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Drug-induced nephrotoxicity accounts for up to 60% of cases of acute kidney injury (AKI) in hospitalized

patients and is associated with increased morbidity and mortality in both adults and children. Antibiotics

are one of the most common causes of drug-induced nephrotoxicity. Mechanisms of antibiotic-induced

nephrotoxicity include glomerular injury, tubular injury or dysfunction, distal tubular obstruction from

casts, and acute interstitial nephritis (AIN) mediated by a type IV (delayed-type) hypersensitivity response.

Clinical manifestations of antibiotic-induced nephrotoxicity include acute tubular necrosis (ATN), AIN, and

Fanconi syndrome. Given the potential nephrotoxic effects of antibiotics on critically ill patients, the use of

novel biomarkers can provide information to optimize dosing and duration of treatment and can help

prevent nephrotoxicity when traditional markers, such as creatinine, are unreliable. Use of novel kidney

specific biomarkers, such as cystatin C and urinary kidney injury molecule-1 (KIM-1), may result in earlier

detection of AKI, dose adjustment, or discontinuation of antibiotic and development of nonnephrotoxic

antibiotics.
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D
rug-induced nephrotoxicity is a common cause of
AKI and antibiotics represent one of the largest

group of medications associatedwith AKI. In this article,
we review first the clinical presentations and manage-
ment of nephrotoxicity from different antibiotic classes.
Then, we discuss the mechanisms by which antibiotics
cause nephrotoxicity to different areas of the kidney. In
our last section, we discuss novel biomarkers that have
been shown to be promising in early detection of
antibiotic-induced nephrotoxicity. A summary of this is
shown in Table 1.
Clinical Manifestations of Antibiotic-Induced

Nephrotoxicity
Aminoglycosides

Although aminoglycoside use is limited due to their
known nephrotoxicity, they are typically used for
serious gram-negative infections and infectious endo-
carditis.1 Aminoglycosides have a long postantibiotic
effect and work in a concentration-dependent bacteri-
cidal manner. Nephrotoxicity occurs with frequent
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repeat dosing, which leads to increased accumulation of
the antibiotic in the renal parenchyma.2 Of the amino-
glycosides, the most nephrotoxic is neomycin,
followed by gentamicin, tobramycin, and amikacin.3

Streptomycin appears to be the least nephrotoxic.
Aminoglycoside-induced AKI includes ATN, which
typically presents 5 to 7 days after initial exposure.4 It
can also cause proximal tubular dysfunction, known as
Fanconi syndrome, leading to metabolic acidosis,
hypophosphatemia, glucosuria, aminoaciduria.4

Strategies to prevent aminoglycoside-induced AKI
include using less toxic aminoglycosides, dose
adjusting for estimated glomerular filtration rate,
frequent monitoring of drug trough levels and
extended interval dosing.4,5 Extended interval dosing
is the process of administering higher doses of the
drug less frequently. It lowers the risk of nephro-
toxicity, while maintaining the same efficacy, by
supersaturating the megalin complex in the proximal
convoluted tubule, thereby reducing the amount of
aminoglycoside reabsorbed renally.2,5 Use of other
megalin substrates, such as statins, have been eval-
uated in vitro and in rat studies to competitively
inhibit megalin-induced tubular uptake of the ami-
noglycoside.5 Certain medications such as nifedipine
or fosfomycin have been evaluated in small pediatric
populations to prevent AKI from aminoglycosides,
though the benefit appears unclear.5 Treatment of
2211
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Table 1. Different classes of antibiotics and their various mechanisms of nephrotoxicity, along with the clinical presentation and proposed
biomarkers

Antibiotic class Examples
Clinical presentation of

toxicity Mechanisms of toxicity Biomarkers: pre-clinical Biomarkers: clinical

Aminoglycosides Neomycin
Gentamicin
Tobramycin

-ATN (10%–20%)
-Fanconi Syndrome

-Accumulates in proximal tubule cells,
causing mitochondrial dysfunction and

cell apoptosis.
-Causes mesangial cell contraction,
decreasing glomerular filtration and

surface area

Serum: cystatin C
Urine:
–KIM-1
–clusterin
–NAG
–NGAL
–OPN
–IL-18

–miRNAs

Serum: cystatin C
Urine:
–KIM-1
–NAG
–NGAL
–OPN
–IL-18
–miRNAs

Glycopeptides Vancomycin -ATN
-Non-crystalline cast

nephropathy

-Accumulates in proximal tubule cells,
leading to cell injury and apoptosis via

ROS induced damage
-Causes tubular obstruction through
formation of non-crystal vancomycin

and uromodulin casts

Urine:
–KIM-1
–NGAL

Serum: cystatin C
Urine:

–TIMP2/IGFBP7
–NGAL

Beta lactams Penicillin
Cephalosporins

Piperacillin/Tazobactam

-AIN -Causes interstitial inflammation from
delayed T cell mediated (type IV)

hypersensitivity reaction.

