with pwWD, mirroring shifts in body

fat distribution typically associated with poorer insulin sen-
sitivity (35). Average daily activity in mWD offspring was
significantly greater than mCD, with mWD/pwWD having
the highest activity counts (Table 1). There was also an ob-
served increase in activity with pwWD in both groups that
did not reach statistical significance (P = 0.08). These data
suggest that greater physical activity levels may contribute
to reduced total fat mass but do not protect against meta-
bolically unfavorable visceral fat accumulation, especially in
mWD offspring.

Insulin sensitivity and glucose metabolism were impacted
by both m and pw diet. Fasting glucose was not different,
but fasting insulin was significantly increased by pwWD and
to a greater extent in mCD/pwWD offspring (Table 1). Dur-
ing an i.v. GTT, total insulin area under the curve (AUC)
was significantly higher in offspring consuming pwWD (main
effect, pw diet, P = 0.008). However, when accounting for
higher fasting insulin concentrations, we observed a main ef-
fect of m diet (P = 0.03) with higher insulin AUCs calculated
from baseline in mWD offspring (Table 1), suggesting that
mWD may increase peripheral insulin resistance as seen at
younger ages (24) requiring greater insulin response. The
higher insulin AUC measured may also account for the lower
glucose AUC observed in offspring consuming the pwWD.
Calculation of HOMA-IR indicates increased insulin resistance
with pwWD that is higher in offspring from mCD compared
with mWD. Lastly, fasting total cholesterol was significantly
increased with pwWD, driven by increases in both HDL and
LDL cholesterol (Table 1). There was no difference in off-
spring fasting triglycerides by m or pw diet.

Persistent Reduction in Muscle Oxidative Capacity in
Offspring Exposed to mWD
Skeletal muscle mitochondrial function and/or abundance
is strongly associated with systemic insulin sensitivity (8).
We previously reported reduced OXPHOS in PMFBs and
differentiated myocytes isolated from fetal skeletal muscle
exposed to maternal obesity and mWD (18). Here, we ex-
amined whether these adaptations persist into adoles-
cence. To address potential muscle-specific differences, we
interrogated substrate-specific respiration (i.e., with and
without lipids) in the presence of saturating ADP in both
the soleus, a highly aerobic muscle with majority type I fi-
bers, and the gastroc, a mixed fiber–type muscle. In the
soleus, rates of fatty acid oxidation with palmitoylcarni-
tine were impacted by m and pw diet (interaction, P =
0.04) such that in the case of mWD fatty acid oxidation was
lower for pwCD versus pwWD—with the opposite pattern
of response in mCD offspring (Fig. 1A and Supplementary
Fig. 3A). However, after the addition of pyruvate (Fig. 1B),
respiration was lower with mWD to a similar extent in both
pw diet groups (main effect, m diet, P = 0.002). Similarly,
maximal CI- and CI1CII-linked respirations were also lower
in mWD offspring in the presence of palmitoylcarnitine,
with greater reduction in mWD/pwCD offspring (Fig. 1C
and D). However, in the absence of palmitoylcarnitine,
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maximal CI-linked respiration was not different between
mWD and mCD (Fig. 1E and Supplementary Fig. 3B), in-
dicating that the presence of long-chain acylcarnitine
limited flux of convergent substrate oxidation pathways
at CI in mWD groups (Fig. 1C and D). Indeed, when suc-
cinate was added (contributing electrons downstream of
CI) the maximal CI1II-supported respiration rate in the
absence of fatty acids was similar between mCD and
mWD offspring and higher in mWD/pwWD than in
mWD/pwCD (Fig. 1F). Finally, soleus citrate synthase ac-
tivity, a marker of mitochondrial content, was not differ-
ent by group (Fig. 1G), further suggesting that mWD
impacts the capacity of skeletal muscle to integrate

oxidation of fatty acids with other substrates rather
than suppressing total oxidative capacity.

In the gastroc, fatty acid oxidation capacity was again
lower in mWD offspring on the pwCD (Fig. 1H and
Supplementary Fig. 3C). Like in the soleus, CI-linked res-
piration rates in the gastroc supported by subsequent ti-
trations of pyruvate and glutamate were lower in mWD
compared with mCD offspring in the presence of palmi-
toylcarnitine (main effect, m diet [Fig. 1I and J]) but simi-
lar across groups after addition of succinate (Fig. 1K), and
with all substrates in the absence of palmitoylcarnitine
(Fig. 1L and M and Supplementary Fig. 3D). Again, citrate
synthase activity was also similar across groups (Fig. 1N).

