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Insulin activates insulin receptor (IR) signaling and subse-
quently triggers IR endocytosis to attenuate signaling. Cell
division regulators MAD2, BUBR1, and p31comet promote IR
endocytosis on insulin stimulation. Here, we show that ge-
netic ablation of the IR-MAD2 interaction in mice delays IR
endocytosis, increases IR levels, and prolongs insulin action
at the cell surface. This in turn causes a defect in insulin
clearance and increases circulating insulin levels, unex-
pectedly increasing glucagon levels, which alters glucose
metabolism modestly. Disruption of the IR-MAD2 interac-
tion increases serum fatty acid concentrations and hepatic
fat accumulation in fasted male mice. Furthermore, disrup-
tion of the IR-MAD2 interaction distinctly changes meta-
bolic and transcriptomic profiles in the liver and adipose
tissues. Our findings establish the function of cell division
regulators in insulin signaling and provide insights into the
metabolic functions of IR endocytosis.

Insulin binds to and activates insulin receptor (IR), a receptor
tyrosine kinase (1–6). Insulin-stimulated IR triggers two dis-
tinct signaling cascades: the phosphatidylinositol 3-kinase
(PI3K)-AKT pathway and the mitogen-activated protein ki-
nase (MAPK) pathway. These two pathways maintain glu-
cose, lipid, and amino acid homeostasis and regulate cell
growth and proliferation (4,7–9). Insulin-activated IR under-
goes endocytosis and is either recycled to the cell surface to
initiate a new round of insulin signaling or degraded in the
lysosome (10–13) (Fig. 1A). Perturbations of insulin signaling

cause metabolic disorders, such as diabetes and severe insu-
lin resistance syndromes (4,8,14).

IR endocytosis, particularly in the liver, facilitates insu-
lin clearance from portal circulation (15,16). Therefore, in
addition to insulin secretion by pancreatic b-cells, hepatic
insulin clearance by IR endocytosis plays a crucial role in
maintaining proper insulin levels and its action in periph-
eral insulin-target tissues (15). Hepatic IR knockout (KO)
or carcinoembryonic antigen-related cell adhesion mole-
cule 1 (CEACAM1) KOmice exhibited defects in IR endocy-
tosis, leading to hyperinsulinemia and systemic insulin re-
sistance (17–19). Conversely, hepatic inhibition of EPH
receptor B4 (EPHB4)-dependent IR endocytosis and lysoso-
mal degradation improved insulin and glucose tolerance
in obese mice (20). Furthermore, inhibition of INCEPTOR
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(insulin inhibitory receptor) enhanced insulin signaling in
b-cells and improved glucose tolerance (21). We previously
showed that accelerated IR endocytosis in liver caused whole-
body insulin resistance (22), whereas delayed IR endocytosis
in the liver by Src homology phosphatase 2 (SHP2) inhibition
prolonged insulin signaling and increased insulin sensitivity
in mice (23). Our findings support the idea that IR endocyto-
sis terminates and redistributes insulin signaling. At present,
the function of IR endocytosis in whole-body insulin sensitiv-
ity is not well understood. It is unclear whether the metabolic
phenotypes described above depend solely on IR endocytosis
or on other IR functions, such as the IR kinase activity, or
even IR-independent functions.

Cell division regulators MAD2, BUBR1, and p31comet

regulate IR endocytosis and signaling (10,22,23). Mitosis
arrest deficiency 2 (MAD2) directly binds to IR through the
MAD2-interacting motif (MIM) in the COOH terminus of
IR and collaborates with budding uninhibited by benomyl
1–related 1 (BUBR1) to recruit clathrin adaptor protein AP2 to
IR (Fig. 1A). p31comet inhibits the association of BUBR1-AP2 to
IR, thereby preventing IR endocytosis. Here, we report that
genetic ablation of the MIM of IR delays IR endocytosis and
prolongs insulin action at the cell surface, while simulta-
neously increasing insulin and glucose counterregulatory
factors and altering whole-body metabolic homeostasis. Our

results demonstrate the importance of IR endocytosis in
metabolic regulation.

RESEARCH DESIGN AND METHODS

Mice
Animal work described in this article was approved and
conducted under the oversight of the Columbia University
Institutional Animal Care and Use Committee. Mice were
fed a standard rodent chow (no. 5053; LabDiet) or high-fat
diet (HFD) (D12492; Research Diets) for indicated periods.
All animals were maintained in a specific antigen-free bar-
rier facility with 12-h light/dark cycles (6:00 A.M. on and
6:00 P.M. off). Two- to three-month-old male mice were
used in this study unless otherwise noted. For inducing in-
sulin resistance, mice were fed an HFD (60%) (D12492;
Research Diets). Gene targeting strategies, hyperinsulinemic-
euglycemic clamp, and metabolic cage studies are described
in Supplementary Material.

