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Abstract
Introduction: Low-level laser therapy (LLLT), also called Photobiomodulation, has gained 
widespread acceptance as a mainstream modality, particularly in the form of photobiostimulation 
(PBM). Here in our review, we aim to present the application of LLLT to help with depression, 
explore potential action mechanisms and pathways, discuss existing limitations, and address the 
challenges associated with its clinical implementation. 
Methods: In biological systems, the visible light with a wavelength range of 400–700 nm activates 
photoreceptors involved in vision and circadian rhythm regulation. The near-infrared (NIR) light 
with a wavelength range of 800-1100 nm exhibits superior tissue penetration capabilities compared 
to the visible light, which enables the non-invasive application of LLLT to various tissues. 
Results: By enhancing adenosine triphosphate (ATP) production using the respiratory chain, LLLT 
is able to enhance blood flow, reduce inflammation, support repair and healing, and enhance 
stem cell growth and proliferation. Preclinical studies using animal models have shown promising 
neuroprotective effects of the LLLT method on central nervous system (CNS) diseases, suggesting 
potential improvements in brain function for patients suffering from Alzheimer’s disease. In addition, 
it helps Parkinson’s patients with their movement problems and ameliorates mental disorders in 
individuals with depression.
Conclusion: patients’ quality of life can be significantly enhanced. A comprehensive understanding 
of the protective effects and underlying mechanisms of LLLT will facilitate its therapeutic application 
in the future. 
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Introduction
The utilization of sunlight for medicinal purposes has 
a long and interesting past, back to very old cultures 
and civilizations such as China, Egypt, and Greece, 
where it was known as heliotherapy.1,2 Shortly after the 
groundbreaking discoveries of the first laser systems, 
namely the ruby laser (1960) and the helium-neon laser 
(He-Ne) (1961), these novel devices found their way 
into the realm of medicine. The pioneering research of 
physicist Dr. Maiman resulted in the invention of the 
first practical laser in 1960. Subsequently, the field of 
photobiostimulation (PBM) emerged as an area of study 
to explore the medical and therapeutic applications of 
lasers. Unlike the lasers in high-power class, which are able 
to lead to tissue photothermal damage, the focus shifted 
towards low-power lasers with the potential for healing, 
tissue preservation, pain mitigation, inflammation 
reduction, and regenerative medicine across diverse 
medical disciplines. In the past few years, the utilization of 
low-level laser therapy (LLLT) as a non-pharmacological 
therapy and intervention approach has gained significant 

attention due to its potential beneficial effects on the 
brain.3-5 However, the emergence of LEDs, which are 
light-emitting diodes and alternative light sources for 
LLLT, caused some confusion in the field. While LEDs 
emit light similar to the available laser wavelengths, they 
lack the coherence characteristic of laser light and exhibit 
broader output peaks, making them less monochromatic. 
Consequently, the LLLT community is currently 
discussing the relative advantages of laser diodes versus 
LEDs. LEDs as low-power light sources on the milliwatt 
scale hold the advantage of being considerably more cost-
effective than lasers.6 The primary mechanism underlying 
LLLT involves the absorption of red wavelength light 
(600–750 nm) and near-infrared (NIR) one (800–1100 
nm) by cells through chromophores present in tissues, 
including Flavin. This process leads to the increased 
activity of cytochrome C oxidase and subsequent 
enhancement of ATP synthesis.2,7-11 Additionally, the 
absorption of low-energy light into ion channels leads 
to the release of calcium ions and thereby the activation 
of the transcription factors and the expression of the 
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genes.12,13

The brain is an organ in the body that consumes 
the most energy.14 Normal brain function depends on 
optimal metabolism and energy supply.15 However, in 
many neurological diseases, energy metabolism and 
mitochondrial function are disintegrated, causing a vicious 
cycle of dysfunction. Depression, Alzheimer’s disease, 
and Parkinson’s disease are among the brain diseases 
characterized by a decrease in energy metabolism.16-20 A 
fact is that mitochondria provide the necessary energy for 
cells to perform their expressive functions. Studies have 
shown that ATP can mediate antidepressant-like effects 
through cortical P2X2 receptors. With the progress of 
nervous system diseases, there is an essential need for 
therapeutic strategies to strengthen and restore brain 
energy.16,21,22

Depression is a serious emotional disorder with a 
considerable prevalence and recurrence rate that affects 
the quality of life and, in some cases, causes suicide. 
Apathy, unpleasant negative emotions, and sleep or 
eating disorders are some of the main symptoms of 
depression,23 which can be caused by various factors such 
as biological, psychological, and social ones. The biology 
and mechanisms of depression are still unclear, and 
designing specific treatment plans has its own variety of 
challenges. Patients with more serious symptoms require 
longer treatment times and have a higher recurring rate. 
Consequently, there is a critical need for novel adaptable 
therapeutic approaches with minimal side effects.24-27 