Urine (in AIN)
–MCP1
–NGAL
–NAG
–MMPs
–KIM-1
–C5b-9
–INFa

–IL-5, 6, 8, 9 ,12, 17

Folate synthesis
iInhibitors

TMP/SMX -Pseudo-AKI
-AIN

-Crystalline nephropathy
-Hyperkalemia

-Trimethoprim competes with creatinine
at the OAT-2 transporter

-Interstitial inflammation from delayed T
cell mediated (type IV) hypersensitivity

reaction
-Intratubular obstruction from

precipitation of sulfamethoxazole
-Inhibits sodium influx via ENaC,

reducing the gradient for potassium
excretion

Urine (in AIN)
–MCP1
–NGAL
–NAG
–MMPs
–KIM-1
–C5b-9
–INFa

–IL-5, 6, 8, 9 ,12, 17

Sulfonamides Sulfadiazine -Crystalline nephropathy
-Stone formation

-AIN

-Crystalline precipitation, causing
tubular obstruction and interstitial

inflammation

Urine (in AIN)
–MCP1
–NGAL
–NAG
–MMPs
–KIM-1
–C5b-9
–INFa

–IL- 5, 6, 8, 9 ,12, 17

Fluoroquinolones Ciprofloxacin
Levofloxacin
Moxifloxacin

-Crystalline nephropathy
-AIN
-ATN

-Granulomatous interstitial
nephritis (rare)

-Crystalline precipitation, causing
tubular obstruction and interstitial

inflammation

Urine (in AIN)
–MCP1
–NGAL
–NAG
–MMPs
–KIM-1
–C5b-9
–INFa

–IL-5, 6, 8, 9 ,12, 17

Tetracyclines Doxycycline
Minocycline

-Fanconi syndrome
-AIN

-Granulomatous interstitial
nephritis (rare)

-Accumulates in proximal tubular cells,
inhibiting ribosomal protein production

and causing cell damage
-Interstitial inflammation from delayed T
cell mediated (type IV) hypersensitivity

reaction

Urine (in AIN)
–MCP1
–NGAL
–NAG
–MMPs
–KIM-1
–C5b-9
–INFa

–IL-5, 6, 8, 9 ,12, 17

Polymixin Colistin -ATN (20%–60%) - Accumulates in proximal tubular cells,
causing cell membrane and

mitochondrial damage, leading to cell
apoptosis

Serum: cystatin C
Urine:
–KIM 1
–NGAL

Serum: cystatin C
Urine: clusterin

AIN, acute interstitial nephritis; ATN, acute tubular necrosis; C5b-9, (terminal complement complex); ENaC, epithelial sodium channel; IFNa, interferon-alpha; IL, interleukin; KIM-1,
kidney injury molecule-1; MCP-1, monocyte chemoattractant protein-1; MMP, matrix metalloproteinase; NAG, N-acetyl-beta-D-glucosaminidase; NGAL, neutrophil gelatinase
associated lipocalin; OAT-2, organic anion transporter-2; OPN, osteopontin; TMP/SMX, trimethoprim-sulfamethoxazole.
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aminoglycoside-induced nephrotoxicity typically in-
volves supportive cares and cessation of drug.4

Vancomycin

As one of the most commonly used antibiotics, the
primary indications for vancomycin include staphylo-
coccal and streptococcal infections. However, AKI from
vancomycin is well-documented, and most commonly
includes ATN and AIN, and typically occurs 4 to 17
days after exposure.6 Vancomycin-induced ATN is
associated with oliguria and an acute rise in serum
creatinine. Alternatively, vancomycin-induced AIN
will present as a nonoliguric AKI associated with sterile
pyuria, nonnephrotic proteinuria 7 to 14 days after
exposure.6 Symptomatically, there may be rash, fever,
and eosinophilia; however, this triad is seen in less than
10% of patients with AIN.6 Classically, the renal bi-
opsy has interstitial edema and cellular infiltrate of
eosinophils and lymphocytes, but can occasionally
show granulomatous interstitial nephritis.6,7 Vanco-
mycin can also cause noncrystalline cast nephropathy
as discussed above; however, it remains controversial
whether these casts can actually lead to AKI.8,9 Risk
factors for developing AKI include higher trough levels
(>15 mg/l), longer duration of use (>7 days), obesity,
critical illness, and underlying chronic kidney disease.9

Prevention of vancomycin-induced AKI is done by
monitoring drug troughs to avoid supratherapeutic
levels, avoiding use of nephrotoxins, and maintaining
good hydration.10 Treatment of vancomycin-induced
AKI includes withdrawal of the antibiotic and sup-
portive cares.9 Steroids may be used in cases of AIN.10

In some case reports, high-flux hemodialysis to remove
vancomycin has also been suggested as a form of
treatment, though this is not commonly used.10

Vancomycin/Piperacillin-Tazobactam

In combination, vancomycin and piperacillin-
tazobactam (VPT) is used for empiric coverage of
gram-positive, gram-negative and anaerobic organisms,
specifically covering methicillin-resistant staphylo-
coccus aureus and Pseudomonas aeruginosa.11 However,
the combination has previously been associated with
AKI in approximately 15% to 35% of patients. VPT is
reported to be a higher risk for AKI than vancomycin
alone, and cause AKI earlier (3–5 days after exposure
vs. 5–8 days in vancomycin alone.)11,12 More recently,
there is evidence that the elevated creatinine following
exposure to VPT may be a “pseudo-AKI.”12,13 This
occurs because piperacillin-tazobactam is a substrate of
the organic anion transporters 1 and 3, and competi-
tively inhibits tubular secretion of creatinine.12,13 A
study by Miano et al.13 revealed that although VPT
does increase creatinine, it does not increase cystatin C,
because cystatin C does not undergo tubular secretion
Kidney International Reports (2023) 8, 2211–2225
through organic anion transporters 1 and 3. Biopsies
done in patients with AKI following exposure to VPT
indicate that the etiology is either ATN or AIN.12

