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Abstract

Background: Growing evidence from dogs and humans supports the abundance of

mutation-based biomarkers in tumors of dogs. Increasing the use of clinical genomic

diagnostic testing now provides another powerful data source for biomarker

discovery.

Hypothesis: Analyzed clinical outcomes in dogs with cancer profiled using Search-

Light DNA, a cancer gene panel for dogs, to identify mutations with prognostic value.

Animals: A total of 127 cases of cancer in dogs were analyzed using SearchLight

DNA and for which clinical outcome information was available.

Abbreviations: CNV, copy number variant; INDEL, insertion/deletion; ITD, internal tandem duplication; MCT, mast cell tumor; NGS, next-generation sequencing; PFS, progression-free survival;

SNV, single nucleotide variant; SOC, standard of care; VUS, variants of uncertain significance.
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Methods: Clinical data points were collected by medical record review. Variables

including mutated genes, mutations, signalment, and treatment were fitted using

Cox proportional hazard models to identify factors associated with progression-

free survival (PFS). The log-rank test was used to compare PFS between patients

receiving and not receiving targeted treatment before first progression.

Results: Combined genomic and outcomes analysis identified 336 unique muta-

tions in 89 genes across 26 cancer types. Mutations in 6 genes (CCND1, CCND3,

SMARCB1, FANCG, CDKN2A/B, and MSH6) were significantly associated

with shorter PFS. Dogs that received targeted treatment before first

progression (n = 45) experienced significantly longer PFS compared with those

that did not (n = 82, P = .01). This significance held true for 29 dogs that received

genomically informed targeted treatment compared with those that did

not (P = .05).

Conclusion and Clinical Importance: We identified novel mutations with prognostic

value and demonstrate the benefit of targeted treatment across multiple cancer

types. These results provide clinical evidence of the potential for genomics and preci-

sion medicine in dogs with cancer.

K E YWORD S

dog, genes, mutations, outcomes, precision medicine, progression-free survival, real-world,
targeted therapy

1 | INTRODUCTION

Next-generation sequencing (NGS) and better understanding of

cancer's genomic basis have fundamentally altered the treatment

paradigm for human oncology patients, shifting the therapeutic

strategy away from a histology-centered and “one-treatment-fits-

all” basis to a biomarker-guided, personalized, and often tumor

type-agnostic approach.1,2 As a result, more Food and Drug Admin-

istration (FDA)-approved molecularly-guided treatment options are

available, accompanied by companion diagnostic tests to facilitate

selection of patients for these targeted approaches.3-5

In parallel, veterinary oncology is experiencing similar shifts

toward a genomics-centered approach. Growing knowledge of indi-

vidual mutations in dogs with cancer supports the utility of genomics

for diagnosis, prognostication, and treatment. For example, single

gene-based tests already are available for diagnostic support, such as

BRAF mutations for urothelial carcinomas and KIT mutations for mast

cell tumors (MCTs).6,7

Genomic mutations also have shown prognostic value in dogs

with cancer, such as the TP53 mutation association with shorter sur-

vival in dogs with osteosarcoma.8 Additionally, mutations are being

leveraged for their sensitivity to targeted treatments, such as KIT

mutations to toceranib phosphate.9,10 Additional mutations have the

potential to be targeted in the correct genomic context, as evidenced

by early clinical data on BRAF mutations with vemurafenib and HER2

mutations with lapatinib.11,12 However, more robust studies are

warranted to prove the clinical benefit of mutation biomarker-driven

targeted treatment.