Table 1—Adolescent offspring physiological measures and activity at 34 months

Anthropometrics
CD/CD
(n = 13)

CD/WD
(n = 6)

WD/CD
(n = 13)

WD/WD
(n = 9) m diet pw diet m × pw

Sex, n 8 F/5 M 2 F/4 M 5 F/8 M 5 F/4 M

Body mass (kg) 6.0 ± 0.2 6.1 ± 0.4 6.3 ± 0.3 6.3 ± 0.3 ns ns ns

Nonfat mass (kg) 4.7 ± 0.2 4.8 ± 0.2 4.8 ± 0.2 5.0 ± 0.2 ns ns ns

Fat mass (kg) 0.94 ± 0.05 0.77 ± 0.10 0.91 ± 0.05 0.78 ± 0.07 ns 0.02 ns

Crown rump (cm) 49 ± 1.2 49 ± 1.3 49 ± 0.7 48 ± 01.4 ns ns ns

Subscapular skinfold thickness (cm) 3.5 ± 0.3 3.8 ± 0.3 3.1 ± 0.2 4.0 ± 0.3a* ns 0.03 ns

Retroperitoneal fat mass (g) 0.73 ± 0.12 2.55 ± 0.96a* 1.25 ± 0.39 2.45 ± 0.41a* ns 0.001 ns

Activity
CD/CD
(n = 10)

CD/WD
(n = 6)

WD/CD
(n = 12)

WD/WD
(n = 9) m diet pw diet m × pw

Sex, n 6 F/4 M 2 F/4 M 4 F/8 M 5 F/4 M

Daily (24 h) (counts/h) 353 ± 26 370 ± 17 393 ± 18 453 ± 21� 0.009 0.08 ns

Daytime (12 h) (counts/h) 300 ± 22 350 ± 35 359 ± 23 385 ± 22 0.06 ns ns

Nighttime (12 h) (counts/h) 57 ± 6 60 ± 5 66 ± 6 66 ± 10 ns ns ns

Glucose metabolism
CD/CD
(n = 13)

CD/WD
(n = 6)

WD/CD
(n = 13)

WD/WD
(n = 9) m diet pw diet m × pw

Fasting glucose (mg/dL) 56 ± 4 59 ± 3 55 ± 3 55 ± 1 ns ns ns

Fasting insulin (mU/mL) 6.18 ± 1.22 18.70 ± 5.4*** 6.00 ± 1.12 11.3 ± 1.8 0.08 0.0001 0.09

Glucose AUC, zero (×103; a.u.) 10.00 ± 0.35a 8.46 ± 0.37* 8.59 ± 0.43 8.24 ± 0.38 ns 0.03 ns

Insulin AUC, zero (×103; a.u.) 1.51 ± 0.17a 2.19 ± 0.33 1.70 ± 0.18 2.26 ± 0.24 ns 0.008 ns

Insulin AUC, baseline (×103; a.u.) 1.03 ± 0.19a 1.00 ± 0.17 1.44 ± 0.16 1.67 ± 0.21 0.009 ns ns

HOMA-IR 0.7 ± 0.1 4.2 ± 1.8** 0.5 ± 0.1 1.4 ± 0.3� 0.05 0.0002 0.04

Plasma lipids
CD/CD
(n = 13)

CD/WD
(n = 6)

WD/CD
(n = 13)