Low-power light therapy is a non-invasive 
photosynthetic approach that can be applied in the fields 
of neuroscience, psychiatry, and ophthalmology, and in 

recent years, the effects of LLLT on illnesses of the central 
nervous system (CNS) have been demonstrated in animal 
studies. LLLT can not only moderate oxidative stress but 
also raise ATP synthesis for improving mitochondrial 
function. It also acts on specific neural circuits to provide 
treatment as a depressant. However, its neuroprotective 
mechanism remains to be further elucidated.28-30 In 
this review, we aim to cover the probable mechanisms 
by which LLLT produces neuroprotectors and their 
impact on depression. In addition, we will discuss new 
approaches regarding the CNS and the benefits of LLLT 
for treatment, daily care, and disease prevention.

Low-Level Light-Tissue Interaction
Concurring with the primary law of photobiology, 
photons of the light must be absorbed by the electronic 
bands of the cells’ chromophores for low-power light to 
have an impact on a living biological system. Investigating 
these pigments using optical spectroscopy is one way to 
determine their identity. Similar to the absorption spectra 
of photoreceptor molecules, the absorption spectra of 
the chromophores represent the distinct nature of tissue 
or living cells at various wavelengths. The fact that the 
spectrum describes the quantum structure of target 
molecules supports the idea of the existence of cellular 
receptors and signaling in light-stimulated pathways. 
Some studies confirm that the red to NIR wavelengths can 
be absorbed by cytochrome C oxidase (CCO).31 Primary 
cellular effects are generally related to the interaction of 
photons with intracellular components like cytochromes 
(Figure 1). Visible-NIR light radiation can be absorbed 
by cytochromes, which are located in mitochondria.32 It 

Figure 1. The Cellular Pathway in LLL-Tissue/Cell Interaction
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is also assumed that light can act as a catalyst and affect 
molecules, organelles, and cells without absorption.33

As it is presented in Figure 1, low-level light is 
absorbed by the mitochondrial chroromophore, most 
probably CCO. The interaction of light and CCO 
increases mitochondrial membrane potential, leading 
to a rise in ATP synthesis and causing some amounts 
of reactive oxygen species (ROS), Ca2 + , and nitric oxide 
(NO). Additionally, there is communication between 
the mitochondria and the nucleus, which is caused by 
changes in the mitochondria. These alterations modify 
ATP synthesis, intracellular redox potential, pH, and 
concentration of the cyclic adenosine monophosphate 
(cAMP). Mitochondrial calcium signaling changes ion 
flux at the cell membrane and membrane permeability, 
leading to an increase in metabolism and excitability.34

The interaction of LLLT with tissues is influenced by 
such parameters as tissue absorption coefficient, laser 
wavelength, energy density (including pulse length and 
frequency), polarization, interaction time, and wave 
properties due to the intrinsic wave of light.35 There are 
some facts indicating that pulsed light (laser or LED) is also 
affective for treatment differently from continuous wave 
(CW) mode. Previous research has defined that pulsed 
light appears to be more effective than others in triggering 
desired biological pathways and processes.36,37 Hence, it 
is vital to select optimized irradiation parameters in a 
treatment plan to obtain a more substantial therapeutic 
outcome.

The Neuroscience of Depression
Major depressive disorder is a common impairing 
mental illness that has a significant effect on the quality 
of life and negative effects on mood, behavior, and 
mental perception.38 Globally, approximately 5% of the 
world’s population suffers from depression.39 In recent 
decades, various mechanisms in the pathophysiology of 
depression have been investigated, including changes 
in noradrenergic, dopaminergic, and glutamatergic 
systems, escalated inflammation, abnormalities of the 
hypothalamic-pituitary-adrenal axis, vascular changes, 
decreased neurogenesis, and neuroplasticity.40

The ketamine-induced glutamate burst stimulates 
signaling pathways that promote synaptic growth. 
This includes the activation of the complex that is the 
mammalian target of complex 1, which regulates the 
translation of synaptic proteins required for the formation 
of new synapses. It is considered to have caused synaptic 
plasticity in long-term memory.41

The behavioral indications of sadness and depression 
are wide and broad. They cover affective, motivational, 
cognitive, and physiological domains and include apathy, 
abnormal reward-related perception, and memory 
changes.42-45 Currently, major depressive disorder is 
considered to be a multifactorial disease with various 

causes and triggers, including genetic susceptibility, stress, 
and other pathological processes such as inflammation. 
For example, in some cases, genetic factors can cause 
depression. It should be emphasized that depression 
is a heterogeneous disorder, including many subtypes 
(melancholic, atypical, psychotic, etc.) with different 
characteristics in terms of symptoms, neurobiology, 
reproductive function physiology, and endocrine.45 A 
multitude of symptoms associated with depression are 
most likely the result of anomalies in numerous elements 
of normal brain processes, which can range from the 
molecular to the neural circuit level 46. Lack of activity, 
stress, and maternal deprivation can reduce both brain-
derived neurotrophic factors (BDNFs) and neural activity 
in the brain (Figure 2). This leads to cognitive decline or 
atrophy and neuronal cell death, in which the final result 
might be depression or Alzheimer’s.47