Insulin Signaling and IR Endocytosis In Vivo
Insulin signaling and IR endocytosis in vivo analyses were
performed as previously described with some modifications
(22–24). Malemice 2–3months old were fasted overnight. Fol-
lowing anesthesia, mice were injected with 6 nmol Humulin
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Figure 1—MAD2 is required for insulin-activated IR endocytosis. A: Schematic illustration of IR-MAD2 interaction (left) and IR-4A mutant (right).
B: Liver sections of WT and IR-4Amice injected with PBS (�insulin) or insulin (1insulin) were stained with anti-IR (red) antibodies and DAPI (blue).
Scale bar, 10 mm. C: Quantification of the ratios of PM and intracellular compartment (IC) IR signals of the livers in B. Mean ± SD, N = 3 mice
each. Significance calculated with two-tailed Student t test. D: Relative IR levels of whole-liver lysates of WT and IR-4A mice. Mean ± SD. N = 25
mice each. Significance calculated with two-tailed Student t test. P< 0.0001. 4A, IR-4A; IRS, insulin receptor substrate.
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(Eli Lilly) per mouse via inferior vena cava. Livers were removed
at 3 min after injection. Adipose tissues and skeletal muscle
were removed at 5 min and 7 min after injection, respectively.
Hypothalamus was collected at 10 min after 30 nmol/mouse
Humulin injection via inferior vena cava. Adipose tissues were
homogenized in radioimmunoprecipitation assay buffer
(50 mmol/L Tris [pH 8.0], 150 mmol/L NaCl, 1% [v/v] NP-
40, 0.5% [w/v] sodium deoxycholate, 0.1% [w/v] SDS, and
1 mmol/L EDTA), and other tissues were mixed with lysis
buffer B (50 mmol/L HEPES, 150 mmol/L NaCl, 10% [v/v]
glycerol, 1% [v/v] triton X-100, 1 mmol/L EDTA, 0.5 mmol/L
dithiothreitol, and 2 mmol/L phenylmethylsulfonyl fluoride)
supplemented with cOmplete Protease Inhibitor Cocktail
(Roche), PhosSTOP (Sigma-Aldrich), and 25 units/mL Turbo-
Nuclease (Accelagen), homogenized with Fisherbrand Bead
Mill homogenizer, and then incubated on ice for 1 h. After
centrifuge at 20,817g at 4�C for 30 min, the concentrations
of cell lysate were measured with Micro BCA Protein Assay
Kit (Thermo Fisher Scientific). The lysates were then ana-
lyzed with quantitative Western blotting (LI-COR, Lincoln,
NE). The antibodies used for this study are listed in
Supplementary Table 1.

Primary Hepatocytes Isolation
Mouse primary hepatocytes were isolated from 2- to
3-month-old male mice with a standard two-step colla-
genase perfusion procedure as previously described
(22,24). Isolated hepatocytes were resuspended with at-
tached medium (Williams’ Medium E supplemented
with 10% [v/v] FBS, 100 pmol/L insulin, 100 nmol/L
dexamethasone, 5.5 mg/mL transferrin, 6.7 ng/mL sodium
selenite, and 1% penicillin/streptomycin) and plated on col-
lagen (no. C3867; Sigma-Aldrich)-coated dishes. After 4 h,
the medium was changed to serum-free low-glucose DMEM.
After 14–16 h, the cells were treated with insulin for analy-
sis of IR signaling.

Biochemical Measurements
For serum preparation, blood was centrifuged and stored at
�80�C after forming clots at room temperature for 30min. Se-
rum insulin and C-peptide were measured with ultrasensitive
mouse insulin ELISA kits (no. 90080; Crystal Chem) andmouse
C-peptide ELISA kits (80-CPTMS-E01; ALPCO). Plasma samples
were collected from facial vein bleeding with venous blood col-
lection tubes (41.13950.105; Sarstedt). Plasma glucagon, nor-
adrenaline, adrenaline, and fatty acids (FA) weremeasured with
mouse glucagon ELISA kits (81518; Crystal Chem), Bi-CAT
adrenaline and noradrenaline ELISA kits (17-BCTHU-E02-RES;
ALPCO), and FA quantification colorimetric/fluorometric
kits (ab65341; Abcam). Blood glucose and HbA1c levels
from tail bleeding were measured with a glucometer
(AlphaTrak) and A1C Now1 (Bayer Vital) test kits.
Plasma and hepatic triglyceride levels were measured with
triglyceride quantification colorimetric/fluorometric kits
(MAK266; Sigma-Aldrich).