Tubular damage may be from vancomycin, whereas
the AIN may be from either vancomycin or piper-
acillin-tazobactam.12 Risk factors described for AKI
from VPT include higher vancomycin trough levels,
diabetes, and hypertension.11

Prevention of this AKI is predominantly through
monitoring trough levels, avoiding concomitant neph-
rotoxins and/or preemptively using alternative com-
binations, such as cefepime and vancomycin.
Preclinical studies have evaluated the use of antioxi-
dants, such as erythropoietin or vitamins C and E to
prevent AKI.14 In one small randomized controlled
trial, magnesium infusions targeting a level of 3 mg/dl
was evaluated to prevent AKI in patients receiving
VPT, which showed a nonsignificant reduction in
AKI.14

Beta-lactams

Beta-lactams are a common class of antibiotics that in-
cludes penicillin, cephalosporins, carbapenems, and
monobactams.15 They are used frequently, both in the
outpatient and inpatient setting, to treat a variety of
infections. Beta-lactams are often associated with the
development of AIN. Of the penicillin derivatives,
nafcillin and methicillin are associated with the highest
risk of developing AIN.4,15,16 Cephalosporins are also
associated with AIN, more commonly seen with first
generation cephalosporins. AIN will present as a non-
oliguric AKI typically approximately 8 to 10 days
following exposure to the drug, with associated pyuria,
hematuria, and low grade proteinuria.15 Occasionally,
eosinophilia and other allergic type symptoms are seen,
but are often absent.4,15 On biopsy, granulomatous AIN
has been reported with both penicillins (methicillin,
ampicillin, and oxacillin) and cephalosporins.17

Prevention of AKI includes avoiding antibiotics
(such as amoxicillin or nafcillin) with a stronger asso-
ciation to AIN. Treatment of AIN typically includes
withdrawal of the medication, and occasionally, the use
of steroids. The overall benefit of steroids in treating
AIN is unclear given that the studies surrounding its
use are small and retrospective.18 However, these
studies suggest an improved renal outcome with the
use of steroids, especially if used earlier in the course of
the disease.18,19

Trimethoprim-sulfamethoxazole

Trimethoprim-sulfamethoxazole (TMP/SMX) is useful
for treatment and prophylaxis against gram-positive
and gram-negative infections in the respiratory,
gastrointestinal, and genitourinary tracts.20 However,
TMP/SMX is known to be nephrotoxic through various
2213
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mechanisms. Trimethoprim is also “pseudoneph-
rotoxic” given that it is a substrate of organic anion
transporter-2, which leads to a reduction in tubular
creatinine secretion, causing a 10% to 28% increase in
serum creatinine.21 However, a true AKI from AIN can
develop, more commonly from the sulfamethoxazole
component, and is associated with relatively rapid
onset and allergic symptoms.4 A less common form of
AKI is from intratubular obstruction from precipitation
of sulfamethoxazole.22 Because sulfamethoxazole is a
weak acid, it can precipitate if the urinary pH is 5.5 or
less, and can be identified by crystalluria.22,23 Tubular
obstruction following exposure to sulfamethoxazole
will present as an oliguric AKI approximately 7 days
after exposure, correlating to deposition of crystals in
the renal parenchyma or medullary rays.22 Rarely,
sulfamethoxazole has been reported to cause urolith-
iasis.24 TMP/SMX is also known to cause hyperkalemia
through its interaction with epithelial sodium chan-
nel.25 Risk factors for developing AKI from TMP/SMX
are hypertension, diabetes mellitus, higher doses of
sulfamethoxazole, and hypovolemia (increasing the risk
for tubular precipitation.)22 Prevention can be from
ensuring good hydration and alkalinizing urine.22

Treatment of AKI from TMP/SMX includes with-
holding the medication, and consideration of steroids
for those with AIN. In the setting of sulfamethoxazole
crystal nephropathy, treatment includes increasing
intravenous fluid to induce diuresis and alkalinizing
urine.22

Sulfadiazine

Sulfadiazine is a sulfonamide antibiotic that is used for
prevention and treatment of infections such as chan-
croid and toxoplasmosis gondii. Similar to sulfameth-
oxazole, sulfadiazine is known to cause crystalline
nephropathy.22 In acidic pH urine or low volume urine,
sulfadiazine can precipitate, causing distal tubular
obstruction.4,26 Additional forms of AKI include stone
formation, along with AIN.26 The AKI from crystalline
nephropathy often presents as an asymptomatic rise in
creatinine. Evaluation of urine microscopy will show
sulfadiazine crystals in a classic “shock of wheat” for-
mation.4 Risk factors for developing crystalline
nephropathy include low urine volume, acidic urine,
and high dose of sulfadiazine.26 Prevention of this AKI
is done by ensuring volume repletion, dose reducing
sulfadiazine, or switching to an alternative antibiotic.
Additional preventative efforts include forced diuresis
with large volume intravenous fluids and attempting to
alkalinize the urine.26

Fluoroquinolones

Fluoroquinolones (FQs) are broad spectrum antibiotics,
used to cover enteric gram-negative bacteria, respiratory
2214
pathogens, and certain gram-positive bacteria. However,
AKI is associated with certain FQs such as ciprofloxacin,
and less commonly levofloxacin and moxifloxacin.4,15,27

The risk of AKI does not appear to be a class effect,
because FQs such as gatifloxacin, norfloxacin, and gem-
ifloxacin have a much rarer risk of AKI.28 The AKI from
FQs is typically secondary to AIN, but has also been
reported to cause ATN in overdose, and rarely granu-
lomatous interstitial nephritis and crystalluria.15,17,28-30