Although genomics continues to demonstrate its utility for can-

cers of dogs in the single- or multigene setting, a need exists to sys-

tematically evaluate the clinical relevance of a holistic mutation profile

of individuals or cohorts. Such comprehensive mutation landscape

data has become increasingly available as more tumors have been pro-

filed using genome-wide approaches.12-17 Furthermore, a recent real-

world clinical genomics study provides an early compelling view of the

untapped potential in genomics and precision medicine for dogs with

cancer.18 This study uncovered gene-level prognostic indications for

several cancer genes and the potential association of mutant genes

with response to targeted treatments, based on point mutation detec-

tion in 48 genes. However, more data is needed to expand the

breadth and depth of genomic data utilization for the management of

cancer in dogs, including assessment of a broad spectrum of cancer

genes and key mutation types, mutation-level clinical relevance, and,

particularly, for assessment of treatment responses in dogs with can-

cer that are treated based on genomic biomarker information.

Here, we leverage high-quality clinical and genomic data from

134 cancer-bearing dogs profiled by Searchlight DNA to find

mutation-level prognostic associations, and, to critically assess the

impact of treatment decisions based on patient-specific mutations.

Our objective was to identify genomic and clinical variables that could

be associated with progression-free survival (PFS). In addition, we

evaluated the benefit of genomic-guided targeted treatment in PFS.
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We hypothesized that at least 1 clinical or genomic variable would be

associated with PFS.

2 | MATERIALS AND METHODS

2.1 | Patient records

In our retrospective observational analysis of data from medical

records and genomic reports, Vidium Animal Health's patient database

was searched for patients with SearchLight DNA reports delivered

between September 2020 and May 2022. Inclusion criteria consisted

of the following standards: (1) a definitive cytologic or histologic diag-

nosis of cancer, (2) at least 3 months since SearchLight DNA analysis

was performed, and (3) the identification of at least 1 mutation bio-

marker in the SearchLight DNA report. Veterinarians whose patients

met the inclusion criteria provided outcome data. Veterinarians were

given the option of either directly completing an online questionnaire

(Table 1) or sending patient records to be reviewed and utilized by

Vidium's medical oncologist (EC) to complete the questionnaire on the

veterinarian's behalf. The questionnaire provided a systematic and

focused collection of key data points, including the initial cancer

diagnosis, initial treatments (defined as any treatments given until first

progression), first progression, subsequent progression(s), death

(or date of last visit, if applicable), and demographic data (including

breed, age, and sex). The primary outcome endpoint was progression-

free survival (PFS), which was chosen instead of overall survival to fil-

ter out noise associated with variability in uncontrolled clinical cohorts

such as that of the current study.

2.2 | Genomic data

SearchLight DNA is a cancer NGS gene panel for dogs that utilizes

hybrid capture-based enrichment of canine genes that play a role in

cancer to detect single nucleotide variants (SNVs) and small insertions

or deletions (INDELs), copy number variants (CNVs), and internal tan-

dem duplications (ITDs) based on tumor-only sequencing. SearchLight

DNA consists of SureSelect probes (Agilent Technologies) targeting

1358 exonic and 429 exon-proximal regions of 120 cancer genes.

SearchLight DNA analysis was performed for each patient as previ-

ously described.19 Briefly, fine-needle aspirate (FNA) samples or

biopsy specimens (fresh frozen, formalin-fixed, or formalin-fixed

paraffin-embedded [FFPE] blocks, scrolls, or slides) of suspected

tumors were submitted by veterinarians directly or by the veterinar-

ians' reference laboratories to Vidium Animal Health. Once received,

samples were processed and embedded if not already performed (for

formalin-fixed or fresh frozen tissues), tumor content was determined,

and DNA was extracted as previously described19 within 2 to 3 days

of receipt. Libraries were constructed using Agilent SureSelect XT HS

Low Input Target Enrichment with Pre-Capture Pooling (Agilent Tech-

nologies), and were sequenced using Illumina sequencing instruments.

