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Abstract

RNA is a key participant in many biological processes, but studies of RNA using computer 

simulations lag behind those of proteins, largely due to less-developed force fields and the slow 

dynamics of RNA. Generating converged RNA ensembles for force field development and other 

studies remains a challenge. In this study, we explore the ability of replica exchange molecular 

dynamics to obtained well-converged conformational ensembles for two RNA hairpin systems in 

implicit solvent. Even for these small model systems, standard REMD remains computationally 

costly, but coupling to a pre-generated structure library using the reservoir REMD approach 

provides a dramatic acceleration of ensemble convergence for both model systems. Such precise 

ensembles could facilitate RNA force field development and validation, and applications of 

simulation to more complex RNA systems. The advantages and remaining challenges of applying 

R-REMD to RNA are investigated in detail.
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Introduction

RNA plays many roles in biology beyond transcription and translation through messenger, 

transfer, and ribosomal RNA. Ribozymes catalyze reactions, while riboswitches function 

as gene regulators. Some viruses, such as HIV and SARS-CoV-2, utilize RNA as genetic 

material. RNA plays roles in various diseases, from viral infections to cancer1–3. Due to 

its function in gene expression and regulation, RNA presents a promising avenue for drug 

targeting, and is also used as a medical tool. Most notably, several recent SARS-CoV-2 

vaccines used mRNA as a vector to produce the spike protein within the body and elicit an 

immune response, with development of mRNA vaccines for other diseases under way4. To 

better understand the role of RNA in biology, improve the design of RNA-targeting drugs, or 

use RNA as a drug itself, a clear understanding is needed for RNA structure, dynamics and 

how RNA interacts with its environment and binding partners.

Experimental studies have been used to study RNA structure and interactions with other 

molecules, with well over 5000 RNA entries in the PDB as of 20215–6. However, atomic 

detail structures obtained from experiment are typically static models that do not reveal 

the dynamics and energetics that can drive interactions between RNA and other molecules. 

Additionally, RNA structure is more complex than DNA structure due to the presence of the 

2’ hydroxyl group, leading to interactions not present in DNA7–9.

Computational studies have been used to complement experimental studies of biopolymers, 

providing insight into a range of behavior, including folding, binding, aggregation and 

catalytic mechanisms.10 In this study, we focus on MD simulations of RNA. Hairpins 

and tetranucleotides are often simulated, along with simulations of larger duplexes11–14. 

Simulations can provide a direct connection between the ensemble-averaged experimental 

observables and the underlying individual conformations and energetics, thereby helping 

interpret experimental results or suggesting new experiments. For example, Bottaro et al 

used simulations and NMR data to generate MD ensembles of the UUCG RNA tetraloop 

that identified a second conformational state which lacked the stacking and base pairing 

present in the major conformation15. For example, studies have been performed on A-form 

RNA duplexes, examining the effects of substitutions on thermodynamic properties11. Other 

studies16 have explored base pair stability and fraying, and the interactions between RNA 

and ions. Tetraloop simulations have been performed to identify native states and the 

underlying folding mechanisms14, 17–23. MD simulations have been used to study various 

non-coding RNA functions, including binding to target sites as well as interactions with 
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protein complexes24. Larger RNA systems have also been simulated, such as tRNA and 

ribosomes; the effects of ions on tRNA behavior were explored in 201925, and AspRS-tRNA 

complexes were simulated in 202026. However, both studies used understandably short (50–

100 ns) simulations as significant computational power is required to simulate systems of 

this size. Simulations of large RNA systems that require sampling of global changes remain 

largely inaccessible through conventional MD due to limitations in computational resources. 

Various reviews cover the timescales of RNA dynamics with respect to experiments and the 

techniques used to study them as well as their accessibility to molecular dynamics7, 27–29.

While system size does dictate RNA simulation feasibility, the accuracy of RNA force fields 

also presents a key challenge.7 Protein force fields are relatively mature and can accurately 

and precisely reproduce experimental structures, successfully folding multiple proteins of 

various sequences and lengths30–32, but a similar ability has not yet been demonstrated for 

RNA. RNA force fields are still immature; many have been developed, yet no consensus as 

to the best force field exists.

The first modern RNA force field was ff9433. The ff9934 force field iterated upon ff94’s 

sugar puckers. The addition of the bsc0 parameters for α/γ torsions resulted in the ff99bsc0 

force field35. This force field struggled to reproduce an A-form stem, instead preferring 

a staggered ladder conformation with a preference for the high-anti χ state7, 17, 19, 36–37. 

Subsequent force fields built on the existing ff99, with the f99χYIL38 force field 

rebalancing syn and anti χ dihedrals. The f99bsc0χOL336 force field included the bsc0 

correction, reparameterizing the χ dihedral to penalize the ladder conformation. These two 

force fields were trained using QM data on nucleosides and tested on small systems such 

as the r(GACC) tetranucleotide. Chen and Garcia19 reparameterized vdW parameters in 

the ff99 force field in response to overly stable stacking interactions, using tetraloops as 

their test system. The f99bsc0χOL3_LJBB force field was developed in response to excess 

base-phosphate interactions and modified the phosphate oxygen vdW radius.39 For all force 

fields listed above, testing was primarily done in few systems due to a lack of computational 

power, and few test systems were shared between studies to allow direct comparisons.

Improvement in computational power has allowed recent force field development to 

introduce more, larger systems in the testing process. The ff99ROC40 force field 

parameterized backbone dihedrals primarily using dinucleotides, and was tested on a larger 

set of systems than previously used, ranging from tetranucleotides to duplexes. Tan et al41 

parameterized not only dihedrals, but vdW and electrostatic parameters. This force field also 

was tested on a more diverse set of structures than prior studies, including tetranucleotides, 

hairpins, and duplexes. Differentiating the Tan et al force field from other force fields was 

the length of simulations used to test their parameters, with simulations upwards of 30 μs in 

length.

Well converged simulations of multiple systems facilitate force field evaluation

Few direct performance comparisons between different RNA force fields have been 

reported. In 2010, a benchmark using sub-μs MD simulations for three tetraloops was 

reported.37 In 2015, Bergonzo et al benchmarked modern force fields using a costly 

M-REMD method42 applied to tetranucleotides and tetraloops. In 2016, Kuhrova et al 
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benchmarked force fields using the GAGA tetraloop and multiple enhanced sampling 

techniques17. No conclusions to a “best” force field were drawn in any of these studies, 

although weaknesses in each force field were identified.

In part, the lack of a consensus on force field accuracy comes as a result of slow RNA 

conformational sampling. Comparing a simulation ensemble to experiment, or comparing 

ensembles from different force fields, requires highly precise simulation data such that 

the uncertainties are smaller than the differences between the data sets. Ideally, these 

comparisons should be repeated using multiple RNA sequences with diverse structural 

motifs. To generate precise data across multiple RNA sequences and force fields, 

considerable sampling must be performed, and within a reasonable amount of time. Several 

methods for enhanced sampling in MD have been developed, with a few applications to 

RNA.