Major depressive symptoms appear to be associated 
with the disruption of a widespread neural network 
that encompasses cortical and limbic areas rather than a 
functional breakdown of a particular brain region.48

Low-level Light Therapy in Depression
Currently, antidepressant medications are based on 
the monoaminergic neurotransmission theory, which 
results in a rise in the 5-hydroxytryptamine (5-HT) or 
norepinephrine brain levels as antidepressants with 
side effects.49 Patients suffering from depression exhibit 
mitochondrial dysfunction and energy metabolism 
abnormalities in many areas of the brain,50,51 as well 
as trouble focusing and weariness, which may be 
characterized by a lack of energy.52 As a result, CCO 

Figure 2. Model of Depression Progression
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might be an implicit target for LLLT to mitigate 
depression through the skull, in which NIR photon 
energy is transferred via the scalp by LLLT to the cerebral 
cortex (Figure 3). Some preclinical investigations 
have shown that following LLLT, the expression and 
activity of ATP synthase and mitochondrial complex 
greatly increased in the prefrontal cortex (PFC) and 
may improve the depression-like tendency in mice.53 
To achieve antidepressant effects, LLLT can increase 
neurotransmitter levels, specifically 5-HT in the PFC, 
as well as NO levels.54 BDNF has antidepressant and 
neurogenesis properties that can help with the illness.55,56 
Some researchers have discovered that LLLT increases 
BDNF expression in hippocampus neurons via the 
oxidative stress mechanism.57 Furthermore, depression 
is thought to be linked to inflammation and oxidative 
stress.57 Because LLLT has been proven to have anti-
inflammatory properties as well as the potential to reduce 
the excessive formation of ROS in the oxidative damage 
process, it may be useful for treating depression.58-60

For depression receptors, LLLT may improve glutamate 
receptor activity via glutamate transporter-1 (GLT-1)-
mediated glutamate uptake in the cerebral cortex, and 
hippocampus by boosting and stimulating the expression 
of α- amino-3-hydroxy-5-methyl-4-isoxazole-propionic 
acid (AMPA) receptors. Thus, it can reduce glutamate 
excitotoxicity and improve depression side effects and 
complications.61

We can take advantage of the unique low-energy 
light to execute the non-invasive combination approach 

or to boost favorable signaling pathways by engaging 
molecular signals. Deeper penetration is vital for the 
application of LLLT to reach deep brain tissues and 
activate preventive or regenerative processes, as well as 
preventing muscular atrophy in individuals who have 
lost their capacity to move normally. Furthermore, 
boosting the production capacity of mitochondria in 
healthy cells might cause sick cells’ living spaces to be 
compressed. Non-specific photoreceptor components 
have a wide range of applications in photodynamic 
and optogenetic treatment.62,63 Specific wavelengths 
are able to be tuned using up-convergent nanoparticle 
materials. NIR light that penetrates deeper into tissue 
is thought to either activate the ventral tegmental area 
to deliver dopamine or suppress and control brain cell 
activity and the habenular nucleus, on which there are 
numerous studies demonstrating the hyperactivity of 
lateral habenula neurons in patients with depression.64 
CCO, light-sensitive chromophores in critical pathways, 
appears to be the target of LLLT in neuronal tissue. It 
should be noted that, for brain tissue, which is a complex 
biological system composed of various chromophores in 
a deeper targeted area, it is critical to apply light photons 
in a longer wavelength regimen to deliver the desired 
light, and penetration facilitates clinical applications. 
LLLT is now integrated into traditional medicine, along 
with ongoing research to verify its effectiveness. There 
are downstream signal pathways following the LLLT in 
which neuroprotective mechanisms are initiated for the 
improvement of neural disorders. Until now, there have 

Figure 3. Schematic Diagram Showing the Direct Stimulation Mechanism of LLLT
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been NIR physical therapy tools for the rehabilitation of 
musculoskeletal diseases, while the light energy density 
should be optimized based on the patient’s conditions for 
achieving the goals based on precision medicine. In other 
words, the key point is that the effects of LLLT appear to 
be influenced by specific light irradiation parameters. The 
main function and role of LLLT in the treatment of CNS 
abnormalities have not yet been generally understood. 
More clinical facts and evidence are crucial for a deeper 
understanding of the improvements. The neuroprotective 
mechanisms and psychological benefits due to LLLT are 
interesting research areas from bench to bed.
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