DNA sequence data were analyzed using a custom tumor-only geno-

mics pipeline for SNV, CNV, and ITD identification. All samples were

sequenced to at least �200 coverage. Somatic (tumor-specific) and

putative pathogenic germline mutations were retained for further anno-

tation after filtering of population germline mutations. Each sample

passed multiple quality control validation steps, both pre- and postse-

quencing. If a sample failed ≥1 quality control metric, in-depth manual

data review or repeated sampling and sequencing were performed to

ensure data quality. All mutations then were used to query a com-

prehensive proprietary genomic biomarker database (Vidium Insight;

Vidium Animal Health) for annotation as biomarkers of diagnosis, prog-

nosis, treatment response or variants of uncertain significance (VUSs)

using an automated process, along with supporting evidence levels for

each biomarker association based on consensus guidelines used for

humans.20 A diagnostic biomarker was defined as a mutation found to

be enriched in a specific tumor type and suspected to contribute to can-

cer development (ie, pattern of mutation, frequency, functional data, or

some combination of these supports their role in cancer). We defined

“diagnostic biomarkers” more broadly as those that include any muta-

tions that have been identified in certain cancers (both solid tumors and

liquid). A prognostic biomarker was defined as a mutation associated

with clinical outcome, and a therapeutic biomarker as a mutation associ-

ated with response to a specific treatment.

TABLE 1 Medical records data gathered in the form of an online
questionnaire completed for each dog included for clinical outcome
analysis.

Initial cancer diagnosis Diagnosis and stage (lymph node and

distant disease status)

Date of diagnosis

Diagnostic tests performed

Initial treatment (s) Treatments performed (including surgery,

radiation therapy, conventional

chemotherapy, targeted therapy,

immunotherapy, other therapies)

Date(s) of treatment(s)

Initial best response (minimal residual

disease, complete response, partial

response, stable disease, not yet

evaluated, no response)

Whether initial therapies were broadly

considered standard of carea

First progression Date of progression

Site(s) of progression

Targeted therapy administered at first or

any subsequent progression, best

response to targeted therapy

Subsequent

progression

Date(s) of progression

Site(s) of progression

Current status of

patient (alive,

deceased, lost to

follow-up)

Date of death

Type of death (euthanasia or natural;

cancer-related or not)

Date of last follow-up

aAd hoc question.
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Each SearchLight DNA report was reviewed by a Vidium genomic

scientist (GW). Mutation data and annotations were extracted and

harmonized to include gene identification (ID), transcript identification

(ID), genomic coordinates, protein coordinates, mutation types (SNVs,

CNVs, and ITDs), and variant allele frequency for SNVs and Log2 ratio

for CNVs. Validated or predicted pathogenic mutations based on liter-

ature and in silico algorithms (FATHMM, SIFT), were selected in sub-

sequent statistical analyses.21,22

2.3 | Statistical analysis

Progression-free survival (PFS) was defined as the time from the date

of initial diagnosis to the date of first progression or death, whichever

was earlier. Patients were excluded from PFS analysis if PFS could not

be determined (eg, dates of diagnosis, first progression, death, or last

visit were missing). Patients lost to follow-up were censored at the

time of their last visit. To determine potential association of PFS with

patient demographics, genomics, and treatments, the following vari-

ables were fitted using univariable and multivariable Cox proportional

hazard models: mutated genes, gene: mutation (eg, TP53:copy number

loss), cancer diagnosis, age, breed (individual breeds; pure or mixed),

sex (male or female), whether targeted treatment was administered (yes

or no), and whether the patient received standard of care treatment

(SOC; yes, no or unknown). Standard of care treatment was defined as

broad standard practice to treat a specific cancer (eg, surgery, systemic

treatment) to the best knowledge of a medical oncologist (EC), recogniz-

ing that variations of SOC exist among individual clinicians. For gene

and mutation analyses, a threshold of genes and mutations present in a

minimum of 5 cases was selected. Variables with P value < .2 from uni-

variable analyses were fitted for multivariable analysis. The P values

from the log-rank test and Kaplan-Meier curves were generated using

the R software program and an online tool (https://www.statskingdom.

com/kaplan-meier.html), comparing patients with and without signifi-

cant genes or mutations, patients receiving versus not receiving tar-

geted treatment before first progression or death, and patients

receiving genomic-informed targeted treatment versus genomic-

agnostic treatment (targeted treatment or not). A P value of ≤.05 was

considered significant. The follow-up period was calculated as the time

elapsed from the date of diagnosis to the date of death or the date of

last visit, whichever came first. For the comparison of cancer type

(both solid tumors and liquid) and age distribution among different

groups, and evaluating significance between gene co-occurrences, the

Chi-squared and t-tests were performed, respectively.