WD/WD
(n = 9) m diet pw diet m × pw

Triglycerides (mg/dL) 42 ± 5 53 ± 10 46 ± 9 33 ± 5 ns ns ns

Cholesterol (mg/dL) 123 ± 6 167 ± 9** 130 ± 7 170 ± 9*** ns 0.000005 ns

HDL (mg/dL) 55 ± 2 88 ± 5**** 60 ± 3 90 ± 4**** ns <0.000001 ns

LDL (mg/dL) 64 ± 4 81 ± 9 71 ± 6 83 ± 10 ns 0.05 ns

Body composition, fasting serum values, and activity data are means ± SEM. Glucose AUC was calculated either from zero or
from fasting baseline during an i.v. GTT. a.u., arbitrary units; ns, no significant difference. Statistical significance was determined
with two-way ANOVA. P values are listed for main effects of m diet, pw diet, and interactions (m × pw). Multiple comparisons fol-
lowing Sidak post hoc analysis are represented by asterisks, bold font highlights significant findings. *P < 0.05, **P < 0.01, ***P
< 0.001, ****P < 0.0001, for significant differences between pw diet within the same m diet group and carets, ��P < 0.01, for dif-
ferences between m diet within same pw diet. aOne animal missing from group measure.
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These data indicate that early-life programming by mWD
decreases the capacity of muscle to oxidize a combination
of metabolic substrates, particularly through CI, when
high concentrations of fatty acid are present.

mWD Reduces OXPHOS Enzymes in Exposed
Offspring
As a potential mechanism for reduced respiratory capacity
in mWD-exposed offspring, we measured the enzymes re-
sponsible for mitochondrial OXPHOS. In the soleus, mWD
had a main effect to reduce the abundance of subunits in all
five OXPHOS complexes while pwWD had a main effect to
increase complex abundance. The increase in OXPHOS com-
plexes in the soleus parallels the observed increase in activity
levels with pwWD. In pairwise comparisons, CI, CIV, and CV
abundance were significantly reduced with mWD compared
with mCD in offspring on the pwWD, while CII and CV were
significantly reduced with mWD in both offspring pw diet
groups (Fig. 2A–G). In contrast, there was no main effect of
mWD on expression of electron-transferring flavoprotein
(ETF) or ETF dehydrogenase (ETFDH), which coordinate
electron transfer from fatty acid b-oxidation to the respira-
tory chain downstream of CI (Fig. 2F and G). In pairwise
comparisons, pwWD increased CIV in mCD offspring and in-
creased CV in both mCD and mWD offspring (Fig. 2D and E).
Additionally, there was a main effect of pw diet to increase
ETF and ETFDH, with a significant increase in ETF in the
mWD group by pairwise comparison (Fig. 2F andG).

Similar to the soleus, there was a main effect of mWD to
decrease the expression of all five OXPHOS complex proteins
in the gastroc (Fig. 2I–M) but not ETF or ETFDH (Fig. 2N
and O). Pairwise comparisons revealed lower expression of
CII through CIV in mWD/pwCD groups (Fig. 2I–L) and re-
duced CV in both pw diet groups (Fig. 2M). In contrast to the
soleus, there was no significant main effect of the pw diet on
OXPHOS complexes or ETF/ETFDH proteins in the gastroc.
Taken together, these data indicate that mWD reduces off-
spring skeletal muscle expression of respiratory chain com-
plexes but not ETF/ETFDH. This shift may favor a greater
flow of electrons from fatty acid b-oxidation to ubiqui-
none relative to CI and CII in mWD versus mCD off-
spring, perhaps explaining the partial inhibition of CI- and
CI1II-dependent oxidative capacity during convergent pal-
mitoylcarnitine oxidation.

Transcriptional Regulation of OXPHOS in Response
to WD
To test whether reductions in OXPHOS proteins in mWD
offspring were due to difference in gene transcription, we
evaluated the expression of genes that code for subunits of
CI–CV from both the mitochondrial and nuclear genomes in
soleus and gastroc. In the soleus, COXII (CIV, mitochondrial
genome) and UQCRC2 (CIII, nuclear genome) expression
was greater with pwWD with post hoc analysis showing a
significant increase in UQCRC2 between pw diet in mWD
offspring (Fig. 3C and G). Only the nuclear encoded gene for
CI, NDUFB8, had a main effect of m diet with a significant
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Figure 1—Substrate oxidation in skeletal muscle of adolescent off-
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sured in PMFB with or without lipid (palmitoylcarnitine [LIP]) and
normalized to tissue wet weight in soleus (orange, A–F) or gastroc
(blue, H–M). In soleus, rate was measured in the presence of satu-
rating ADP with serial additions of palmitoylcarnitine and malate
(A), pyruvate (PYR) (B), glutamate for CI OXPHOS capacity (C), and
succinate for maximal CI1CII OXPHOS capacity (D). Respiration
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nate CI1CII OXPHOS capacity (F). These measures were repeated,
in the same order as above, in the gastroc (blue, H–M). Citrate syn-
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(N). Respiratory flux and citrate synthase activity were analyzed
with two-way ANOVA with Sidak multiple comparisons. P values
for significant main effects of m or pw diet are listed above each
graph. For post hoc analysis, carets (�P < 0.05, ��P < 0.01, ���P <
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M; mCD/pwWD, 2 F/4 M; mWD/pwCD, 3 F/5–6 M; mWD/pwWD,
4–5 F/4 M.
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decrease in expression inmWD compared withmCD offspring
on pwCD (Fig. 3E). In the gastroc, neither mitochondrial nor
nuclear encoded OXPHOS genes are significantly impacted by
m or pw diets (Supplementary Fig. 4). Although modest, the
alterations in gene expression recapitulate patterns ob-
served in the protein abundance of the mitochondrial com-
plexes but do not fully explain either the downregulation
of OXPHOS abundance, particularly in the gastroc, nor the
subsequent reduction in oxidative capacities in offspring
exposed to mWD and pwWD.