Enhanced sampling methods have been applied to RNA simulations. Accelerated MD was 

used to enhance sampling or torsions in combination with the enhanced sampling method 

replica exchange molecular dynamics (REMD), showing that convergence was accelerated 

compared to RNA simulations in the absence of accelerated MD43. Other sampling methods, 

like metadynamics17–18 and umbrella sampling44, require more extensive knowledge of 

the system being studied due to the need to define collective variables (CVs) along 

which sampling is to be enhanced. CV-based applications to RNA include force field 

development17, 40, and studies of energies during conformational shifts of tetraloops18, 45. 

Restricting the amount of conformational space needing to be sampled also can be achieved 

by incorporating experimental data into simulations, as has been demonstrated for systems 

such as RNA hairpins15, 46. As with accelerated MD, umbrella sampling, and metadynamics, 

this approach requires additional information (here, NMR data) which may not be available 

in the general case.

Another approach to improving sampling is through use of implicit solvent. Implicit 

solvent models47–49 (such as generalized Born, GB) have been widely used to accelerate 

conformational sampling in protein systems50. Implicit solvent replaces discrete water 

molecules by directly calculating solvation free energies using only solute coordinates. 

While potentially less accurate, implicit solvents have advantages. Since the water degrees 

of freedom are not simulated explicitly, the system has fewer degrees of freedom and the 

computational cost per time interval is reduced. In addition, solvent-related viscosity is 

eliminated, thus accelerating the timescale of global motions.50 Implicit solvent has been 

used in studies of RNA dynamics, but the approach has not been as widely adopted as the 

(presumably) more accurate explicit solvents. In 2005, Sorin et al. identified structural water 

mediated interactions during the folding process in simulations of a GCAA tetraloop using 

explicit solvent.51 Their 2002 study of the same system using a GB/SA implicit solvent was 

missing these interactions, resulting in two-state instead of downhill folding as observed 

with explicit solvent.14

Our GB-Neck2 implicit solvent model47 has been shown to correctly sample the native 

structure for proteins of various sizes30 and reasonably reproduce experimental melting 

curves for mini-proteins52. We also developed GB-Neck2 parameters for nucleic acids53, 
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but this and other implicit solvent models for RNA have not been tested as rigorously 

as protein-specific models. In 2019, Bergonzo et al. refined PDB structures of an A-form 

helix using GB-Neck2 and various solvent models.54 They obtained mixed results, where 

refinement using some types of NMR data was more successful with implicit solvent, while 

refinement with different NMR data was more successful with explicit solvent. However, 

GB-Neck2 performed worse when completely unrestrained.

Another solution to increase conformational transition rates is to use an elevated simulation 

temperature. Such simulations may show improved convergence, but the temperature 

dependence of thermodynamics alters the ensembles. The results may not be representative 

of populations at experimentally or biologically relevant temperatures, and may not even 

contain the native structure. Temperature replica exchange molecular dynamics (T-REMD, 

here denoted REMD)55 overcomes this problem by coupling simulations at multiple 

temperatures, where simulations at high temperatures increases transition rates while the 

low temperatures provides ensembles at temperatures of interest, which have improved 

convergence through rigorous Monte Carlo exchanges with the higher temperatures. REMD 

has often been used to accelerate sampling for both proteins and RNA.56–59 Another variant 

of REMD, Hamiltonian REMD (H-REMD)60, couples replicas with different Hamiltonians 

instead of temperatures, where the modified Hamiltonians are typically designed to reduce 

specific energy barriers. REMD has been used in RNA force field development and folding 

studies.11, 16, 56

However, REMD simulations can be computationally costly. Simulations are typically 

performed using explicit solvent, necessitating large solvent boxes for systems if starting 

from an extended conformation. The large atom count can lead to a need for many replicas 

to ensure the adequate potential energy overlap that is needed for successful exchanges61. 

For example, convergence of REMD simulations of small tetranucleotides required over 2μs 

using 24 replicas.62–63

To improve efficiency, REMD variants have been combined. One RNA study62 used multi-

dimensional REMD (M-REMD), combining temperature and Hamiltonian REMD using 

dihedral parameter scaling in a 2D grid with 192 replicas. RNA sampling using M-REMD 

was faster than simply using T-REMD alone (300ns to nearly 4μs per replica) with more 

precise ensembles, however significantly more replicas were used (192 to 24). In terms of 

aggregate sampling time, M-REMD involved 58.6μs vs 96μs for REMD, but spread over 

significantly more simultaneous computer instances. The number of computers required 

makes this method largely inaccessible without a substantial computing facility.

Implicit solvent improves REMD efficiency61, as fewer replicas are needed to span the same 

temperatures as an explicit solvent RNA REMD simulation. Thus, fewer computational 

resources are required. However, as we show in this work, good convergence remains highly 

challenging even for small RNA hairpin systems with implicit solvent REMD.

There remains a need to improve sampling for RNA, but ideally without significantly 

increasing the cost, nor requiring extensive prior knowledge of the system dynamics. Here, 

we test the potential of the reservoir variant of REMD (R-REMD)64–66 to improve RNA 
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folding convergence over conventional REMD simulations. Using a reservoir has been 

shown to significantly accelerate convergence in peptide and protein folding simulations, 

while maintaining accurate ensembles66. R-REMD functions similarly to conventional 

REMD and is rigorously accurate64, but adds a pre-generated reservoir of structures that is 

accessible to the REMD simulation through Monte Carlo exchanges. These exchanges allow 

instantaneous jumps to an alternate basin, eliminating the wait to cross intervening energy 

barriers. A reservoir effectively separates the search and scoring components of REMD, 

where resources can be focused on conformational sampling at high temperature without 

needing concurrent simulations at lower, less efficient temperatures as in conventional 

REMD. The costly multi-replica temperature ladder of REMD is used only for refinement 

and reweighting of the structures, but not while sampling global motions. Unlike other 

REMD variants such as M-REMD, or methods like metadynamics and umbrella sampling, 

R-REMD does not require CVs or significant prior knowledge of the system being 

simulated.

Two variants of R-REMD have been reported, with different weighting of the 

conformational ensemble in the reservoir. The original method uses a Boltzmann-weighted 

reservoir (B-R-REMD)64, and the other a non-Boltzmann weighted reservoir (NB-R-

REMD)65. In this study, we focus on B-R-REMD. With B-R-REMD, the reservoir is a 

converged, Boltzmann-weighted set of structures, typically generated via MD at a single 

high temperature.

R-REMD has previously been applied to RNA. In 2013, Henriksen et al used R-REMD 

to generate a converged set of structures for the small tetranucleotide r(GACC) in explicit 

water63. However, this implementation of the R-REMD method employed a Boltzmann-

weighted reservoir but using the exchange probability appropriate for a non-Boltzmann-

weighted reservoir. Nevertheless, the group successfully generated converged ensembles.