3 | RESULTS

3.1 | Study population

Questionnaires or medical record requests were sent to 121 veterinar-

ians for 259 patients. Completed questionnaires and received records

from 50 veterinarians for 134 patients were reviewed. Three were

excluded because SearchLight DNA did not identify any somatic

mutations.

3.2 | Progression-free survival

Four patients were excluded from PFS analyses because PFS could

not be derived as a consequence of missing data (eg, dates of initial

diagnosis, first progression, death, or last visit). The remaining

127 patients were included in the PFS analysis, of which 20 patients

were censored because of loss of follow-up or nonoccurrence of pro-

gression before the data collection date, and therefore only the date

of last visit was available for these patients. Median and mean PFS for

the 127 patients were 113 and 167 days, respectively (range,

5-959 days). Six patients who were alive at the time of questionnaire

completion did not have a date of last visit. The mean and median

follow-up period for the remaining 121 patients were 261 and

173 days, respectively (range, 5-1596 days). Demographic data and

distribution of cancer diagnoses are tabulated in Tables 2 and 3,

respectively.

3.3 | Specific genes and mutations were
significantly associated with PFS

Genomic analysis by Searchlight DNA identified 336 unique muta-

tions in 89 genes, among 127 patients with diagnoses across 26 cancer

TABLE 2 Demographic data of 127 dogs included for clinical
outcome analysis.

Variable n (%) or median (range)

Age (years) 9 (2–18)

Sex

Female intact 3 (2.4)

Female spayed 55 (43.3)

Male intact 4 (3.1)

Male castrated 63 (49.6)

Unknown 2 (1.5)

Breeda n (%)

Mixedb 46 (36.2)

Golden Retriever 11 (8.7)

Beagle 5 (3.9)

Labrador Retriever 5 (3.9)

Boxer 4 (3.1)

German Shepherd Dog 4 (3.1)

Boston Terrier 3 (2.4)

Chihuahua 3 (2.4)

Rottweiler 3 (2.4)

aBreeds represented by ≥3 cases are tabulated.
bIncluded unidentified/unlisted breeds and breeds listed as “other” or
“unknown.”
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types (both solid tumors and liquid; Table S1). The frequency of each

gene and each mutation were tabulated, and genes and mutations

present in >5 cases were included in the PFS univariable analyses.

Mutations in 6 genes (CCND1, SMARCB1, FANCG, CDKN2A/B,

MSH6, and CCND3) were significantly associated with shorter PFS in

univariable analysis (Figure 1).

Of the 127 cases that had PFS data, 66 cases harbored mutations

in ≥1 of these 6 genes (6-gene-positive group), with the remaining

61 cases lacking mutations in these 6 genes (6-gene-negative group).

Distribution of the genes, mutation types, cancer diagnoses, and age

in these 127 patients are plotted in Figure 2. CDKN2A/B were primar-

ily affected by copy number losses, followed by truncating mutations.

SMARCB1, FANCG, andMSH6 were primarily affected by copy number

losses, whereas CCND1 and CCND3 were altered by a mix of SNVs and

copy number gains. Among the 6-gene-positive group, significant co-

occurrence of FANCG/CDKN2A/B (P < .001) and MSH6/CDKN2B

(P = .002) was observed. The genes FANCG and CDKN2A/B are

10 megabases apart on chromosome 11, thus it is likely that FANCG

and CDKN2A/B mutations co-occurred because of genomic proximity.