Glucose, Insulin, and Pyruvate Tolerance Tests
For glucose tolerance tests, mice were fasted for 6 h and their
blood glucose levels (T = 0) were measured with tail bleeding.
Then glucose (2 g/kg body wt) was injected intraperitoneally
or using oral gavage. Blood glucose levels were measured at
indicated time points after glucose injection. For insulin tol-
erance tests (ITT), mice fasted for 2 h were injected intraperi-
toneally with Humulin (6 nmol/kg body wt). For pyruvate
tolerance tests (PTT), mice fasted for 14 h were injected with
pyruvate (1 g/kg body wt) (P5280; Sigma-Aldrich).

Tissue Diacylglycerols and PKCe Translocation
Analyses
Hepatic diacylglycerols (DAGs) levels and PKCe transloca-
tion were analyzed as previously described (25). Briefly,
DAGs were extracted from tissues with 2:1 chloroform:-
methanol (v/v) with 0.01% butylated hydroxytoluene,
dried down, and redissolved in 95:5:0.5 hexane/methy-
lene chloride/ethyl ether (v/v/v) before analysis with liq-
uid chromatography–tandem mass spectrometry.

Liver lysates with buffer A (20 mmol/L Tris-HCl, pH
7.4, 1 mmol/L EDTA, 0.25 mmol/L EGTA, 250 mmol/L
sucrose, and freshly added protease and phosphatase in-
hibitors; Roche Diagnostics) were centrifuged (60 min,
100,000g, 4�C), and the supernatant was saved as the
cytosolic fraction. The pellet was resuspended in buffer B
(250 mmol/L Tris-HCl, pH 7.4, 1 mmol/L EDTA, 0.25 mmol/L
EGTA, 2% Triton X-100, and freshly added protease and
phosphatase inhibitors) and centrifuged (60 min, 100,000g,
4�C). An aliquot of the supernatant was saved as the mem-
brane fraction. The resulting protein samples were subjected
to Western blot analysis with anti-PKCe, anti–Na-K ATPase,
and anti-GAPDH antibodies. After washing, membranes
were incubated with horseradish peroxidase–conjugated sec-
ondary antibody (Cell Signaling Technology). Detection was
performed with enhanced chemiluminescence.

Tissue Histology and Immunohistochemistry
Mouse tissues were fixed in buffered 10% neutral buffered
formalin for hematoxylin-eosin (H-E) staining, oil red O
staining, or periodic acid Schiff staining by Molecular Pa-
thology Core at Columbia University. Stained slides were
scanned with a Leica SCN400 scanner. For IR endocytosis
assays, the livers were fixed in 10% neutral buffered forma-
lin and embedded in paraffin blocks. Sections were depar-
affinized, subjected to antigen retrieval with 10 mmol/L
sodium citrate (pH 6.0), incubated with 0.3% H2O2, blocked
with 0.3% BSA, and then incubated with anti-IR antibodies.
The slides were counterstained with DAPI. Adipocyte sizes
were assessed with Adiposoft software in ImageJ on scanned
images of formalin-fixed adipose tissue.

Statistical Analysis
Prism 9 was used for the generation of graphs and for
statistical analyses. Results are presented as mean ± SD
or mean ± SEM. Two-tailed unpaired t tests were used for
pairwise significance analysis. Two-way ANOVA followed
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by Tukey multiple comparisons test was used. Sample
sizes were determined based on the maximum number of
mice. Power analysis for sample sizes was not performed.
Randomization and blinding methods were not used, and
data were analyzed after the completion of all data collec-
tion in each experiment.

Data and Resource Availability
All data are available in the main text or Supplementary
Material. RNA-sequencing data are available in the Gene
Expression Omnibus (GEO) (GSE240578).

RESULTS

Disruption of the IR-MAD2 Interaction Delays IR
Endocytosis
We previously showed that the IR mutant with four residues
in its MIMmutated to alanine (IR-4A) was deficient inMAD2
binding and insulin-induced IR endocytosis (10,22,23). To de-
termine the physiological function of the IR-MAD2 interac-
tion, we generated IR-4A knock-in (IR-4A) mice with CRISPR/
Cas9 (Supplementary Fig. 1A). IR-4A mice survived and did
not show discernable differences from wild-type (WT) mice.
Metabolic cage analyses of male mice fed normal chow diet
did not show significant effects on whole-body oxygen con-
sumption, carbon dioxide production, respiratory quotient,
energy expenditure, caloric intake, or activity in IR-4A mice
compared withWTmice (Fig. 1A and Supplementary Fig. 2).