m and pw Diets Alter Muscle Acylcarnitine
Accumulation but Not Lipid Transport or Oxidation
Enzyme Abundance
Given the impact of m diet on lipid-associated oxidative ca-
pacity in offspring gastroc without reduced ETF or ETFDH
abundance (Fig. 2N andO), we next measured upstream reg-
ulators of lipid trafficking and b-oxidation. There was no
difference in the abundance of two key b-oxidation enzymes,
very-long-chain acyl-CoA dehydrogenase (VLCAD) or hydrox-
yacyl-CoA dehydrogenase a (HADHA) (Fig. 4A and B), by m or
pw diet. There was also no difference in the abundance of the

inner or outer mitochondrial membrane (OMM) long-chain
fatty acid transporters, CPT1b or CPT2, respectively (Fig. 4C
and D). Although b-oxidation and lipid transport enzymes
were not different, the abundance of intramuscular acylcar-
nitines was significantly different by pw and m diet, suggest-
ing potential differences in activity and/or lipid transport.
Specifically, medium- and long-chain acylcarnitines, C10,
C12, C14, C16:1, C18, and C18:1, were much lower with a
pwCD in mWD offspring (Supplementary Table 6). Short-
chain acylcarnitines, C4 and C6, (main effect, m diet) as well
as the unsaturated long-chain acylcarnitines, C18:2 and C18:3
(interactive effect), were also less concentrated with pwCD in
mWD compared tomCD offspring.

AMP-activated protein kinase (AMPK) and acetyl-CoA
carboxylase (ACC), key enzymes involved in nutrient sens-
ing and metabolic fuel use, showed a significant decrease
in abundance in mWD compared with mCD offspring
when consuming pwWD (Fig. 4E and F). Phosphorylation
of AMPK and ACC were not different (Fig. 4G and H).
Lastly, PGC1a abundance, a master regulator of mito-
chondrial metabolism and biogenesis, was not different
across groups (Fig. 4I).
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Prior Exposure to mWD Exacerbates Accumulation of
Lipid Metabolites Associated With Muscle Insulin
Resistance

Since the shift in the abundance and composition of in-
tramyocellular lipids is associated with muscle insulin re-
sistance (31,36,37), we examined the lipid composition
and abundance in offspring gastroc. As expected, the
abundance of individual triacylglyceride (TG) species and
total TGs (Fig. 5A and B and Supplementary Table 7) in-
creased with pwWD. The composition of the TG pool also
changed with pwWD with an increased accumulation of
more saturated and shorter-length TGs (Fig. 5A). This
shift in TG saturation was exacerbated in mWD offspring