On the other hand, MSH6 is located on chromosome 10. No significant

differences were observed for age (P = .62) and cancer type (P = .38)

between the 6-gene-positive group and 6-gene-negative group.

3.4 | Targeted treatment was significantly
associated with prolonged PFS

Forty-five patients received targeted treatment before first disease

progression or death, and 82 patients did not receive targeted treat-

ment before progression or death. Significantly improved PFS

(P = .01; Figure 3) was found for the 45 patients that received tar-

geted treatment (median PFS, 136 days; mean PFS, 213 days; range,

24-959) compared to the 82 patients that did not receive targeted

treatment (median PFS, 103.5 days; mean PFS, 142 days; range,

5-647 days). The Kaplan-Meier tail was visibly prolonged for both

groups, although a distinct vertical separation existed in the right two-

thirds of the curve.

Of the 45 dogs that received targeted treatment before first pro-

gression, the majority of dogs (29/45, 64%) received treatment that

TABLE 3 Distribution of cancer diagnoses in 127 dogs included
for clinical outcome analysis.

Diagnosis n (%)

Lymphomaa 18 (14.2)

Melanomab 13 (10.2)

Sarcomac 11 (8.7)

Hemangiosarcomad 10 (7.9)

Osteosarcomae 9 (7.1)

Mast cell tumorf 8 (6.3)

Solid tumorg 6 (4.7)

Mammary carcinomah 6 (4.7)

Histiocytic sarcomai 5 (3.9)

Lung carcinomaj 5 (3.9)

Neoplasiak 5 (3.9)

Neuroendocrine carcinomal 4 (3.1)

Renal carcinoma 4 (3.1)

Hepatocellular carcinoma 4 (3.1)

Anal sac apocrine gland adenocarcinoma 3 (2.4)

Squamous cell carcinoman 3 (2.4)

Gastrointestinal stromal tumor (cecal) 2 (1.6)

Soft tissue sarcomam 2 (1.6)

Urothelial carcinomao 2 (1.6)

Bile duct carcinoma 1 (0.8)

Liposarcoma (subcutis) 1 (0.8)

Mesothelioma 1 (0.8)

Nasal adenocarcinoma 1 (0.8)

Nephroblastoma 1 (0.8)

Ovarian papillary adenocarcinoma 1 (0.8)

Thymic carcinoma 1 (0.8)

aTypes of lymphoma included multicentric B-cell (n = 8), multicentric

T-cell (n = 3), multicentric non-immunophenotyped (n = 2), hepatosplenic

(not immunophenotyped, n = 1), cutaneous T-cell (n = 2), cutaneous (not

immunophenotyped, n = 1), and mediastinal T-cell (n = 1).
bMelanoma sites included the digit (n = 4), oral mucosa (n = 6), lung

(metastatic from malignant oral melanoma [n = 2] or malignant cutaneous

melanoma [n = 1]), and lymph node (metastatic from malignant oral

melanoma [n = 1]).
cSarcomas arose from multiple sites, including the oral mucosa (n = 1),

spleen (n = 3), liver (n = 1), skin (1), kidney (n = 1), lymph node (n = 3),

and within the abdomen (originating organ not identified, n = 1).
dHemangiosarcoma sites included the spleen (n = 5), peripheral lymph node

(n = 1), subcutis (n = 1), liver (n = 1), and tonsil (n = 1), and atrium (n = 1).
eOsteosarcoma sites were rib (n = 1), lungs (metastatic from appendicular

osteosarcoma, n = 1), lymph node (metastatic from appendicular

osteosarcoma, n = 1), and appendicular (n = 6).
fMast cell tumor sites included the skin (grade 2/high, n = 3; grade 2/low,

n = 1; grade 3/high, n = 1), lymph node (metastatic from previous high-

grade cutaneous mast cell tumor [n = 1], and subcutis [n = 2]).
gSolid tumors included tumors that did not appear hematopoietic and

included those with no specific diagnosis from the kidney (n = 1), skin

(n = 1), muscle (metastatic from thyroid carcinoma, n = 1), and lymph

node (carcinoma with unknown primary, n = 3).
hMammary carcinomas included simple carcinoma (n = 2), complex

carcinoma (n = 1), anaplastic carcinoma (n = 1), and unspecified

carcinoma (n = 2).