Insulin-activated IR is internalized, ultimately leading to
downregulation of insulin signaling (26in vivo, overnight-
fasted WT and IR-4A mice were injected with insulin via in-
ferior vena cava. The livers were collected from these mice
and subjected to analysis of localization of the endogenous
IR. As expected, insulin treatment promoted IR internaliza-
tion in the WT liver, whereas IR in IR-4A liver retained its
plasmamembrane (PM) localization (Fig. 1B and C). Conse-
quently, the basal IR level in IR-4A mice was higher than
that of WT mice (Fig. 1D and Supplementary Fig. 1B–F).
These data establish the importance of the IR-MAD2 inter-
action in IR endocytosis and basal level of IR in vivo.

Next, we monitored the activating phosphorylation of IR
(pY962 in the juxtamembrane region and pY1152/1153 in
the kinase domain, with amino acid numbering for mature
mouse IR-A isoform), and downstream phosphorylation
events, including AKT and ERK1/2 in liver, skeletal muscle,
and epididymal white adipose tissue (eWAT) (Fig. 2A and
Supplementary Fig. 1E and F) on insulin stimulation. The
levels of phosphorylated (p)IR and pAKT in IR-4A mice were
slightly increased, as compared with WT mice. pERK levels
were similar between the two groups. Consistent with
in vivo findings, freshly isolated IR-4A primary hepatocytes
showed slightly enhanced and extended pIR and pAKT at
multiple time points and various insulin concentrations
(Fig. 2B–E). No significant differences in pERK levels were
observed between WT and IR-4A hepatocytes. Furthermore,
the pIR and pAKT levels were mildly elevated in IR-4A in par-
ticular muscle under the refeeding condition (Supplementary

Fig. 3A and B). These data suggest that disruption of the IR-
MAD2 interaction delays IR endocytosis and degradation of
IR/insulin complexes, marginally prolonging IR signaling.

IR-MAD2 Controls Insulin Clearance
IR endocytosis in liver plays an important role in insulin clear-
ance. Liver-specific IR KO mice and CEACAM1 KO mice de-
velop hyperinsulinemia (18,27). We thus examined the levels
of insulin and a cleavage product of proinsulin, C-peptide.
C-peptide level was not altered in IR-4A mice, suggesting that
the IR-MAD2 interaction does not affect insulin secretion
(Fig. 3A). In IR-4A mice, serum insulin level was significantly
increased (Fig. 3B), thus lowering the C-peptide–to–insulin ra-
tio (Fig. 3C). Hepatic CEACAM1 level was not altered by the
IR-4A mutation (Supplementary Fig. 3C and D). These data
suggest that disruption of the IR-MAD2 interaction delays in-
sulin clearance, thus increasing peripheral insulin levels.

IR-4A mice displayed mild hypoglycemia possibly due to
the high insulin levels, but no significant changes were ob-
served after 6 h fasting (Fig. 3D). Plasma glucose concentra-
tions are also regulated by glucose counterregulatory factors,
such as glucagon and (nor)adrenaline, which increase glucose
and FA in the bloodstream (28–30). In IR-4A mice fed nor-
mal chow diet, plasma glucagon and noradrenaline concen-
trations were increased (Fig. 3E and F), but not plasma
adrenaline (Fig. 3G). These data suggest that glucose counter-
regulatory mechanisms are activated to maintain glucose ho-
meostasis during chronic mild high-insulin and low-glucose
conditions in IR-4Amice.

IR-MAD2 Maintains Glucose Homeostasis
To determine the function of IR-MAD2 in metabolic ho-
meostasis, we monitored metabolic phenotypes under nor-
mal chow feeding in young (2- to 3-month-old) and old
(13-month-old) WT and IR-4A mice. Young IR-4A mice ex-
hibited improved glucose tolerance and mildly increased in-
sulin levels compared with WT mice (Fig. 4A–C), suggesting
that the increased insulin levels facilitate glucose clearance.
Strikingly, there were no significant differences in ITT and
PTT (Fig. 4D–G).