with a fivefold greater accumulation with pwWD relative
to pwCD animals (Fig. 5C). The abundance of total DGs,
including both 1,3-DGs (derived from intramuscular TG
lipolysis) and 1,2-DGs (a product of de novo synthesis
and phospholipid degradation) (Fig. 5K), was dependent
on both the m and pw diet (interaction, P = 0.04). Within
mCD offspring, total DGs were lower with pwWD, while
the pattern was reversed for mWD offspring (Fig. 5D).
However, the percent of 1,2-DGs (Fig. 5E) and the per-
cent of saturated 1,2-DGs (Fig. 5F) was significantly ele-
vated by pwWD in both m groups. Interestingly, the
greater difference in the pool of 1,2-DAGs and saturated
1,2-DAGS in mWD offspring was not driven by greater
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accumulation with pwWD but, rather, was due to reduced
content in mWD/pwCD offspring, which have the lowest
amount of these intramuscular lipid species (Fig. 5C, E,
and F). Total ceramide, saturated ceramide, and total
sphingomyelin (SPM) content were not different by m or
pw diet (Supplementary Fig. 5A–C). However, saturated
SPM, specifically SPM C18:0, and the upstream metabo-
lite ceramide C18:0, a lipid species associated with insulin
resistance (37), were most abundant in mWD offspring
on pwWD (Fig. 5G–I). The abundance of ceramide C16:0
was not increased with either diet, indicating specificity
rather than global enrichment of saturated fatty acids
(Fig. 5J). Together, these data suggest that mWD leads to
persistent change in lipid handling and metabolism in off-
spring muscle that is dependent on pw diet; mWD/pwCD
offspring have decreased content and mWD/pwWD off-
spring have equal or higher amounts of saturated TGs
and DGs relative to pw-matched controls. The increased
accumulation of specific bioactive lipid species—namely,
saturated SPM, SPM C18:0, and ceramide C18:0—in re-
sponse to pwWD may contribute to an earlier decline in
skeletal muscle insulin sensitivity (Fig. 5K).

Oxidative Stress Linked to CI and VDAC1 Abundance
in Muscle From Offspring With Prior Exposure to mWD
Reduced mitochondrial function is often associated with
greater oxidative damage and impaired insulin sensitivity
(9,38). We previously observed elevated markers of oxida-
tive stress in fetal muscle from offspring of obese dams
on mWD (18). Therefore, we assessed markers of oxida-
tive stress in adolescent offspring skeletal muscle. Surpris-
ingly, MDA, a marker of lipid peroxidation, was reduced
with mWD (main effect, m diet) in gastroc (Fig. 6A). Simi-
larly, protein carbonylation, a marker of oxidative stress
that is not influenced by membrane lipid saturation, was
also reduced with pwWD in mWD offspring (Fig. 6B). We
next measured the voltage-dependent anion channel
(VDAC1/2) abundance, an outer mitochondrial membrane
transporter associated with ROS release (39). VDAC1/2
abundance was significantly lower in mWD offspring com-
pared with pw diet–matched mCD offspring (Fig. 6C and D).
Indeed, VDAC abundance was approximately fourfold lower
in mWD/pwWD offspring relative to mCD/pwCD offspring
muscle despite no differences observed in citrate synthase
activity (Fig. 1N). VDAC2 was not different, indicating a
VDAC1-specific downregulation in mWD offspring (Fig. 6D).

Correlation analysis was performed for assessment of
relationships between markers of oxidative stress and
VDAC and OXPHOS abundance in offspring muscle. We
found a significant positive linear relationship between
VDAC1/2 and MDA (R2 = 0.3, P < 0.002) or protein car-
bonylation concentration (R2 = 0.3, P < 0.009) across all
offspring (Fig. 6E and G) with significant relationships
maintained in mWD offspring (Fig. 6F and H). We also
found a positive linear relationship between MDA and
CI, CIII, and CI1CIII abundance, primary sites for ROS

generation, and CV in all offspring (Fig. 6G and Supple-
mentary Table 8). Only CI remained significant in analysis
within the mWD offspring (Fig. 6J). These data suggest that
reduced OXPHOS content and/or limiting ROS release via
VDAC1 may reflect fetal adaptations to elevated ROS in skele-
tal muscle during development.

DISCUSSION

Future risk for the development of obesity and cardiome-
tabolic disease in youth, including type 2 diabetes, is in-
creased by exposure to maternal obesity and diabetes in
utero (40–42). These early exposures may “program” the
offspring for metabolic dysfunction; however, the mecha-
nisms and cellular targets mediating these outcomes are
not known. Here, we examined the long-term metabolic
impact of exposure to mWD during pregnancy and lacta-
tion, in the absence of either maternal obesity or insulin
resistance, on 3 year old offspring body composition, glu-
cose homeostasis, and skeletal muscle metabolism. We
also evaluated the efficacy of a healthy pw diet interven-
tion at ameliorating the effects of early-life exposure to
mWD. In summary, offspring exposed to mWD during
gestation and lactation weaned to a healthy pw diet had
elevated insulin release during i.v. GTT despite a similar
body composition compared to mCD offspring and higher
physical activity. In skeletal muscle, offspring had significant
reductions in oxidative metabolism in the presence of fatty
acids concomitant with reduced OXPHOS complex abun-
dance and VDAC1. Further exposure to the pwWD in mWD
offspring revealed a greater change in the accumulation of
saturated lipids and some bioactive lipid species associated
with insulin resistance despite increases in visceral fat ac-
cruement similar to those of mCD offspring. The increased
accumulation of saturated ceramides in skeletal muscle cou-
pled with reduced oxidative capacity may contribute to wors-
ening systemic insulin sensitivity and partitioning of lipids
to adipose stores.