Risk factors for developing crystalluria include alkaline
urine (pH > 6.8), concomitant use of renin-angiotensin
system blockers as well factors that increase risk for
precipitation, including low urine volume and high drug
concentrations.4,29,30 When the crystals precipitate, it
often occurs in the distal tubules, obstructing urine
output and causing interstitial inflammation. Crystals
isolated in urine samples are stellate-appearing; by
biopsy, they are needle shaped within the tubules, and
are birefringent by polarized light.4,30

Similar to other antibiotics, AIN from FQs may or
may not present with classic inflammatory effects (such
as pyuria or eosinophilia) and is typically nonoliguric.
In contrast, AKI from ATN may lead to anuria. Crys-
talline nephropathy from FQs often develops asymp-
tomatically, with an acute increase in creatinine and
oliguria. Preventative measures include ensuring good
hydration, avoiding alkaline urine, as well as using FQs
that are less commonly associated with AKI, such as
moxifloxacin or norfloxacin.4,28 Treatment includes
stopping the antibiotic or switching to an alternative
option.

Tetracyclines

Tetracyclines are a broad-spectrum class that covers
gram-positive, gram-negative, and atypical organisms,
such as Borrelia and Treponema species. Nephrotoxicity
from these antibiotics is most often reported as prox-
imal tubule damage leading to Fanconi syndrome, often
after use of degraded or outdated tetracyclines.31 The
tubular dysfunction is usually seen approximately 1
week after exposure to tetracyclines, and the most
common sign is hypokalemia, as well as phosphaturia
and glucosuria.32 This tubular dysfunction usually
requires approximately 9 weeks for resolution.33 Less
commonly, AIN from minocycline and doxycycline has
been reported. As with other forms of AIN, patients
may be asymptomatic or have fevers, rash, and eosin-
ophilia.34,35 Patients typically develop nonoliguric AKI
with sterile pyuria, and enlarged kidneys on imaging,
and symptoms typically develop 2 to 3 weeks after
exposure.35 Renal biopsy typically shows classic AIN
findings of interstitial inflammation and cellular infil-
trate; however, rarely, granulomatous AIN has also
been reported.17,35
Kidney International Reports (2023) 8, 2211–2225
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Risk factors for tetracycline-induced nephrotoxicity
(specifically tubular dysfunction) include use of
outdated or degraded versions of the medications.
Prevention of nephrotoxicity is managed by avoiding
these types of drugs. Treatment includes withdrawal of
the medication, supportive care, and steroids for
AIN.35

Colistin

Colistin is a polymyxin antibiotic that has seen a
resurgence in use for serious multidrug-resistant
gram-negative organisms, including Pseudomonas or
Klebsiella.36,37 However, its use is limited by neph-
rotoxicity. Typical presentation of AKI from colistin
occurs approximately 5 to 7 days after exposure, and
the underlying cause of AKI from colistin appears to
be ATN.36,37 Risk factors for AKI include high daily
doses of colistin (>5 mg/kg), older age, severity of
underlying illness, comorbidities, such as chronic
kidney or liver disease, and concomitant use of
nephrotoxins, such as vancomycin.36-38

Prevention of AKI from colistin includes judicious
dosing practices because high doses of colistin are
required to achieve therapeutic serum concentrations;
however, doses >5 mg/kg increase risk of AKI37; in
addition, avoiding concomitant use of vancomycin or
Figure 1. Mechanisms of antibiotic-induced nephrotoxicity. ATN, acute tu

Kidney International Reports (2023) 8, 2211–2225
other nephrotoxins and careful patient evaluation prior
to use. Treatment involves supportive care and with-
drawal of the drug.38

Mechanisms of Antibiotic-Induced

Nephrotoxicity

Each antibiotic interacts with different parts of the
nephron, leading to nephrotoxicity. These effects are
described below, and are organized anatomically.
Common mechanisms of nephrotoxicity and their
clinical presentation is depicted in Figure 1.

Glomerular Toxicity

Mesangial cells are located at the core of the
glomerular tuft between capillary loops. Mesangial
tone exerts a mechanical traction on the glomerular
basement membrane and on the endothelial capillary
lining, which determines the filtration surface and
modulates glomerular vascular resistance. Genta-
micin, an aminoglycoside, stimulates mesangial cell
contraction and proliferation, leading to reduction in
glomerular filtration surface area and rate.39 In
addition, with proximal tubular damage, there is
increased sodium delivery to the distal part of the
nephron. This activates the tubuloglomerular feed-
back mechanism, leading to afferent arteriolar
bular necrosis.

2215
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vasoconstriction and a subsequent decrease in renal
blood flow and glomerular filtrate rate.1

Tubular Toxicity

Antibiotic-associated tubular injury can manifest as
tubular dysfunction, such as Fanconi’s syndrome,
electrolyte and acid-base disorders, and as ATN
through increased oxidative stress, alteration of cell
metabolism and enzymatic activity, and direct tubular
injury.12