The present work seeks to develop best practices for R-REMD simulations on larger 

systems such as RNA hairpins. One significant challenge is testing the accuracy of the 

ensembles generated by R-REMD, isolated from inaccuracies in the force field that would 

convolute such evaluations if experimental data were used as the benchmark. This requires 

generation of well-converged ensembles using conventional simulation methods, but on non-

trivial systems. In the proof-of-concept study presented here, we generate well-converged 

reference ensembles for two RNA hairpin systems using the GB-Neck2 implicit solvent 

model; these remain highly challenging in implicit solvent, and largely unfeasible in explicit 

solvent. We evaluate convergence of the entire ensemble via precision estimates on each 

conformational cluster rather than the single most-populated structure. These data sets 

provide the opportunity to rigorously quantify both the accuracy of R-REMD and potential 

advantages in terms of reduced computational cost. We test sensitivity of the results to 

several protocol choices that influence REMD, as well as additional factors specific to 

R-REMD. We demonstrate that the R-REMD ensembles do indeed reproduce the structures 

and populations of those sampled using conventional REMD. While not fully optimized, we 

show that R-REMD can significantly improve convergence of RNA ensembles compared to 

conventional REMD. Although RNA force field evaluation is not the focus of the present 

study, we compare our RNA hairpin ensembles to experimental structures as an example 
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of how the R-REMD protocol can facilitate identification of possible weaknesses in a force 

field / water model combination.

Materials and methods

System preparation and force field

Two small RNA model hairpin systems were selected, with sequences GGGCGUGCCC 

(CGUG tetraloop, PDB: 1IDV67) and GGUGCAUAGCACC (AUA triloop, PDB: 1ESH68). 

Two initial conformations were generated for each single-stranded sequence: the native 

structure from the PDB and an artificial, extended conformation (a single-stranded RNA 

adopting an A-form conformation). Per the PDB file, model 10 of the 10 submitted 

conformers of the 1IDV PDB ensemble was the best representative conformer and was 

designated as the native structure. Only one experimental model was available for the AUA 

hairpin. For each system, the extended conformation was generated by loading the sequence 

into the Amber nab69 program and creating an A-form duplex. The complementary strand to 

the native sequence was then deleted.

Common simulation protocols

Amber simulation systems were generated for these initial structures using the tleap 
module. The ff99bsc0χOL336 parameters were used, along with GB-Neck253 implicit 

solvent combined with the mbondi2 intrinsic radii set49. A salt concentration of 0.1 M 

was used. Temperature was controlled with a Langevin thermostat with a collision frequency 

of 0.1/sec. SHAKE was employed to restrain bonds involving hydrogen. Hydrogen mass 

repartitioning70 was performed to allow a 4 fs timestep. Minimization was performed for 

1000 steps using the steepest descent algorithm. Because systems were expected to unfold 

and maintaining a stable initial structure was not the goal, further equilibration was not 

performed. Unless specified otherwise, these minimized structures were used as the initial 

coordinates in subsequent simulations.

REMD simulations

Standard REMD simulations included a temperature ladder with 6 replicas (Table S1). 

Temperatures were generated using an in-house script, estimating potential energy overlap 

based on number of atoms and desired exchange acceptance ratio (0.3). The 356.0 K 

temperature for the AUA hairpin was empirically adjusted from the suggested 353.2 K to 

increase number of transitions from low to high RMSD. Exchanges were attempted each 

1 ps, with 10000000 exchange attempts for REMD (10 μsec) and 1000000 attempts for 

R-REMD (1 μsec).

Initial structures for REMD simulation

Two sets of REMD simulations (where a “set” is defined as one simulation run from 

the extended conformation, and one from the native conformation) were run: one set 

unrestrained, and one set with an added end-to-end distance restraint. The initially-extended 

structure for restrained simulations is described below.
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End-to-end distance restraint

For some simulations, a flat-well harmonic distance restraint was imposed between the O5’ 

and O3’ on the first and last residues, respectively. For the CGUG hairpin this included O5’ 

of residue 1 to O3’ of residue 10, and for the AUA hairpin involved O5’ of residue 1 to O3’ 

of residue 13. A force constant of 50 kcal/mol was used between 0 and 1 Å, and between 20 

and 25 Å. No penalty was present between 1 and 20 Å.

Since the extended initial conformation did not satisfy the restraint, an alternate starting 

conformation (“restrained-extended”) for restrained runs was selected randomly from 

trajectories obtained from unrestrained REMD, with the criteria that no base pairing was 

present and the end-to-end distance was near, but not over, 20 Å. These coordinates are 

provided as Supporting Information.

MD simulations to evaluate potential energy distributions and select reservoir temperature

To assess the dependence of potential energy on structure for the CGUG hairpin, 2 μs MD 

simulations were generated at each of the top four temperatures in the REMD ladder, aiming 

to identify a temperature where there was a mix of folded and unfolded structures. End-to-

end distance was selected as a measure of structure, as it roughly tracked the formation of a 

folded stem. The same simulations were used to select a reservoir temperature.

MD simulations to generate reservoirs

Ten sets of 10 μs simulations were run for each hairpin system; 5 each were run from the 

native and the restrained-extended conformations. Thermostat temperatures corresponded 

to a temperature from the REMD ladder; 361.3K for CGUG and 356.0 K for AUA (see 

R-REMD section in Results for rationale). End-to-end distance restraints were applied as 

described above. Structures were saved every 10ps (1,000,000 from each of the 10 runs).

R-REMD reservoir file generation

MD simulations were split into two groups, one including 3 simulations starting from the 

extended conformation and 2 starting from the native, and the second with the remaining 

simulations (2 extended and 3 native), denoted reservoirs 1 and 2 respectively. For each 

set, a reservoir was generated by extracting every 10000th structure, evenly spaced, for 

an aggregate of 50000 structures per reservoir. Previous reservoir REMD simulations with 

a small protein showed that 10000 structures were sufficient66; here we increased this 

number to account for the possibility of greater diversity in RNA ensembles as compared 

to short proteins. Potential energies for each structure in the reservoir were calculated using 

the Amber sander program using the same force field options as described above. The 

createreservoir command of cpptraj71 was used to merge the coordinates and energies into 

reservoir files.

R-REMD simulations

For each reservoir, two sets of R-REMD simulations were run, one starting from the 

restrained-extended conformation, and one from the native conformation. The temperature 

ladder for R-REMD included the lower four temperatures from the conventional REMD 
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ladder. R-REMD simulations were run for 1 μs, attempting exchanges every 1 ps. As with 

any pair of temperatures in the Amber REMD implementation, exchange attempts between 

the highest-temperature replica and the reservoir were performed every other exchange 

attempt. REMD inputs were otherwise the same as those for non-reservoir REMD. End-to-

end distance restraints were imposed as described above.