The coordination of mitochondrial oxidation in response
to nutrient availability and energy demand (i.e., metabolic
flexibility) decreases in parallel with the development of sys-
temic insulin resistance (43,44) and metabolic dysfunction
(6). We observed lower oxidative capacity in isolated soleus
and gastroc muscle fibers from mWD offspring, regardless
of pw diet, when provided a combination of fatty acid and
pyruvate. Our data could not be explained by reduced mito-
chondrial content or decreased abundance of critical lipid
trafficking or b-oxidation enzymes or ETF/ETFDH but
may be linked to reduced OXPHOS complex abundance.
Importantly, skeletal muscle from mWD offspring, includ-
ing mWD offspring switched to a healthy diet, contained
approximately one-half the volume of OXPHOS complexes
like CI relative to controls. We propose that the observed
loss in maximal CI- and CI1II-linked respiration in the
presence of lipids may be due, in part, to greater flow of
electrons from fatty acid b-oxidation to ubiquinone via
ETF/ETFDH relative to electrons coming from CI and CII
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in mWD versus mCD offspring. Additionally, patients with
CI deficiency have reduced [NAD1]-to-[NADH] ratios that
also coincide with impaired b-oxidation (45). As both path-
ways for lipid and pyruvate oxidation are dependent on an

adequate [NAD1]-to-[NADH] ratio to proceed, insufficient
CI abundance would shift redox circuitry toward NADH ex-
cess and may also explain why flux is most limited when
both pathways converge at CI.
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Figure 6—Intramuscular oxidative stress is lower in mWD offspring. Lipid peroxidation (MDA) (A), protein carbonylation (2,4-dinitrophenyl-
hydrazine [DNPH]) (B), and the protein abundance of VDAC1/2 (C) and VDAC2 (D) were measured in gastroc from 3 year old offspring. Pro-
tein abundance data were collected with Simple Western and adjusted to vinculin. Representative immunoassay images are shown (D).
Data were analyzed by two-way ANOVA with Sidak multiple comparisons test. P values for significant effects are listed in each graph. For
post hoc analysis, carets (��P < 0.01, ����P < 0.0001) indicate significant differences between m diets within the same pw diet group,
while asterisks (*P < 0.05, ****P < .0001) indicate significant differences between pw diets within the same m diet group. M offspring are
indicated by circles and F offspring by triangles. Sample size for A–C: mCD/pwCD, 5–6 F/4 M; mCD/pwWD, 2–3 F/3 M; mWD/pwCD, 2–3
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median and interquartile range per group (A–C). Statistically significant correlations are indicated by red lines (E–J) with P value and corre-
lation coefficient (R2) listed. rel., relative.
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Interestingly, with the exception of the CI nuclear gene
NDUFB8 in soleus, reduced OXPHOS protein abundance
was not related to decreased nuclear or mitochondrial gene
expression. Furthermore, in soleus, a more oxidative mus-
cle, pwWD increased the protein abundance of OXPHOS
complex, even in the mWD offspring, suggesting an ability
to respond to nutrient stresses, albeit starting at a lower
baseline level. These baseline differences may be due to
posttranscriptional mechanisms related to higher mitochon-
drial protein turnover and/or less synthesis.