Vancomycin enters proximal tubular cells by both
receptor-mediated endocytosis from the urine and
transporter-mediated secretion from peritubular circula-
tion.40 High intracellular concentration of vancomycin
subsequently induces oxidative stress, mitochondrial
dysfunction, and cellular apoptosis in the proximal renal
tubules.6 Oxygen consumption generates reactive oxy-
gen species (ROS) inside the cells. Oxidative stress refers
to an imbalance between ROS and antioxidants within
cells. When vancomycin accumulates inside the tubular
epithelial cells, it stimulates oxidative phosphorylation
and oxygen consumption, leading to increased ROS pro-
duction. ROS induce lipid peroxidation resulting in
mitochondrial membrane damage, which subsequently
induces cytochrome C release, caspase activation, and cell
apoptosis.41,42 In addition, ROS production causes injury
to mitochondrial DNA and promotes the activation of
poly-adenosine diphosphate ribose polymerase 1, an
enzyme involved in DNA repair. When excessive mito-
chondrial DNA damage coupled with poly-adenosine
diphosphate ribose polymerase 1 overactivation, there is
a depletion of intracellular nicotinamide adenine dinu-
cleotide and adenosine triphosphate, leading to cell ne-
crosis. Furthermore, vancomycin accumulates in
lysosomes and activates the mitogen-activated protein
kinase pathway, resulting in programmed cell death of
the proximal tubular cells.41,43

Obstructing tubular casts composed of noncrystal-
line vancomycin aggregates entangled with uromodu-
lin were noted on renal biopsies in patients with
vancomycin-induced AKI.8,44 These casts were mainly
found in the distal tubules. Macrophage infiltration
was observed surrounding these casts within the
interstitium, suggesting that these casts may induce an
inflammatory process leading to further damage.
Similar vancomycin casts were reproduced experi-
mentally in mice that were given high dose vancomy-
cin. Vancomycin obstructive casts appear very early
after administration of vancomycin and are detected as
early as 40 minutes postinjection on the kidney sec-
tions in the mice models.8

Colistin is reabsorbed by the proximal tubular cells
upon binding to megalin at the apical membrane.45

Intracellular accumulation of colistin leads to
2216
mitochondrial damage, activation of death receptors,
and cell apoptosis.46,47 In addition, colistin increases
tubular epithelial cell membrane permeability, result-
ing in influx of cations, anions, and water, leading to
swelling and lysis of the cells.48

Aminoglycosides are freely filtered and subse-
quently reabsorbed by megalin, an endocytic recep-
tor in proximal tubular cells. Once inside the cell,
aminoglycoside concentrates in the lysosomes, endo-
plasmic reticulum, and Golgi body. When a con-
centration threshold is reached, aminoglycosides
empty into the cytosol, leading to mitochondrial
dysfunction and impaired generation of adenosine
triphosphate, which induces apoptosis and necrosis
of the tubular epithelial cells.1,49 Uptake of amino-
glycosides into the proximal tubular cells directly
correlates with megalin activity. It has been
demonstrated that aminoglycoside-induced nephro-
toxicity is completely eliminated in mice with
genetically-induced megalin deficiency.50

Tetracyclines enter the proximal tubular epithelial
cells through organic anion transporters. Ribosomes are
the main intracellular target of tetracycline, causing
inhibition of ribosomal protein synthesis.32 Histological
examination of kidney tissue after tetracycline expo-
sure showed vacuolization of the tubular epithelium,
hypercellularity of glomerular tufts, prominent capil-
lary loops, and basement membrane thickening.33 This
damage from tetracycline is associated with proximal
tubular dysfunction and Fanconi syndrome.

Trimethoprim use is associated with hyperkalemia.
On the basolateral membrane of the cortical collecting
duct, trimethoprim inhibits Na-K-ATPase. On the apical
membrane of the cortical collecting duct, trimethoprim
inhibits influx via epithelial sodium channel, which
decreases the net driving force for potassium to exit
across the apical cell membrane. As a result, trimetho-
prim decreases urinary potassium excretion, even in
healthy volunteers with normal renal function.25,51

Interstitial Toxicity

AIN is a delayed T cell-mediated (type IV) hyper-
sensitivity reaction that occurs after exposure to a
culprit drug. Reexposure to the same drug will
result in a faster and more severe reaction. The
kidneys are susceptible to developing AIN because
they are a major site of drug and drug metabolite
excretion, which become antigens that trigger the
reaction.52

Antibiotics are thought to be the most common
cause of AIN. In a case series of 133 patients with
biopsy-proven AIN between 1993 and 2011, 70% of
the cases were drug-induced, and antibiotics accounted
for almost half these drug-induced AIN cases.53
Kidney International Reports (2023) 8, 2211–2225
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Of the drugs frequently cited to cause AIN, beta-
lactams are the most common. Beta-lactams, such as
penicillin and cephalosporin, are eliminated by
glomerular filtration and varying degrees of active
transport across the tubular epithelial cells. The anti-
genic determinant of these drugs is formed through
binding of their reactive degradation product with
albumin. These penicillin-albumin or cephalosporin-
albumin complexes then bind to drug-specific T
cells, leading to recruitment of inflammatory cells to
the renal parenchyma. Infiltrating neutrophils lead to
tubulitis seen in severe cases of AIN. Activated
fibroblasts proliferate and promote matrix synthesis,
eventually causing fibrosis. Infiltrating macrophages
release collagenase, elastase, and ROS, magnifying the
injury initiated by the lymphocytes.52

Biomarkers of Antibiotic-Induced

Nephrotoxicity

Most commonly used serum markers of antibiotic-
induced nephrotoxicity such as creatinine or blood
urea nitrogen are imperfect markers of kidney function
because they are influenced by many renal and non-
renal factors, independent of kidney function.54 For
example, antibiotics such as trimethoprim, which is
most often given in combination with sulfamethoxa-
zole, alter the tubular secretion of creatinine leading to
changes in serum creatinine independent of estimated
glomerular filtration rate.55 For example, the cephalo-
sporin antibiotic cefoxitin can interfere with some
Table 2. Novel biomarkers and their use in antibiotic induced nephrotoxi