Extracting trajectories

During REMD simulations in Amber, neighboring replicas exchange thermostat 

temperatures rather than structures, resulting in simulation trajectories that sample multiple 

temperatures. This continuous time-dependent evolution of the structure is referred to as 

a replica trajectory. Because each structure in an REMD replica trajectory also contains 

information about the current thermostat temperature, it is possible to extract temperature 

“trajectory” data sets for that include the structures sampled at each time point from the 

replica that adopts a specific thermostat temperature. Temperature trajectories were extracted 

using the cpptraj program with the remdtraj command. Once converged, these spatially 

discontinuous “temperature trajectories” correspond to the thermodynamic ensembles of 

the system at each temperature. R-REMD replica trajectories also can be converted to 

temperature trajectories; R-REMD temperature and replica trajectories have additional 

discontinuities when a replica exchanges with the reservoir.

Analysis of structure properties

RMSD values were calculated using cpptraj, using the native PDB coordinates as the 

reference structure for its respective system. All heavy atoms were selected (residues 1 – 10 

for the CGUG hairpin, and 1 – 13 for the AUA hairpin). Histograms were normalized and 

used 50 bins equally spaced over the range of data.

End-to-end distances were calculated using cpptraj using the same atoms involved in the 

distance restraint described above. Time series plots and histograms were generated using 

python with matplotlib libraries.

Refolding rates

Transitions between low (folded) and high (unfolded) RMSD were counted, referred to as 

a refolding event. Low RMSD was defined as below 3 Å, and high RMSD was defined as 

above 9 Å, based on the distributions observed in CGUG and AUA hairpin RMSD plots 

(Figures S1 and S2 respectively). A refolding event was defined as a time where a replica 

trajectory that had sampled RMSD values above 9 Å switched to a value below 3 Å, or 

vice versa. These events are referred to in the text as refolding events. Total refolding event 

counts were converted to a refolding rate to obtain a value independent of simulation length.

Base pair counting

The number of base pairs in a given structure was calculated using the nastruct command 

in cpptraj, using the native PDB structure for each hairpin as a reference structure and 

otherwise using default options.
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Cluster analysis

Cluster analyses were performed on temperature trajectories using the kmeans algorithm 

implemented in cpptraj, with a random seed of 1, targeting 100 clusters for 300 K 

ensembles. Increasing the number of clusters from 100 to 200 showed little qualitative 

difference (Figure S3). The number of clusters was increased to 1000 at higher temperature 

to account for increased structure diversity for the unfolded RNA. Clustering was 

performed on all heavy atoms. To facilitate comparison of populations between different 

simulations, common cluster definitions were created for each RNA sequence. All 300 K 

ensembles of the same sequence were clustered together, and populations of each cluster 

in individual ensembles were calculated separately. The splitframe option in cpptraj was 

used to separate ensembles by their number of frames, and the resulting output from the 

summaryhalf command was used to parse cluster populations for individual ensembles. 

Cluster populations were compared across data sets, with the line of best fit and R2 

generated using standard python. Time-dependent populations of the top 5 clusters for each 

ensemble were extracted from the cluster analysis population outputs, and plotted on a time 

series with python.

Simulations in explicit water

Additional standard MD simulations were carried out for the AUA hairpin in explicit 

water, using the OPC72 water model. Three systems were built, using the ff99bsc0χOL3 

force field with no counterions, ff99bsc0χOL3 with 12 neutralizing Na+ ions73, and 

ff99bsc0χOL3_LJBB with 12 Na+ ions. The 1ESH PDB file was loaded into tleap and 

solvated using a minimum distance of 8 Å between solute atoms and the box boundary, 

resulting in addition of ~ 1600 water molecules. Na+ ions were added using the addionsrand 

command in tleap. The system was minimized for 10000 steps with constant NTV and 

positional restraints on RNA heavy atoms and a force constant of 100 kcal/mol Å2, with a 

direct space cutoff of 8 Å and particle mesh Ewald for long-range electrostatic interactions. 

Next, each system was heated from 100 K to 298 K over 1ns, maintaining the same 

restraints and other options while using a 1 fs time step. Next, the system volume was 

equilibrated at constant NTP over 1 ns with the same restraints. Next, the same conditions 

were continued for 1 ns with restraint force constant reduced to 10 kcal/mol Å2. Restraints 

were released on all atoms except phosphorus, with 1000 steps of minimization followed by 

three consecutive steps of 1 ns MD at NTP with restraint force constant of 10, then 1, then 

0.1 kcal/mol Å2. A final 1 ns MD run was carried out with no restraints. This was followed 

by fully unrestrained production runs of 500 ns at 310 K, with a 4 fs time step enabled by 

hydrogen mass repartitioning70.

General analysis and visualization

VMD74 was used to generate all structure figures. Histograms, line plots, and scatter 

plots and corresponding best fit lines and correlations were generated using python with 

matplotlib libraries.
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Results and Discussion

Inclusion of a structure reservoir in REMD simulations adds additional complexity 

compared to conventional REMD, with several aspects that could influence the precision 

and accuracy of the resulting ensemble. Possible challenges with R-REMD include:

1. Does including a reservoir accelerate REMD convergence for RNA?

2. Is the R-REMD low-temperature ensemble sensitive to the initial structure (as 

with conventional REMD)?

3. Does the precision of the reservoir have an impact on the resulting low-

temperature ensembles?

4. Does R-REMD provide accurate ensembles with respect to conventional REMD?

5. How often should the replicas exchange with the reservoir?

6. How can a good reservoir be generated at the lowest possible computational 

cost? (T, length, multiple MD…)

In this study, we address points 1 through 4 to assess the applicability of R-REMD to RNA 

folding. For each point, detailed comparisons of structure ensembles at 300 K between 

R-REMD and conventional REMD simulations were performed. Points 5 and 6 pertain to 

important refinements of the method to reduce computational cost, but are beyond the scope 

of this article.

Model systems

In order to reduce the possibility that measured R-REMD benefits are not anecdotal or 

system-specific, two RNA hairpin model systems were chosen, one with a CGUG tetraloop 

(10 bases total) and the other with an AUA triloop (13 bases) (full sequences and PDB IDs 

as well as preparation can be found in Methods). The AUA system has a longer stem, as well 

as an AU base pair, while the CGUG system stem is shorter and comprised of only GC pairs.

Evaluation metrics for accuracy, precision and efficiency

In order to evaluate the accuracy of a simulation method, it is important that the final 

ensembles be precise (reproducible, with uncertainties that are smaller than differences 

between the methods being compared). Furthermore, evaluating the potential speedup from 

including a reservoir requires estimation of how long in simulation time was required for 

these ensembles to attain a defined precision.

Our method comparisons use four metrics: folding reversibility (refolding rate), ensemble 

precision, ensemble convergence time, and ensemble accuracy. We define convergence time 

here as when simulations reproducibly plateau near their equilibrium cluster populations.

The most qualitative measure, refolding rate, refers to how frequently each replica trajectory 

transitions between folded and unfolded structures (see Methods). These trajectories 

track individual replicas that have continuous structure sampling, while the thermostat 

temperature varies as REMD exchanges occur. These REMD exchanges help drive 
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refolding.75 We quantified refolding efficiency by calculating the average per-replica 

“refolding rate” (in μs−1) from below 3 to above 9 Å (or vice versa) RMSD to the native 

PDB structure (see Methods for details on calculation).