Exposure to the pwWD revealed altered lipid handling in
mWD offspring compared with control offspring also on the
pwWD. Increased saturated intramyocellular lipid content is a
strong predictor of muscle insulin resistance in sedentary
adults and children with obesity (37,46,47) and is often associ-
ated with impaired lipid oxidation or lipid trafficking inmuscle
(48). A predominate and unexpected finding across ourmuscle
lipid analysis was a reduction in lipid species accumulation in
mWD offspring weaned to pwCD, suggesting reduced uptake
or altered fatty acid metabolism. In both soleus and gastroc,
reductions in fatty acid oxidation were greatest in this group
(i.e., mWD/pwCD) despite no difference in the abundance of
key fatty acid oxidation enzymes. However, the activity of
CPT1b and/or the abundance of other fatty acid transporters
may be responsible for the lower accumulation of fatty acids
and fatty acid metabolites in mWD/pwCD muscle. At the mo-
lecular level, bioactive lipid metabolites, like 1,2-DG and
ceramide, activate signaling cascades that impede insulin sig-
naling transduction (49). The activation of canonical and/or
atypical PKCs by elevated 1,2-DG to promote inhibitory phos-
phorylation of IRS proteins or by ceramide to inhibit Akt acti-
vation (50,51) and suppression of insulin signaling is well
described in human and animal models of insulin resistance
(52). Specifically, in total and saturated 1,2-DGs, there was a
greater difference between pw diet treatments in mWD off-
spring driven by the lower baseline in pwCD muscle. How-
ever, whether the magnitude of change in 1,2-DGs (or other
lipid species) with pwWD is as important as the total accu-
mulation has not been investigated but may reflect a unique
response associated with developmental programming. In con-
trast to the 1,2-DGs, exposure to mWD led to a greater accu-
mulation of another saturated lipid species, ceramide C18:0,
and its downstream metabolite SPM C18:0, in muscle in re-
sponse to pwWD. Indeed, increased mitochondrial ceramide
accumulation has been linked to reduced coenzyme Q levels
and reduced electron transport system components and,
subsequently, impaired mitochondrial function similar
to that seen in skeletal muscle of mWD offspring (53).
Importantly, our findings are consistent with an intra-
cellular environment characterized in obesity and type 2
diabetes (31,36,37,54,55).

Increased ROS production and elevated oxidative
damage to intracellular molecules are features of mito-
chondrial dysfunction (56,57). We previously reported in-
creased ROS damage in fetal skeletal muscle, pancreas, and
livers from obese mWD dams (17,18,58). Therefore, the

absence of elevated markers of lipid peroxidation or protein
carbonylation in skeletal muscle of mWD was unantici-
pated. Indeed, we observed lower levels of oxidative damage
in mWD offspring on the pwWD. Lower levels of oxidative
damage may result from decreased VDAC1 abundance,
which functions in the formation of the mitochondrial
permeability transition pore to allow ROS efflux and/or
stimulate apoptosis (59). Thus, reduced VDAC may lower
oxidative damage by trapping ROS within the mitochon-
dria. Reduced CI and overall lower OXPHOS flux may also
act as a countermeasure to ameliorate ROS production
(60). Along these lines, we show strong correlations be-
tween ROS damage and VDAC1 abundance driven by mWD
offspring. We also see a relationship between CI, CI1CIII,
and CV and lipid peroxidation. Reduced VDAC1 and OXPHOS
abundance may be an adaptation that reprograms ROS han-
dling as a strategy to mediate the excessive oxidative stress
previously observed in fetal skeletal muscle, albeit at the cost
of mitochondrial health and oxidative efficiency. A higher an-
tioxidant system may also be induced to sequester excess
ROS, although this has not been explored here. Further work
is required to determine the mechanisms that underlie
changes in ROS handling and mitochondrial integrity.

Overall, we show that exposure to an mWD during preg-
nancy and lactation, even in the absence of maternal obesity
and insulin resistance, is sufficient to reprogram offspring
lipid handling and impair oxidative metabolism in skeletal
muscle, a phenotype typically associated with metabolic dis-
ease states or the functional decline in muscle health with ag-
ing (1,61). Sex-specific difference in metabolic outcomes
including insulin resistance and obesity have been identified
in adult offspring exposed to maternal obesity (62). We pos-
tulate that these changes observed in cellular metabolism in
our peripubertal animals will be exacerbated by future physio-
logical stresses including weight gain, puberty, lack of physical
activity, or a chronic pwWD, revealing the elevated and sex-
specific risk of cardiometabolic diseases observed in adults
from pregnancies complicated by poor maternal nutrition
and obesity. Future studies will be aimed at interrogating reg-
ulators of cellular quality control processes contributing to
downregulated OXPHOS abundance and function with expo-
sure tomWD or obesity.
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