To directly assess the whole-body insulin sensitivity
of young IR-4A mice, we performed hyperinsulinemic-
euglycemic clamp studies. During the clamp analysis,
plasma glucose levels are adjusted between the groups
to reach �110 mg/mL (Fig. 4H). By experimental design,
the high dose of insulin infusion during the clamp signifi-
cantly increased insulin levels, and to a similar extent in
WT and IR-4A mice (Fig. 4I). Although IR-4A mice have a
slightly higher glucose infusion rate (Fig. 4J and K), they
displayed suppression of endogenous glucose production
(EGP) and plasma FA similar to that of WT mice (Fig. 4L
and M). The insulin-stimulated glucose uptake was slightly,
but not significantly, increased (Fig. 4N). These data sug-
gest that, despite the prolonged IR signaling in IR-4A mice,
the disruption of the IR-MAD2 interaction does not signifi-
cantly enhance whole-body insulin sensitivity in young mice,
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possibly due to increased negative feedback pathways on
mild but chronic hyperinsulinemia and hypoglycemia.

IR-4A mice were followed longitudinally for examination
of the metabolic function of IR-MAD2 in aging mice. With

aging, peripheral insulin resistance progressively increases
and insulin clearance declines, resulting in elevation of circu-
lating insulin levels (31–33). Consistently, aged WT mice ex-
hibited increased serum insulin levels, while insulin levels for
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Figure 2—Disruption of IR-MAD2 interaction prolongs insulin signaling. A: IR signaling in whole-liver lysates of WT and IR-4A mice treated
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aged IR-4A mice did not further increase (Fig. 3B). Thus, the
fact that insulin levels did not differ between young and old
IR-4Amice suggests an acquired defect in insulin homeostasis
in WT mice rather than a reversal of the IR internalization in
IR-4A mice. There was no significant difference in glucagon
levels (Fig. 3H) and glucose tolerance between old WT and
IR-4A mice (Fig. 4O and P). Furthermore, unlike in young
IR-4A mice, mild hypoglycemia was not observed in the IR-4A
mice as they aged. Strikingly, ITT demonstrated that old
IR-4Amice aremore sensitive to insulin with respect to glucose
clearance (Fig. 4Q and R). These data suggest that the disrup-
tion of IR-MAD2 interaction delays the onset of age-related in-
sulin resistance, possibly by prolonging insulin signaling. The
data further suggest that delayed IR endocytosis improves in-
sulin sensitivity in vivo after high-dose insulin injection.

Next, we investigated the metabolic effects of HFD feeding
on WT and IR-4A mice. In comparison with WT littermates,
IR-4Amice had a trend toward increasing body weight (Fig. 5A).
As expected, serum insulin levels in mice fed HFD were sub-
stantially higher than in those fed normal chow (Fig. 5B). Both

WT and IR-4Amice showed amarked increase in serum insulin
concentrations after 8 days of HFD feeding, and this increase
continued over time (Fig. 5B). Insulin levels of IR-4Amice were
similar to those ofWTmice 8 days after HFD feeding (Fig. 5B),
withmodest hypoglycemia and virtually unchanged glucose tol-
erance (Fig. 5E and F). Interestingly, IR-4A mice fed HFD for
8 days exhibited increased insulin sensitivity during an ITT
(Fig. 5G andH). In contrast, IR-4A mice fed HFD for 11 weeks
exhibited decreased fasting serum glucose levels (Fig. 5C andD
and Supplementary Fig. 3E) but did not show increased glucose
or insulin sensitivity (Fig. 5I–L). These results suggest that the
disruption of the IR-MAD2 interaction delays the development
of short-term diet-induced insulin resistance but cannot pre-
vent prolonged diet-inducedmetabolic complications.

IR-MAD2 Maintains Energy Homeostasis
Fasting promotes hydrolysis of triacylglycerols (TG) in
adipose tissues and increases circulating FA (34,35). FA
are taken up by the liver, where they are esterified to TG
or oxidized by b-oxidation into acetyl-CoA, which is then
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condensed to form ketone bodies. In addition, the energy
released in this b-oxidation process is used by the liver
for gluconeogenesis. Therefore, lipolysis in adipose tissues
is essential for energy homeostasis during fasting.

To determine the role of the IR-MAD2 interaction in re-
sponse to nutrient deprivation, we monitored the metabolic