The RMSD to a single native reference structure is a poor metric for gauging the 

reproducible sampling of the broader energy landscape. We quantify ensemble precision 
here using the low-temperature (300 K) populations of a set of clusters that are communally 

defined among the simulations being compared.61 Independent simulations producing 

the same cluster populations provides additional reassurance that the final ensemble is 

converged. Precise populations then allow us to quantify external impacts on the ensemble 

accuracy, such as whether the ensemble obtained using a reservoir (R-REMD) matches 

the reference REMD data, and whether using a different reservoir results in a different 

converged ensemble.

While the cluster population comparison indicates if simulations are converged, ensemble 
convergence time assesses how much simulation time was required to achieve the 

convergence. Time to converge is defined here as the estimated time required for cluster 

populations to plateau at a reproducible value, when visualized on a time-resolved plot. 

We expected that the timescale to converge an RNA system would be reduced when the 

reservoir was included. More importantly, for the method to have value we expect R-REMD 

to be able to converge in cases where conventional REMD remains too challenging.

The fourth metric, ensemble accuracy, involves validation of R-REMD ensembles by 

comparison to precise reference ensembles obtained using conventional REMD, using 

otherwise identical protocols and models, and thus eliminating any convoluting factors that 

are present when comparing to experiments. If R-REMD converges quickly but generates 

the wrong ensemble at low temperatures, it would not be a viable protocol. Clustering 

R-REMD ensembles concurrently with the reference ensembles enables direct comparison 

of populations61.

Simulations of the CGUG tetraloop RNA hairpin

Generating reference data with conventional REMD—We begin with the CGUG 

tetraloop system, since it is smaller and thus had fewer degrees of freedom to sample than 

the AUA system. We generated data using unbiased conventional REMD of 10 μs for each 

of the six temperatures (see Methods for full details). Precision was estimated via two 

independent REMD simulations initiated from different conformations. The data were used 

to determine refolding rates, cluster populations, and convergence time.

Assessing folding reversibility

To calculate the refolding rate for each REMD replica, we calculated time-dependent 

heavy atom RMSDs to the PDB reference structure using replica trajectories (Figure 

1a). Each replica shows multiple refolding events. Replica 6 shows periods of several μs 

when only high RMSD structures are sampled, while the other five replicas appear less 

trapped. Simulations starting from the native structure exhibited similar behavior (Figure 

S4). Histograms of RMSD values show varying peak heights and locations for different 
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replicas (Figure S1); two replicas in initially extended simulations sampled a 6 Å peak not 

present in other replicas. Despite inconsistent peak heights and presence, replicas generally 

sampled the same range of RMSDs. The average refolding rate across all replicas is 2.4 

μs−1, with the value for each replica indicated in Figure 1a. As expected, the average rate in 

simulations starting from the native conformation was very similar at 3.7 μs−1 (Figure S4).

Quantifying ensemble convergence with cluster analysis

We compared ensembles at 300 K obtained from the two independent conventional 

REMD simulations of the CGUG hairpin (Figure 2a). Ideally, rank ordering and fractional 

populations of clusters would match between these independent runs. Both prefer the 

same most-populated structure, although the absolute population of the top cluster shows 

a modest variation with 0.15 fractional population in simulations starting from the extended 

conformation vs. 0.22 in simulations from the native conformation.

One cluster, with fractions of 0.067 and 0.004 in initially-extended and initially-native 

simulations respectively, appears to be an outlier with reduced precision compared to the 

others. Poor precision for this cluster reinforces the observations of inconsistent peaks at ~ 6 

Å in per-replica histograms of RMSD relative to the native structure (Figure S1). To explore 

if this peak corresponds to the outlier cluster, RMSDs were calculated for each replica using 

the outlier cluster as the reference (Figure S5). Two replicas in the initially-extended REMD 

continuously sample this cluster for periods of over 1 μs, while other replicas do not sample 

the structure at all. These data support that the disparity in population in the two ensembles 

is due to inconsistent sampling between replicas.

While there is modest spread in cluster populations along the diagonal, clusters other than 

the outlier demonstrate reasonable agreement and the remaining errors in cluster populations 

are relatively low (Figure 2a). We concluded that the two ensembles were reasonably 

converged with respect to the top clusters.

Quantifying convergence as a function of simulation time

We calculated the time-dependent populations of the top five largest clusters, including all 

structures sampled up to that point in time (Figure 3a). We compared these time-dependent 

cluster populations across independent runs, expecting the differences in populations 

between simulations to become smaller as the simulated time progressed, and reaching a 

plateau as the ensembles converged.

Populations approach their final equilibrium values after ~ 6 μs, but with the top cluster still 

showing an uncertainty range of ~ 10%. This is consistent with the time-dependent RMSD 

data in Figure 1a which shows that replicas can be trapped on the μs timescale. The rank 

ordering of the top clusters appears to take ~ 8 μs to become reproducible, and does not 

change thereafter. We concluded that simulations were reasonably converged beyond 8μs, 

with some remaining uncertainty in the absolute populations.
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Employing a distance restraint to reduce sampling of less important basins

The time-dependent RMSDs and the refolding rates (Figure 1a) suggest that replicas can 

spend ~ 1 μs or more exploring the diverse unfolded landscape between folding events. We 

aimed to reduce this time interval to improve statistical sampling of basins that are more 

relevant at lower temperatures. Protein folding studies suggest that long-distance contacts 

can be slow to form; indeed, RNA hairpin folding dynamics are a slow process with some 

conformational changes on the order of μs and longer20–23, 76.

To characterize the diversity of structures in unfolded basins, end-to-end distances (see 

Methods) were calculated for the 384.3 K REMD ensemble. A broad range of values up 

to 52 Å is observed (Figure 4a). Ensembles sampled in REMD at lower temperatures 

give a narrower distribution that is strongly shifted toward the ~16 Å value calculated for 

the NMR-based conformation (Figure 4c). The broadening of distance distributions with 

increasing temperature suggests that the conformational space to be explored may increase 

dramatically with temperature, forming an entropy bottleneck that can counteract the ability 

of REMD to cross enthalpy barriers more efficiently. Such anti-Arrhenius behavior has been 

shown to impede convergence in REMD simulations of protein folding77. This suggests that 

extensive sampling of the very extended RNA structures driven by the elevated temperature 

in REMD is counterproductive to improving convergence at lower temperatures where they 

are not expected to make a significant contribution.

Prior work has shown that introduction of knowledge-based restraints can improve sampling 

of relevant parts of the conformational landscape and speed convergence for simulations of 

protein folding and binding32, 78–79. For the RNA model systems here, it seems reasonable 

to assume that the terminal nucleotides would be close in space for a hairpin structure motif. 