iHistiocytic sarcoma sites included the, oral gingiva (n = 1), synovium

(n = 1), liver (n = 1), and spleen (n = 2).
jLung carcinoma included carcinoma (n = 2), poorly differentiated

carcinoma (n = 2), adenocarcinoma (n = 1), and bronchoalveolar

carcinoma (n = 1).
kNeoplasias were defined as such if pathology reports did not provide

other definitive descriptors.
lNeuroendocrine carcinoma sites included the liver (n = 4) and perispinal

mass (n = 1).
mSoft tissue sarcomas were grade 2 (n = 1) and grade 3 (n = 1).
nSquamous cell carcinomas were from the lymph node (metastatic from

previous tonsillar squamous cell carcinoma, n = 1), oral gingiva (n = 1),

and frontal sinus (n = 1).
oBoth urothelial carcinomas were transitional cell carcinomas arising from

the trigone of the urinary bladder.
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was directly informed by genomic results. The other 16 dogs (16/45,

36%) received targeted treatment that was not informed by genomic

results. Among these 16 dogs, 2 had started targeted treatment before

tumor sample collection for SearchLight DNA analysis, 7 did not have

any therapeutic biomarkers identified in their report, 3 had started

targeted treatment before tumor sample collection for genomic analy-

sis and did not have any therapeutic biomarkers identified in their

genomic report, and 4 received toceranib regardless of therapeutic

biomarkers indicating other (non-toceranib) available targeted thera-

peutics in the genomic report. The most commonly used targeted

treatment in these 16 dogs was toceranib, prescribed in 14/16

(87.50%) dogs. The remaining 2 dogs either received dasatinib or

verdinexor.

In the 29 dogs that received genomically informed targeted treat-

ment (median PFS, 139 days; mean PFS, 221 days; range, 24-721 days),

significantly improved survival was found (P = .05; Figure 4) compared

to the other 98 dogs (median PFS, 107.5 days; mean PFS, 151 days;

range, 5-959 days). The difference was most marked between 200 and

700 days survival time, showing >30% of the genomically informed

cohorts having no progression during this time period, compared with

approximately 10% from the other group. In addition, nearly 30% of

dogs that received genomically informed targeted treatment survived

an additional year or more during the 200 to 700 day period. In these

dogs, the most common drug used was olaparib (12/29, 41.40%), fol-

lowed by sirolimus (8/29, 27.60%), trametinib (5/29, 17.20%), and

1 each of palbociclib (1/29, 3.45%), toceranib (1/29, 3.45%), lapatinib

(1/29, 3.45%), or a trametinib/sirolimus combination (1/29, 3.45%;

Table 4). For all dogs, other conventional treatments, such as surgery,

systemic chemotherapy, radiation therapy, immunotherapy (most com-

monly Oncept canine melanoma DNA vaccine), or any combination

were commonly given with or without targeted treatment (Table S2).

3.5 | Variables not associated with PFS

Other variables included in PFS analyses, including cancer diagnosis,

patient age, patient breed, patient sex, and whether the patient

received SOC, were not significantly associated with PFS.