Biomarker Metabolism

Cystatin C -Produced by all nucleated cells
-Freely filtered by glomerulus

-Serum and urinary cystatin C increased in AKI

KIM-1 -Transmembrane protein expressed on the apical membrane of PCT
-Urinary KIM-1 increased in AKI

Clusterin -Produced in renal tubular cells
-Urinary clusterin increased in renal tubular cell injury

NAG -Is a glycosidase located in the lysosomes of PCT epithelial cells
-Urinary NAG increased in AKI

NGAL -Protein involved in innate immunity, present in leukocytes
-Urinary NGAL increased in AKI

OPN -Glycoprotein involved in immunity and has upregulated expression i
tubules and glomeruli with renal injury

-Urinary OPN increased in AKI

TIMP2 x IGFBP7 -Markers of cell cycle arrest in renal tubular epithelial cells
-Urinary TIMP2 x IGFBP7 is increased in ischemic or sepsis induced A

IL-18 -Proinflammatory cytokine, present in renal tubules
-Urinary IL-18 is increased in tubular injury

miRNAs -Non-coding RNAs that are important in gene regulation

AGs, aminoglycosides; AKI, acute kidney injury; IGFBP7, insulin-like growth factor-binding-pro
minidase; NGAL, neutrophil gelatinase associated lipocalin; OPN, osteopontin; PCT, proximal c
piperacillin-tazobactam.
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creatinine assays resulting in falsely high creatinine
levels. Serum creatinine may change due to nonrenal
factors independent of kidney function such as age,
gender, race, muscle mass, nutritional status, total
parenteral nutrition, infection, protein intake, catabolic
states, and volume status. Alterations in serum creati-
nine lag several days behind actual changes in
glomerular filtration rate. Blood urea nitrogen is also
altered by nonrenal factors such as protein intake,
catabolic state, upper gastrointestinal bleeding, volume
status, and high-dose steroids.56

Earlier detection of antibiotic-induced nephrotoxicity
with a kidney specific biomarker may result in earlier
detection of AKI, avoidance of nephrotoxic antibiotics,
more rational antibiotic dosing, or the development of
new nonnephrotoxic antibiotics. For example, cystatin C
has been incorporated into some drug-dosing algorithms
for vancomycin because it increases earlier in response
to vancomycin toxicity than creatinine.57

In 2018, the FDA approved a composite measure
composed of 6 urinary biomarkers: cystatin C, KIM-1,
clusterin, N-acetyl-beta-D-glucosaminidase (NAG),
neutrophil gelatinase-associated lipocalin (NGAL), and
osteopontin as a safety composite biomarker panel to be
used in conjunction with traditional measures to aid in
the detection of tubular injury in phase 1 trials in
healthy volunteers when there is an a prior concern
that a drug may cause tubular injury.58,59 These
FDA-accepted biomarkers will be discussed first. A
summary of the novel biomarkers is found in Table 2.
city
Antibiotic with which the biomarker
has correlated to nephrotoxicity
(preclinical animal studies)

Antibiotic with which the biomarker
has correlated to nephrotoxicity

(clinical studies)

-AGs/Gentamicin
-Colistin

-AGs/gentamicin (pediatrics)
-Colistin (adults)

-Vancomycin (pediatrics, adults)

-Vancomycin
-Colistin

-AGs/Gentamicin (pediatrics)

-AGs/Gentamicin
-Vancomycin

NA

-AGs/Gentamicin -AGs/Gentamicin (adults)

-AGs/Gentamicin
-Vancomycin
-Colistin

-AGs (pediatrics)
-Vancomycin (adults)

n -AGs/Gentamicin
-Colistin

-NA

KI
-NA -VPT (adults)

-Vancomycin (adults)
-AGs (pediatrics)

-AGs/Gentamicin -AGs (pediatrics)

-AGs/Gentamicin -AGs/Gentamicin
-Vancomycin

tein 7; IL, interleukin; KIM-1, kidney injury molecule-1; NAG, N-acetyl-beta-D-glucosa-
onvoluted tubule; TIMP2, tissue inhibitor of metalloproteinases-2; VPT, vancomycin and
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Cystatin C

Cystatin C is produced by all nucleated cells, freely
filtered by the glomerulus and is completely reabsorbed
by the proximal tubules.60 Serum cystatin C, in some
situations, may be more accurate than creatinine,
because it is not affected by muscle mass, diet, gender,
or tubular secretion.61 Serum cystatin C and cystatin C
based formulae perform well in estimating glomerular
filtration rate.62,63 However, abnormalities of thyroid
function, high dose glucocorticoid therapy, and sys-
temic inflammation may increase cystatin C independent
of kidney function.54 Based on the number of published
studies, serum cystatin C is the most promising
biomarker of antibiotic-induced nephrotoxicity.64-67

Preclinical Studies

Urinary cystatin C, KIM-1, and NGAL, are biomarkers
of gentamicin-induced nephrotoxicity that increase
before blood urea nitrogen or serum creatinine in
rats.68,69 Serum cystatin C increases before serum
creatinine in rats treated with colistin.70

Clinical Studies

Serum cystatin C increases before serum creatinine and
can predict worsening AKI stage in preterm infants on
amikacin and in noncritically ill children receiving
aminoglycosides.71,72 In children with cystic fibrosis,
serum cystatin C levels and clearance showed greater
ability to predict amikacin clearance than creatinine
clearance.73,74 In adults on colistin, serum cystatin C is
a better marker of renal function than serum creatinine
and predictive of persistent AKI.75