We decided to introduce an end-to-end restraint between the two terminal residues that 

would allow the stem to fully unzip to facilitate rearrangements in the loop, but also reduce 

sampling of very extended structures that are less relevant at lower temperatures. This differs 

from prior work42 that employed base pairing distance restraints for the first few base pairs 

in a stem to restrict conformational changes to the loop region only. Here, no assumptions 

are made about base pairing or stem geometry other than assuming general proximity of the 

terminal oxygens.

REMD ensembles at 300 K primarily contained structures with end-to-end distances near 

16 Å, the value seen in the NMR-based structure (Figure 4c). In contrast, unrestrained 

REMD and MD at 384.3 K showed sampling of structures with distances shifted to much 

longer values (Figures 4a and 4b). An ideal restraint would reduce sampling of these 

long distances; a target maximum distance of 20 Å was selected, as it encompassed 94% 

of structures shown in Figure 4c. Indeed, sampling of structures near 16 Å increased 

significantly in restrained MD simulations at 384.3 K (Figure 4d) compared to the 

unrestrained REMD and MD. Any residual effects of including this restraint are tested in 

the ensemble accuracy section. While not explored here, future protocol optimization could 

assess the impact of using longer target distances, or weaker force constants.

This end-to-end distance restraint was employed in conventional REMD simulations 

(“restrained REMD”), keeping all other parts of the protocol identical to the unrestrained 
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REMD described above. Two independent simulations were carried out, again starting from 

extended and native initial conformations (see Methods for the description of the extended 

structure for restrained simulations). We expected the improved sampling of experimentally-

relevant distances at high temperature to lead to improvements in folding reversibility, 

ensemble precision, and ensemble convergence time.

Time-dependent RMSD values relative to the native PDB structure for individual replicas 

are shown in Figure 1b for restrained REMD starting from the extended conformation 

(initially-native REMD data are shown in Figure S6). The highest RMSD sampled in all 

replicas is ~ 10 Å, compared to 15 Å in unrestrained REMD. This is expected since the 

restraints prevent sampling of the very extended structures that lead to high RMSD values. 

Refolding rates show a modest 2-fold increase compared to unrestrained REMD, with an 

average rate of 4.7 μs−1 (5.1 μs−1 in initially-native simulations). This increase suggests 

more efficient sampling per replica in comparison to unrestrained simulations. Overall, less 

kinetic trapping is present, although periods over 1 μs with no refolding events remain.

RMSD histograms also demonstrate moderate improvements in sampling compared to 

unrestrained REMD. While unrestrained REMD showed inconsistent peak presence and 

heights between replicas, replicas using the distance restraint exhibit more uniform profiles, 

though peak heights remain inconsistent (Figure S7).

To quantify improvement in ensemble convergence with the addition of the end-to-end 

restraint, cluster populations for the two restrained REMD 300 K ensembles were compared. 

Good agreement is observed, with populations close to the diagonal (Figure 2b). A single 

cluster is preferred in unrestrained REMD (Figure 2a), but with inclusion of the restraint, 

the two top clusters show similar fractional populations (within 0.03). Unlike unrestrained 

REMD, no outliers are observed and none of the clusters are highly populated in only one 

run.

To assess ensemble accuracy, and the potential influence of the end-to-end distance restraint, 

cluster populations at 300 K from restrained REMD were compared to those obtained 

from unrestrained REMD. It appears that the restraint did not introduce any bias into the 

ensemble; no clusters present in unrestrained REMD were missing in restrained REMD, 

and the average populations show good match, with the same rank ordering and all points 

near the diagonal (Figure 2d). It is apparent that unrestrained REMD simulations are 

less precise; the uncertainties observed in unrestrained REMD are significantly reduced in 

restrained REMD, with the average populations in restrained REMD falling within error bars 

of unrestrained REMD. We concluded that the unrestrained and restrained ensembles are 

essentially equivalent within their precision, and that application of the end-to end distance 

restraint on this RNA hairpin provided improved precision but had little discernable impact 

on accuracy.

Based on the improved precision at 10 μs, we expected the restrained REMD simulations 

to have converged more quickly than unrestrained REMD, resulting in a faster ensemble 

convergence time. Time-dependent cluster population analysis (Figure 3b) suggests that 

including the distance restraint somewhat reduces the time required to obtain precise 
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populations, from ~8 μs in unrestrained REMD down to ~ 6 μs with the end-to-end restraint. 

However, the uncertainty in rank ordering between the top two clusters persists at 10 μs, 

and the population for cluster 1 exhibits an upward drift in both runs of restrained REMD 

(Figure 3b).

Overall, inclusion of the end-to-end restraint appears to moderately improve the precision 

of the entire ensemble in restrained REMD as compared to unrestrained REMD for the 

same simulation timescale. A significant improvement is seen in the convergence of the 

outlier cluster that was poorly converged in unrestrained REMD. Therefore, the restrained 

REMD data were designated as the reference ensemble for evaluating the applicability of the 

reservoir approach for RNA.

REMD simulations using a reservoir (R-REMD)

We aimed to generate a well-converged set of structures at elevated temperature, and 

determine if it would accelerate subsequent R-REMD simulations while maintaining 

accuracy. First, two independent reservoirs were generated so that we could evaluate the 

impact of reservoir variability on the final R-REMD ensemble. Next, each reservoir was 

coupled to two independent R-REMD simulations initiated from different structures (4 

R-REMD simulations total), as was done for the conventional REMD simulations described 

above. The end-to-end distance restraint was included in reservoir generation and during 

all R-REMD simulations, to be consistent with the protocol used to obtain the reference 

ensemble.

Generating reservoirs for R-REMD

The R-REMD variant tested in this work requires the reservoir populations to be consistent 

with a Boltzmann-weighted ensemble at a defined temperature.66 Selecting the reservoir 

temperature is a non-trivial step. At an ideal temperature, sampling is diverse and rapid, 

but structures relevant to lower temperatures should still be present in the reservoir for 

seeding replicas during the subsequent REMD phase. The top four temperatures in our 

conventional REMD ladder were considered by running 2 μs MD simulation at each 

temperature using 20 Å end-to-end restraints. Extensive sampling of compact and extended 

structures (indicated by the end-to-end distance, Figure S8) at 361.3 K suggests that this is a 

reasonable temperature for reservoir generation.

Reservoir generation was performed using 10 MD simulations at 361.3K, each 10 μs long 

using a 20 Å end-to-end restraint. 10 μs was chosen because the conventional REMD 

simulations were converged on this timescale, and we aimed to ensure a fully converged 

reservoir to permit identification of any possible accuracy errors arising from coupling to 

a reservoir. Five simulations were started from the native conformation, and five from the 

restrained-extended structure. Snapshots from each set of five independent MD simulations 

were used to build an independent reservoir. A detailed description of the reservoir 

generation procedure is provided in Methods. Cluster analysis and population comparison 

between the two independent long reservoirs indicates that the two reservoirs represent 

comparable ensembles and are well-converged (Figure S9).
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Since each reservoir was generated via 50 μs aggregate MD simulation, compared to the 60 

μs aggregate simulation to converge REMD without the reservoir, the overall computational 

cost for our R-REMD simulations is similar to that of our conventional REMD. While 10 

μs per MD simulation was selected to ensure reservoir convergence, we expect that the 

reservoirs likely converged earlier. This was tested by generating reservoirs using only the 

first 5 μs of the same MD simulations, for an aggregate of 25 μs, referred to as the short 

reservoirs; those from the aggregate 50 μs are referred to as the long reservoirs. Cluster 

populations correlate well between the long and short reservoirs (Figure S10), indicating 

that the reservoir populations were likely converged prior to 25 μs aggregate sampling, 

potentially reducing reservoir generation time by half. Future work will explore how much 

these simulations can be shortened while still providing a converged reservoir.