4 | DISCUSSION

Our study represents the first investigation into the association

between genomic mutations identified by a comprehensive cancer

gene panel and outcomes in dogs with cancer, finding outcomes dif-

ferences based on whether or not treatment was informed by geno-

mic mutation biomarkers. We found that both genomic and clinical

factors were significantly associated with PFS in our cohort of

127 dogs. At the genomic level, mutations in 6 genes were associated

with shorter PFS. At the clinical level, dogs that received targeted

treatment before first progression experienced longer PFS compared

with those that did not receive targeted treatment, and this observa-

tion held true for those patients that received targeted treatment that

was genomically informed. Moreover, the cases spanned 26 different

tumor types, multiple breeds, and a wide range of ages, supporting

broad application of these prognostic factors. These findings provide

crucial insight into the effectiveness of targeted treatment and the

impact of genomic profiling on treatment decision-making.

Pivotal to our study is the rigor of SearchLight DNA, a compre-

hensive genomic profiling assay for dogs. The panel's broad coverage

of 120 well-established cancer genes, coupled with the evaluation of

CNVs and ITDs in addition to SNVs, allowed for robust detection

of genomic mutations linked with cancer. The CNVs are especially

important because they account for a large source of mutations in

cancers (both solid tumors and liquid) of humans and dogs and com-

prise many clinically useful biomarker associations.23,24 In addition,

multiple sample types, including FFPE, FNA, and fresh frozen samples

were included for Searchlight DNA analysis allowing flexibility for the

veterinarian with no impact on sample quality and assay performance.

Importantly, the Vidium Insight knowledgebase, which drives the bio-

marker associations in SearchLight DNA, consists of an expanding

dataset of genes and biomarkers across diverse cancer types, covering

419 genes, 2842 biomarkers, and over 40 cancer types (both solid

tumors and liquid) as of March 2023. To date, SearchLight DNA has

sequenced >1300 tumors, with an overall number of mutations of

approximately 12 000.

Our study identified novel associations between an unfavorable

outcome and mutations in 6 genes: CDKN2A/B, SMARCB1, FANCG,
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MSH6, CCND1, and CCND3. These genes have established roles in

cancer development, and our findings add to the growing body of evi-

dence emphasizing their prognostic relevance. Of note, the majority

of mutations identified in these genes are well-characterized or pre-

dicted pathogenic mutations (ie, variants that can cause cancer devel-

opment or progression, or both) such as copy number loss mutations

in the tumor suppressor genes CDKN2A/B, SMARCB1, FANCG, MSH6,

and copy number gain mutations in the oncogenes CCND1 and

CCND3.25-27

Each of these genes has an established connection to a wide vari-

ety of cancers (both solid tumors and liquid) in humans and dogs. The

genes CDKN2A and CDKN2B often are deleted together as a single

oncogenic event because of their close proximity on the chromosome,

and their inactivation is associated with a poor prognosis in human

sarcoma patients and shorter survival in non-Hodgkin's lymphoma in

dogs.28,29 Although little prognostic evidence currently exists for the

remaining 3 tumor suppressor genes (SMARCB1, FANCG, and MSH6),

they are known cancer genes enriched in human cancer patients or

associated with cancer predisposition.30-32 The oncogenes CCND1

and CCND3 frequently are activated as a result of oncogenic muta-

tions or copy number gains in cancer and have been identified in

tumors of dogs, such as osteosarcoma.33 Despite these known associ-

ations, a gap remains in knowledge regarding the impact of these

mutations on prognosis. Further research is required to determine

their specific roles in cancer prognosis.

Targeted treatment, both in genomically informed and unin-

formed contexts, significantly improved PFS. The most common tar-

geted treatments prescribed were toceranib, olaparib, sirolimus, and

trametinib, each with variable success in improving PFS. Among these,

olaparib, sirolimus, and trametinib were informed by prior genomic

analysis, suggesting that genomically guided treatment might lead to

better outcomes. Conversely, toceranib often was prescribed in a gen-

omically uninformed context, because most of these patients either

had genomic analysis performed on a sample collected after toceranib

was already instituted empirically, did not have therapeutic bio-

markers identified in the genomic analysis or both. Toceranib's use in

these settings is understandable, given its open-label availability, tol-

erability, and wide use since its FDA approval for treatment of mast

cell tumors in dogs. Its efficacy may be related to its broad tyrosine

kinase inhibition activity against multiple gene targets, such as KIT,

VEGFRA, PDGFRA/B, and FLT3, or potentially unidentified off-target

effects.10,34,35 Interestingly, non-ITD mutations such as copy number

gains that likely resulted in KIT activation were identified in 2 of these

patients, and their PFS times were 232 and 303 days, contributing to

the high median PFS of the cohort receiving targeted treatment.