In hospitalized patients on vancomycin, the best
performing model for dosing utilizes the Chronic
Kidney Disease Epidemiology Collaboration creatinine-
cystatin C estimated glomerular filtration rate equa-
tion. This equation was converted into a bedside
applicable algorithm and vancomycin dosing was
selected from a bedside algorithm drug nomogram.57,76

The incorporation of cystatin C in the algorithm led to
more frequent dosing intervals and a reduction in the
number of patients with subtherapeutic trough levels.
Use of cystatin C allows better prediction of serum
vancomycin concentrations; better prediction of van-
comycin clearance; and facilitates initial dosing and
dose adjustments in spinal cord injury, in the ICU, in
elderly and hospitalized patients and in children with
cystic fibrosis.77-81

In a prospective study in 739 ICU patients, VPT was
associated with a higher percentage of creatinine-
defined AKI.13 In contrast, VPT was not associated
with change in cystatin C or clinical outcomes of
dialysis or mortality, suggesting that VPT’s effects on
creatinine may represent a pseudotoxicity character-
ized by isolated effects on tubular creatinine secretion.
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In summary, in preclinical and clinical studies, both
urine and serum cystatin C can effectively predict
nephrotoxicity due to aminoglycosides, vancomycin,
and colistin. Use of cystatin C allows better prediction
of serum vancomycin concentrations, better prediction
of vancomycin clearance, and facilitates initial dosing
and dose adjustments.

KIM-1

After cystatin C, the next most studied biomarker of
antibiotic nephrotoxicity is KIM-1. KIM-1 is a trans-
membrane protein expressed on the proximal tubule
apical membrane that is increased in ischemic AKI
kidneys.82-85

Preclinical Studies

KIM-1 is increased in proximal tubules and in urine
before the increase in serum creatinine in antibiotic-
induced nephrotoxicity.86-91 Urinary KIM-1, clus-
terin, and osteopontin are more sensitive and specific
than cystatin C and NGAL to detect vancomycin-
induced AKI as determined by histopathology.92 In
rats treated with colistin, urinary KIM-1, albumin,
NGAL, clusterin, GST-m, and osteopontin are elevated
in a time-dependent manner.93 Kidney function decline
and increased KIM-1 are observed among rats that
received vancomycin only, but not those that received
piperacillin-tazobactam or VPT.94,95

Clinical Studies

In children with cystic fibrosis receiving tobramycin,
there is increased urinary KIM-1 and NGAL in the
absence of serum creatinine changes.96 In premature
neonates on gentamicin, significant increases are
observed in urinary KIM-1.97

Despite many preclinical and clinical studies that
show that KIM-1 is an early marker of antibiotic-
induced nephrotoxicity, the use of urinary KIM-1 in
patients to better predict serum antibiotic concentra-
tions and clearance (in order to facilitate initial dosing
and dose adjustments and to prevent nephrotoxicity)
has not yet been detailed.

Clusterin

Clusterin is a protein found in renal tubules where it
mediates clearance of cellular debris and apoptosis.98,99

After tubular injury, clusterin gene expression is
upregulated. Clusterin is not filtered by the glomeruli,
so its detection in urine is a specific marker of damage
to tubular cells.100 In animal studies, urinary clusterin
outperforms blood urea nitrogen, serum creatinine, and
urinary NAG in detecting proximal tubular injury
caused by gentamicin and vancomycin.59,69,101 In
summary, there are no human studies of clusterin as a
biomarker of antibiotic-mediated nephrotoxicity.
Kidney International Reports (2023) 8, 2211–2225
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N-acetyl-beta-D-glucosaminidase

NAG is a glycosidase found in proximal tubular
epithelial cell lysosomes and urinary NAG increases
with tubular injury. NAG has a high molecular weight
and is not filtered through the glomerulus; therefore,
its increase in urine is caused exclusively by secretion
from proximal tubular cell lysosomes.102

Preclinical Studies

In gentamicin toxicity in rats, urinary NAG increases
earlier than creatinine.101,103,104 However, urinary
KIM-1 and urinary clusterin are more sensitive and
specific for early gentamicin-induced nephrotoxicity
than urinary NAG.50,91

Clinical Studies

In patients on gentamicin, increased urinary NAG
predicts the development of renal failure, increases
before serum creatinine, and correlates with increased
serum cystatin C.74,105,106

In summary, newly discovered biomarkers have
improved sensitivity and specificity for antibiotic-
induced nephrotoxicity than urinary NAG.74,89,91,97

Neutrophil Gelatinase-Associated Lipocalin

NGAL is a protein that is participates in innate im-
munity and is massively increased in urine after
ischemic AKI in rats and mice.107

Preclinical Studies

In rats treated with gentamicin, vancomycin, or colistin,
urinary NGAL is an early biomarker of AKI that in-
creases before serum creatinine.59,68,69,87,92,93,108,109

Clinical Studies

In children with cystic fibrosis receiving tobramycin
and in adults that develop AKI, urinary NGAL and
KIM-1 increase before serum creatinine.96,110 NGAL is
present in leukocytes and serum NGAL may not be
accurate in septic patients with leukocytosis.111 In a
prospective cohort study of 94 hospitalized patients
receiving vancomycin, urinary NGAL predicts AKI,
the time of vancomycin use, and higher plasma van-
comycin concentrations.112

In summary, there are many preclinical and clinical
studies that demonstrate that urinary NGAL increases
before creatinine in antibiotic-mediated nephrotoxi-
city. However, urinary NGAL has not yet been used
clinically for antibiotic dosing or for early discontin-
uation of nephrotoxic antibiotics to prevent develop-
ment of clinical AKI.