parameters of mice in fasting and refeeding conditions. In
both fasting and random feeding conditions, IR-4A mice did
not significantly differ from WT mice in body weight, liver
mass, spleenmass, heart mass, kidney mass, or brown adipose
tissue mass (Fig. 6A and Supplementary Fig. 4A and B). By
H-E stain, IR-4A liver appears normal (Supplementary
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Fig. 4C). However, despite no observable difference in hepatic
glycogen levels between WT and IR-4A mice (Supplementary
Fig. 4D), there was a substantial increase in Oil red O staining
and hepatic TG contents in IR-4A mice after a 20-h fast
(Fig. 6B and C). Feeding decreased and similarly restored he-
patic TG content in both WT and IR-4A mice (Fig. 6B and C).
We found no difference in circulating TG levels during fast-
ing and refeeding conditions (Fig. 6D), while the serum FA
level was increased in fasted IR-4A mice (Fig. 6E). Strikingly,
white adipose tissue (WAT) mass of IR-4A mice was signifi-
cantly increased, especially eWAT, which increased by�30%
in the fed state and by �40% after fasting for 20 h (Fig. 6A
and Supplementary Fig. 4B). IR-4A mice had larger adipo-
cyte size in fat deposits examined after a 20-h fast (Fig. 6F
and G). Furthermore, IR-4A WAT showed a slight increase in
hormone-sensitive lipase (HSL) phosphorylation (Supplementary
Fig. 4E and F), suggesting that TG hydrolysis is potentially

enhanced. These data suggest a role of the IR-MAD2 inter-
action in lipid metabolism during fasting.

We examined genes involved in lipid regulation in liver
and eWAT of WT and IR-4A mice during 20 h of fasting.
Although IR-4A livers have elevated TG content, lipogene-
sis genes including Srebp1 and Scd1 were decreased,
whereas TG synthesis (Dgat1) and lipid transport (Cd36
and Slc27a2) genes were increased in IR-4A livers (Fig. 6H).
A b-oxidation regulator, Cpt1, was expressed normally. In
eWAT of IR-4A mice, expression of genes involved in lipo-
genesis (Acc1 and Fasn), lipid transport (Cd36, Lpl, and
Fabp4), and lipolysis (Lipe and Plin1) was increased; how-
ever, expression of genes that control TG synthesis
(Agpat3, Dgat1, and Dgat2) was normal (Fig. 6I). Collec-
tively, these results suggest that disruption of the IR-MAD2
interaction may enhance lipogenesis, lipid transport,
and lipolysis in the adipose tissue during fasting, thus
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increasing circulating FA and promoting hepatic fat
accumulation.

To investigate the metabolic effect of the IR-MAD2 interac-
tion in adipose tissues, we examined the potency of adipocyte
differentiation and insulin-mediated suppression of lipolysis
in vitro (Supplementary Fig. 5A and Bin vivo results, no defects
were observed in the adipogenic capacity of IR-4A mouse

embryonic fibroblasts. Insulin significantly inhibited isoprotere-
nol-stimulated lipolysis in bothWT and IR-4Amouse embryonic
fibroblast–derived adipocytes (Supplementary Fig. 5C). A similar
result was obtained in the ex vivo adipose tissue culture
(Supplementary Fig. 5D), indicating that increased FA release
from IR-4A adipose tissues is not associated with the defects in
differentiation or insulin sensitivity.
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The Function of IR-MAD2 in Insulin Transcytosis
IR-mediated transcytosis determines insulin sensitivity in
peripheral tissues such as adipose tissue and muscle with a
continuous capillary system (36,37). We tested whether
disruption of the IR-MAD2 interaction inhibits the

IR-mediated uptake and release of insulin in endothelial cells.
We analyzed insulin fate in the CD311 primary endothelial
cells isolated from WT and IR-4A eWAT, and L6 myoblasts
(Supplementary Fig. 6A and B). The insulin taken up by
L6 cells gradually disappeared, and there was no detectable
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insulin in the medium. In contrast, the insulin taken by
CD311 primary endothelial cells decreased over time and
was released in the supernatant, indicating insulin release
from endothelial cells. In this condition, we did not observe
significant differences between WT and IR-4A primary endo-
thelial cells. Note that due to the detection limit of this assay,
we could not further reduce the insulin concentration in the
pulse to near-physiological concentrations.

Brain has a blood-brain barrier, limiting access of circulat-
ing insulin (38). Insulin signaling is delayed in brains of endo-
thelial IR KO mice because insulin transcytosis is inhibited
(39). Although IR levels were increased in the IR-4A hypothal-
amus, pIR and pAKT levels did not differ (Supplementary Fig.
6C). These data suggest that the disruption of the IR-MAD2
interaction did not affect the transcytosis of insulin in supra-
physiological conditions.