A broad range of clusters is present at 361.3 K when comparing populations between 

the two long reservoirs (Figure S9), but a single cluster shows approximately double the 

population than the next most populated, comprising nearly 1% of each reservoir. If this 

cluster was the same as that preferred at low temperature, then high-temperature simulations 

could be a strategy to quickly predict the preferred conformation. However, the cluster 

preferred at 361.3 K is a poor match to any of the top five clusters at 300 K, with RMSD 

values of at least 5.0 Å (Table S2).

Workflow for validating R-REMD results

A Boltzmann-weighted reservoir replaces the corresponding simulation in the temperature 

ladder, and only the lower temperatures are retained.64 Here, the temperature ladder includes 

the lower 4 temperatures in the original REMD ladder (282.0, 300.0, 319.2, and 339.6 K), 

coupled to the reservoir at 361.3 K. Each of the four R-REMD simulations was run for 1 μs, 

as compared to 10 μs for conventional REMD, since the reservoir was expected to accelerate 

convergence.

R-REMD simulations were evaluated using the same metrics applied to conventional REMD 

(refolding rate, ensemble precision, and ensemble accuracy vs. the reference ensemble, 

and ensemble convergence time). Refolding events in R-REMD are driven largely by MC 

exchanges with reservoir structures, and do not depend on individual replicas crossing 

energy barriers as in conventional REMD methods. Thus, we expected refolding rates to be 

significantly higher than in conventional REMD, improving statistical sampling. Based on 

similar work using small proteins66, we also expected R-REMD to converge to the same 

ensemble as conventional REMD (maintain accuracy), with equal or better precision on a 

shorter timescale (more efficient). Once precision is quantified, the accuracy of the cluster 

populations from R-REMD can be validated against the reference data.

R-REMD has an additional factor not relevant in conventional REMD. Precision in R-

REMD can be influenced by both the starting structure and the composition of the reservoir. 

Both aspects of R-REMD precision were tested here. For each system, four simulations were 

carried out: two independent reservoirs were generated as described above, and for each 

reservoir, two R-REMD simulations were run starting from different initial conformations. 

Since all 300 K ensembles were clustered together and thus share cluster definitions, cluster 

populations can be compared directly between R-REMD simulations that vary the starting 
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structure, the reservoir, or both. We expected that any population uncertainties would 

originate from reservoir differences or simulation length, since the initial structures should 

rapidly exchange with the reservoir and not provide a lasting impact on the simulation. Since 

the reservoirs are well-converged (Figure S9), R-REMD simulations using independent 

reservoirs should generate the same low-temperature ensembles.

Reservoir REMD simulations converge more quickly than conventional REMD simulations

Time-dependent RMSD values for each replica are shown in Figure 1e for R-REMD (from 

the extended conformation, using reservoir 1, with the other R-REMD simulations in Figure 

S11). The first 1 μs of corresponding unrestrained and restrained conventional REMD are 

presented in Figure 1c and 1d for comparison. On this timescale, the kinetic trapping in the 

conventional REMD data is even more apparent than in Figures 1a and 1b, which include all 

10 μs. As expected, the replicas in R-REMD show markedly improved sampling across the 

entire RMSD range, and per-replica RMSD histograms (Figure S12) show uniform sampling 

of RMSDs across all replicas.

R-REMD shows substantially higher refolding rates as compared to either unrestrained or 

restrained REMD, since the MC jumps using the reservoir permit instantaneous switching 

between folding or unfolded basins. The average refolding rate is 61 μs−1, which is 13 times 

greater than that of the corresponding restrained REMD. The R-REMD simulation starting 

from the native structure using the same reservoir also averages 61 μs−1, and simulations 

using reservoir 2 averaged 63 and 61 μs−1 (Figure S11), showing little overall dependence 

on the reservoir or starting structure.

Precision via sensitivity to 1) starting structure and 2) reservoir is assessed in Figure 2c, 

which depicts cluster populations from all four R-REMD 300 K ensembles. Populations for 

the two independent runs using a single reservoir were averaged, with error bars reflecting 

the impact of the starting structure; the small error bars suggest that the initial structure has 

little impact on the final populations. These values are compared to the average values from 

the alternate reservoir, again using two independent starting structures.

There is also good agreement in most populations between R-REMD ensembles generated 

using different reservoirs. Average cluster populations for the majority of clusters are 

near the diagonal. However, reduced precision was observed for one cluster in R-REMD, 

suggesting that the populations for this cluster were modestly sensitive to reservoir 

composition. The relatively small error bar suggests that the difference in population is a 

result of the reservoir composition, not the starting structure or simulation length. These 

analyses demonstrate that the R-REMD ensembles are reproducible, with little impact from 

different initial structures and a modest impact for one cluster when switching to a different, 

independently generated reservoir.

R-REMD structure ensembles reproduce the reference ensembles

The reproducibility of cluster populations discussed above reinforces that R-REMD can 

generate precise ensembles. However, it is important that these ensembles also are accurate 

and reproduce the reference data (ensemble accuracy). Since the method is formally 

rigorous, we expected cluster populations in R-REMD to agree with those in REMD. 
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However, an incomplete reservoir could lead to rapid convergence to an ensemble that lacks 

structures that are significantly populated in the reference data. Errors in the reservoir could 

also lead to a systematic bias in the low-temperature ensembles sampled in the REMD step 

of R-REMD. We did not expect these to be issues here due to the good convergence of the 

simulations used to generate the reservoirs (Figure S9), and the low sensitivity of the results 

to switching the reservoir.

To evaluate R-REMD accuracy, the final R-REMD cluster populations at 300 K were 

compared to the reference data (from restrained conventional REMD), enabled by the 

common cluster definitions (Figure 2e). The deviation from the diagonal (perfect match) 

is reasonable, especially with consideration of the error bars. Notably, the error bars for 

the lower-precision cluster in R-REMD cross the diagonal, indicating that population of the 

cluster in the reference data falls within the range from R-REMD. Both REMD methods 

select the same two most populated clusters, with slightly higher population in R-REMD. 

However, the top cluster exhibited upwards drift in population vs time at the end of 

the restrained conventional REMD, suggesting that the small error bars for the reference 

data may underestimate the true uncertainty, and the apparent inaccuracy of the R-REMD 

population may result from imprecise reference data.