Genomically informed targeted treatment led to a significant

improvement in PFS, lending credence to the importance of genomic

profiling in guiding treatment decisions. Approximately 30% of dogs

that received genomically informed treatment survived an additional

year or more without further progression. Olaparib was the most

commonly prescribed drug, likely because of its numerous biomarker

associations in our cohort. As a PARP inhibitor that is FDA-approved

in humans for the treatment of BRCA1 or BRCA2 mutant ovarian,

breast, and pancreatic cancers, as well as prostate cancers with dele-

terious mutations in many homologous recombination repair genes

(eg, ATM, CDK12, CHEK1, CHEK2, FANCL, and PALB2), olaparib tar-

gets many genes in this pathway that are frequently mutated in

SearchLight DNA-sequenced cases. Similarly, sirolimus, as a mam-

malian target of rapamycin (mTOR) inhibitor, is associated with

inactivating mutations in PTEN and TSC2, which are also commonly

seen in SearchLight DNA cases. Trametinib, a mitogen-activated

protein kinase kinase (MEK) inhibitor, is frequently reported for its

association with mutations in BRAF, NF1, and KRAS/NRAS/HRAS,

PTPN11, and PIK3CA. Each of these drugs' contributions to the

improvement of PFS may not only have been a result of the rela-

tively high number of patients receiving these drugs, but also could

have been a result of effective dosing. The most common olaparib

dosage was 2 to 3 mg/kg/day, a dosage below which no dogs

showed hematologic toxicity in the new drug application to the

FDA.36 Similarly, the dosages of sirolimus (0.08-0.1 mg/kg/day)

and trametinib (0.4-0.5 mg/m2/day) have been used safely in small

clinical studies of dogs.37-41 Although evaluating adverse effects

of targeted treatments was outside the scope of our study, these

drugs appeared well tolerated. Whether individual drug doses

were efficacious cannot be determined given the relatively small

sample size for each drug and the variation of doses and dosing

schedules. However, the aggregate of dogs administered genomi-

cally informed targeted treatments had significantly improved PFS

compared with the remainder of the cohort, suggesting the benefit

of targeted treatments when guided by genomic analysis, as cor-

roborated by larger studies in humans.42,43 Moreover, these dos-

ages can be used to inform future biomarker-driven prospective

trials.

Our study had some limitations, including its retrospective nature

and small sample size. Sampling and selection biases that could have

been selected for patients responding favorably to targeted or other

treatments may have been introduced by having veterinarians volun-

tarily choose to submit cases for the study. Type 1 statistical error

also is possible based on the small sample size. Moreover, the selec-

tion of drugs, variability in dosing among clinicians, decisions to com-

bine with other treatments, and timing of targeted treatment relative

to other therapeutic modalities were clinician-dependent and there-

fore nonstandardized across treatments.

In conclusion, we evaluated the use of genomic profiling to

improve canine cancer patient survival. We used a robust test that

evaluates 120 known cancer-related genes and captures multiple vital

mutation events. We also utilized a structured biomarker annotation

system built on a comprehensive and rigorous database with ongoing

literature curation, which is critical for standardization of this precision

medicine approach. Our findings support the clinical relevance of tar-

geted treatments in veterinary oncology. Despite some potential limi-

tations, our results illustrate the potential for improved PFS in dogs

with cancer. As our understanding of genomic biomarkers continues

to expand and our repertoire of targeted treatments grows, even

more pronounced improvement in patient outcomes hopefully will be

possible.
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