Osteopontin

Osteopontin is a glycoprotein that regulates immunity
and inflammation. After renal injury, osteopontin
expression is significantly upregulated in all tubule
segments and glomeruli.113 Urinary ostepontin is
increased more than 10-fold in gentamicin-treated and
Kidney International Reports (2023) 8, 2211–2225
colistin-treated rats.59,93 In preterm infants, amikacin
administration is associated with higher urinary cys-
tatin C but not urinary osteopontin or NGAL.72 In
summary, in preclinical studies of gentamicin and
colistin toxicity, urinary osteopontin is an early
biomarker that increases before creatinine. However,
the same is yet to be demonstrated in clinical studies.

Other Biomarkers of Antibiotic-Induced

Nephrotoxicity

Besides the FDA-accepted biomarker panel discussed
above, there are other important novel urinary bio-
markers of antibiotic-induced nephrotoxicity: TIMP2
and IGFBP7 (also known as Nephrocheck), interleukin-
18 (IL-18), and miRNAs.

TIMP2 and IGFBP7

TIMP2 and IGFBP7 are markers of cell cycle arrest in
renal tubular epithelial cells usually after ischemia or
sepsis-induced AKI.114 AKI-induced urinary TIMP2/
IGFBP7 elevations are due to increased filtration,
decreased tubule reabsorption, and proximal tubule
cell TIMP2/IGFBP7 urinary leakage, rather than
stress-induced gene transcription.115 A combination of
urinary TIMP2 multiplied by IGFBP7, known as
NephroCheck, is the first FDA-approved platform as a
biomarker of ischemia and sepsis-induced AKI in
critically ill patients.116-118

AKI, as determined by TIMP2 x IGFBP7, occurs more
frequently in critically ill patients receiving VPT than in
those receiving piperacillin–tazobactam alone.119 The
risk of death or dialysis is greatest for VPT versus
monotherapy. This study is in direct contrast to studies
with urinary KIM-1 or cystatin C, that do not show
increased nephrotoxicity biomarkers with VPT
compared to monotherapy.13,94 In a prospective cohort
study of 94 hospitalized patients receiving vancomycin,
TIMP2 x IGFBP-7 is a prognostic factor for nonrecovery
of kidney function at discharge.112

Studies are emerging on the role of TIMP-2 x IGFBP7
in the diagnosis of antibiotic-induced nephrotoxicity
and development and deployment of pharmacist-
directed cystatin C and TIMP-2/ IGFBP7-based anti-
biotic dosing and monitoring protocols presents an
opportunity to decrease antibiotic nephrotoxicity.73

Interleukin-18

IL-18 is a proinflammatory cytokine that is important
in both innate and acquired immunity.120 IL-18 is
present in the renal tubules and released into the urine
by tubular injury.121,122 In rats, IL-18 increases in
kidney after gentamicin.123 In a prospective study of
children that received aminoglycosides and developed
AKI, urinary IL-18, KIM-1, or TIMP2 x IGFBP7 were
modest biomarkers for predicting AKI.124
2219



REVIEW RE Campbell et al.: Overview of Antibiotic-Induced Nephrotoxicity
Urinary miRNAs

MiRNAs are small noncoding RNAs that are important
in gene regulation and a novel class of therapeutic
targets. In gentamicin-treated rats, miR-26-3p, 192-5p,
and 378a-3p have sensitivities comparable to clinical
biomarkers and urinary KIM-1 to detect tubular injury;
and urinary miR-138-5p, miR-1971, miR-218-1-3p, and
miR-489 increase before creatinine.125,126 In gentamicin
-treated patients with sepsis, miR-15a-5p is increased;
and in patients on vancomycin, miR-155-5p and miR-
192-5p positively correlate with creatinine and NGAL
values.127 Therefore, miRNAs may serve as diagnostic
or therapeutic tool in patients with sepsis treated with
vancomycin or gentamicin.

Biomarkers of AIN

The gold standard for diagnosis of AIN is the presence
of tubulointerstitial eosinophil infiltrate on kidney bi-
opsy. Urinary cytokines and chemokines that may
reflect kidney local inflammation are the most prom-
ising urinary biomarkers of AIN.128 In patients with
drug-induced AIN, numerous studies have found an
increase in many different urinary cytokines and che-
mokines: MCP-1, NGAL, NAG, metalloproteinase 2,
metalloproteinase 9, KIM-1, C5b9, IFNa, IL-6, IL-8, IL-
12, IL-17, TNFa, IL-9, and IL-5.128 Therefore, although
many cytokines and chemokines increase in the urine
in drug-induced AIN, further research is needed on the
precise sensitivity and specificity of these biomarkers
and whether these biomarkers predict clinical
outcomes.

Conclusion

For life-saving antibiotics with potential nephrotoxic
effects in critically ill patients, the simultaneous use of
both functional and damage biomarkers has the po-
tential to provide important information to optimize
dosing and duration of treatment and prevent neph-
rotoxicity, especially in situations when traditional
markers such as creatinine may be unreliable.129,130

The discovery of novel biomarkers of antibiotic-
mediated nephrotoxicity and research on their use
may hasten the development of new nonnephrotoxic
antibiotics and may improve medication effectiveness
and safety by improving medication dosing and
monitoring.
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