The Function of IR-MAD2 in PKCe-Mediated Hepatic
Insulin Resistance
Hepatic PKCe activation is required for the induction of lipid-
induced hepatic insulin resistance (40,41). PM sn-1,2-DAGs
in the liver activate PKCe, which then phosphorylates IR
T1160 (T1150 in mouse), resulting in reduced IR kinase activity
and hepatic insulin resistance (25,42). To examine the role of
the IR-MAD2 interaction in hepatic regulation of PKCe, we
examined the total DAG levels in PM using differential centri-
fugation and liquid chromatography–tandemmass spectrom-
etry method (25). Disruption of the IR-MAD2 interaction
reduced the sn-1,2-DAG level in the hepatic PM (Fig. 7A and B).
In contrast, there were no discernible differences observed
for sn-2,3-DAG and sn-1,3-DAG in the hepatic PM. Consis-
tent with the reduction of PM sn-1,2-DAG in IR-4A liver,
IR-4A mutation reduced the amount of membrane PKCe
content in the liver with �30% lower translocation without
altering cytosol PKCe content (Fig. 7C–F). Despite marginally
prolonged and enhanced hepatic insulin signaling (Fig. 2), im-
proved glucose clearance (Fig. 4A, J, and K), and decreased
sn-1,2-DAG contents in the hepatic PM (Fig. 7A and B),
IR-4Amutation did not affect EGP during the clamp (Fig. 4L).
Previous studies demonstrating a relatively minor role for di-
rect hepatic insulin signaling in regulating hepatic glucose
production, in rodents without severe hepatic steatosis (43),
might partly explain this inconsistency.

Functions of IR-MAD2 in the Metabolomic and
Transcriptomic Profiles
Because disruption of the IR-MAD2 interaction altered PM sn-
1,2-DAG levels and fat accumulation in the liver during fast-
ing, we assessed which metabolic pathways were affected un-
der these circumstances. We first used metabolomics analysis
in the plasma of WT and IR-4A mice fasted for 6 h. Heat map

analysis with hierarchical clustering demonstrated that plasma
metabolites in IR-4A mice clearly separated from those in WT
mice (Supplementary Fig. 7A), implying their distinct meta-
bolic phenotype in comparison with WT mice. Using a metab-
olite set enrichment analysis (44) on plasma metabolomics
data, we found that the most affected metabolite sets were
those related to linolenic acid and linoleic acid pathways
(Fig. 7G). Consistent with these findings, linolenic acid, arachi-
donic acid, and docosahexaenoic acid levels were altered in
IR-4A mice (Supplementary Fig. 7A). Further analysis demon-
strated that plasma levels of polyunsaturated FA (PUFA) were
increased by IR-4A mutation (Fig. 7H). In contrast, the levels
of saturated FA, monounsaturated FA, and FA derivatives in
the plasma from IR-4A mice did not form a distinct cluster
away from that ofWTmice (Supplementary Fig. 7B).

We next assessed transcriptomic profile in the liver and
eWAT fromWT and IR-4Amice after 6 h fasting using RNA se-
quencing. There is a distinction between differentially ex-
pressed (DE) genes with minimal overlap (Fig. 8A–C) and
several shared DE genes with opposite fold changes (Fig. 8D),
suggesting that IR-4A mice displayed distinct effects on tran-
scriptomic profiles between liver and eWAT. The upregulated
genes in IR-4A liver showed a significant enrichment for genes
in pathways regulating the catabolism of leucine and valine, in-
cluding Hibch, Ivd, Acadm, and Dbt, that contribute to FA syn-
thesis (Fig. 8E–G). The downregulated genes in IR-4A liver
showed a significant enrichment for genes in pathways regulat-
ing protein localization and targeting to the endoplasmic retic-
ulum (Fig. 8E). An analysis of plasma metabolomics revealed
that the levels of the branched chain amino acids leucine and
valine were not altered in IR-4A mice (Supplementary Fig. 7C).
These data suggest that although RNA-sequencing data suggest
a potential increase in the catabolism of leucine and valine in
IR-4A liver, liver leucine and valine catabolism may not regu-
late or be influenced by circulating levels of leucine and valine
(Fig. 8E–G).

In eWAT, the upregulated genes in IR-4A mice showed an
enrichment for genes in pathways regulating protein synthesis
and translation (Fig. 8H). The downregulated genes in IR-4A
eWAT showed an enrichment for genes in pathways regulat-
ing collagen formation and extracellular matrix organization
(e.g., Col6a6, Col1a2, Col4a4, and Col3a1) (Fig. 8H and I). We
also observed significantly lower expression of several macro-
phage markers, including Cd209b, Adgre4, Cd209f, and Lyve1,
in IR-4A eWAT (Fig. 8J). Given the fact that PUFAs have anti-
inflammatory effects (45,46), increased serum PUFA levels in
IR-4A mice (Fig. 7H) may regulate macrophages population or
gene expression in the eWAT. Altogether, the data support a
profound change in the whole-bodymetabolism of IR-4Amice
and the distinct effects on the transcriptomic profiles between
the liver and adipose tissue.

enrichment analysis with eWAT transcriptomics data. I: Upper panel: enrichment plot for the collagen formation pathway as shown in H
visualizing the positions of gene set members on the rank-ordered list. Lower panel: visualization of the expression of leading-edge genes
in the pathway using a heat map. J: Heat map of macrophage marker genes downregulated in the eWAT of IR-4A mice. 4A, IR-4A; ER, en-
doplasmic reticulum; NES, normalized enrichment score; GO_BP, Gene Ontology_Biological Process.
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DISCUSSION

In this study, we have determined the physiological func-
tion of IR-MAD2 interaction during insulin signaling and
metabolic homeostasis. Specifically, we find that disrup-
tion of the IR-MAD2 interaction delays insulin-dependent
in vivo. This genetic attenuation of IR endocytosis slightly
enhances and prolongs insulin signaling through the
PI3K-AKT pathway and does not appreciably affect the
other branch of insulin signaling, the MAPK pathway.
The elevated PI3K-AKT signaling in these mice may ac-
count for the improved insulin sensitivity when circu-
lating insulin levels are similar. Alternatively, signaling
events proximal to the PM are more effective in medi-
ating metabolic regulation by insulin. At present, we do
not know why signaling through the MAPK pathway is
not enhanced in IR-4A hepatocytes. One possibility is
that the IR-MAD2 interaction facilitates activation of
the MAPK pathway by insulin.

in vivo when insulin levels are equal. We propose that in-
creased levels of insulin and surface IR enhance insulin func-
tions in the adipose tissues of IR-4A mice (Supplementary
Fig. 8). Indeed, IR-4Amice exhibited enlargedWAT.We spec-
ulate that WAT of IR-4A mice may release more FA under
nutrient-deficient conditions because they store more fat in
the WAT during feeding. This partly explains why IR-4A
mice exhibited elevated levels of circulating FA and hepatic
TG during long-term fasting.

On the other hand, IR-4A mice exhibited increased glu-
cose counterregulatory factors such as glucagon, thus affect-
ing glucose control (Supplementary Fig. 8). Therefore, early
during HFD feeding, disruption of the IR-MAD2 interaction
delays insulin resistance, but at a later stage, the compensa-
tory effect and the comparability of serum insulin levels re-
sult in diet-induced metabolic complications in IR-4A mice.
The underlying mechanism of hyperglucagonemia in IR-4A
mice remains unclear. One possibility is that mild hypoglyce-
mia in IR-4Amice causes glucagon secretion. However, IR-4A
mice do not reach the hypoglycemic threshold that induces
glucagon secretion (47), suggesting additional regulation. In-
sulin inhibits glucagon release by promoting somatostatin
secretion (48), and glucagon stimulates insulin secretion
through glucagon receptor and glucagon-like peptide 1 recep-
tor (49). In addition, the sympathetic and parasympathetic
branches of autonomic nervous systems control insulin and
glucagon secretion (50). It will be intriguing to determine
whether or how the IR-MAD2 controls the activation of the
counterregulatory factors in islet and nervous system.

Although we did not observe defects in insulin uptake
and release in the endothelial cells and insulin signaling in
the brain of IR-4A mice, we cannot rule out the possibility
that MAD2 binding deficiency diminishes insulin transcy-
tosis and alters local insulin levels because all experiments
were conducted under supraphysiological insulin concen-
trations. While our whole-body knock-in IR-4A mouse is a
powerful system for understanding the systemic function
of IR-MAD2, the relative contributions of different processes

in different tissues to the global phenotype are difficult to as-
certain. Future experiments using tissue-specific conditional
knock-in IR-4A mouse are needed to further define the tis-
sue-specific functions of this interaction.

Hyperinsulinemia is associated with insulin resistance,
although the cause-effect relationship remains obscure.
IR-mediated insulin uptake and degradation are essential
mechanisms for insulin clearance. Therefore, the rate of IR en-
docytosis and the extent of surface IR levels are directly related
to circulating insulin levels. Previous studies with use of IR or
CEACAM1 KOmice support the idea that the impaired insulin
clearance causes insulin resistance. Conversely, IR endocytosis
defects caused by hepatic EPHB4 or SHP2 inhibition reduce
insulin resistance and improve glucose tolerance. p31comet-
deficient mice exhibit reduced basal surface IR levels and
defective insulin signaling, while BUBR1 deficiency enhances
insulin sensitivity and rescues the metabolic defects of
p31comet-deficient mice (22in vivo and establish a physiological
function of IR trafficking in insulin and glucose homeostasis.
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