Analyzing R-REMD convergence speed vs. conventional REMD

After determining that R-REMD provides reasonably precise ensembles with good accuracy 

compared to conventional REMD, the ensemble convergence time for R-REMD was 

analyzed. Populations of the top five clusters were calculated as a function of time for 

two R-REMD simulations using different reservoirs (Figure 3d). Compared to conventional 

REMD, the cluster populations reach plateau values much earlier in the simulation, near 

0.5 μs. At the same timescale, conventional restrained REMD does not even show correct 

rank order (Figure 3c), and uncertainties in cluster populations are larger than the differences 

between clusters. Permitting MC exchanges to a reservoir appears to dramatically improve 

REMD convergence for this RNA system.

Assessing generalizability: application to an RNA hairpin with AUA triloop

The REMD protocols described above were repeated for an RNA hairpin with an AUA 

triloop and a 5 base-pair stem containing an AU pair. Unrestrained conventional REMD 

simulations for AUA remained very poorly converged, with refolding rates less than 1 μs−1 

(lower than CGUG), and dramatic dependence of cluster populations on the initial structure 

even after 10 μs per replica (Figures S13, S14 and S15). Given this poor convergence, 

unrestrained simulations were not explored further (refer to SI for additional discussion and 

data).

AUA triloop restrained conventional REMD simulations show poor per-replica sampling but 
reasonable ensemble precision

Following the protocol used for CGUG, a 20 Å end-to-end distance restraint was added to 

the conventional REMD simulations for the AUA triloop system (see Methods). We used 

the same four metrics (refolding rate, ensemble precision, ensemble accuracy, and ensemble 
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convergence time) as for CGUG. Two conventional REMD simulations were run, one 

starting from the restrained-extended conformation, and one from the native PDB structure.

Addition of the distance restraint resulted in a refolding rate of 0.5 μs−1 in initially-extended 

simulations (Figure 5a and Figure S16) and 0.8 in initially-native simulations, a 3-fold 

improvement over unrestrained REMD when comparing initially-extended simulations. 

Replicas still spent multiple μs trapped in low or high RMSDs, with inconsistent refolding 

rates (Figure 5a); RMSD histograms confirm inconsistent sampling across replicas, 

particularly near 5 – 10 Å (Figure S2).

Despite the relatively few refolding events and poor RMSD profile consistency, cluster 

populations at 300 K for restrained REMD (Figure 6a) show reasonable precision, and 

substantial improvement compared to unrestrained REMD (Figure S15). We conclude that 

the two ensembles are reasonably converged despite sampling relatively few refolding 

events. Unlike the CGUG tetraloop which exhibited multiple dominant clusters, REMD 

simulations for AUA consistently produce a single dominant cluster (30 – 40 %).

Cluster populations as a function of time were evaluated to determine the time needed to 

achieve a reliable ensemble (Figure 7a). We expected simulations to take longer to converge 

than comparable CGUG simulations, as the system size was larger and the RMSD vs. 

time sampling in AUA was inferior to that observed for CGUG. Overall rank ordering is 

inconsistent between the two conventional restrained REMD runs and continues to change 

even at 10 μs. Cluster 2 shows the largest uncertainty in population and rank order, and 

populations for clusters 1 and 2 do not plateau; the time to converge was estimated as 9 to 10 

μs. Ensembles generated by restrained REMD were determined reliable enough to be used 

as reference data, with limitations to quantitative convergence that should be kept in mind.

Generating reservoirs for the AUA hairpin system

The reservoir generation protocol outlined above for the CGUG hairpin system was repeated 

for the AUA hairpin. For CGUG, reservoir temperature was selected based on short MD 

simulations at the top four temperatures of the REMD ladder. In lieu of generating additional 

MD simulations for AUA, end-to-end distances during the first 2 μs of restrained REMD 

were examined (Figure S17). 356.0 K appears sufficiently hot, as the broad distance profile 

was similar at 372.9 K, while lower temperatures showed a narrowed range. As with 

CGUG, two independent reservoirs of 10,000 structures each were generated from 10 MD 

independent MD simulations.

Reservoir convergence was tested by comparing cluster populations after 5 and 10 μs (Figure 

S18). As with CGUG, small populations for all clusters suggest a diverse unfolded ensemble 

at this elevated temperature, with no strongly preferred structures and all populations less 

than 2.5 % of the ensemble. Despite the small values, the populations are remarkably close 

to the diagonal, suggesting that the additional 5 μs had little impact on reservoir populations. 

The independent reservoirs also show good agreement (Figure S19). Unlike CGUG, the 

largest cluster at high T matches one of the larger clusters at low T; the RMSD to the second 

most populated cluster in the reference ensemble is 1.4 Å (Table S3).
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Inclusion of the reservoir improves sampling and convergence time

As with CGUG, four R-REMD runs of 1 μs each were generated for the AUA hairpin (two 

independent R-REMD simulations for each of the two reservoirs). Time-dependent RMSDs 

compared to the native structure are shown for all replicas in Figures 5c and S20. As with 

CGUG, these demonstrate significantly improved sampling with R-REMD as compared to 

conventional REMD over the same 1 μs timescale (Figure 5b). Refolding rates are improved 

142-fold over restrained REMD, with an average rate of 71 μs−1. Similar refolding rates 

are observed for the remaining R-REMD simulations (Figure S20). RMSD histograms are 

highly uniform across replicas (Figure S21), an improvement over the inconsistent sampling 

in non-reservoir REMD (Figure S2). Overall, the RMSD analysis illustrates a dramatic 

improvement in sampling with R-REMD.

There is notably less sampling of high (above 5 Å) RMSD structures by replicas in R-

REMD than in REMD, as observed when comparing per-replica RMSD histograms for the 

two methods in Figures S2 and S21. In order to validate that this behavior does not reflect 

a problem with the reservoir approach, we examined the temperature-dependent RMSD 

distributions for both methods (Figure S22). RMSD profiles from R-REMD match well to 

those from restrained REMD. The higher temperatures simulated in conventional REMD 

(356.0 K and 372.9 K) show a dramatic shift to higher RMSD values, as does the reservoir 

itself (generated at 356.0 K, with a profile that matches well to the conventional REMD 

data at the same temperature). This indicates that the melting temperature of the hairpin 

in this model is between that of the reservoir and the highest temperature in the R-REMD 

ladder, with a sharp transition that leads to much higher population of folded hairpin in the 

R-REMD simulation than in the reservoir itself. The ability of the reservoir to accurately 

seed ensembles across a melting transition supports the value of the reservoir, despite having 

a significantly different distribution of structures in the reservoir than are sampled in the 

R-REMD replicas.

Average cluster populations at 300 K from four R-REMD simulations are compared in 

Figure 6b. Precision is improved compared to restrained conventional REMD simulations. 

Error bars reflecting sensitivity to initial structure are small, within 1–2% of the average 

value (too small to be seen beyond the points in Figure 6b). Average populations from 

simulations using different reservoirs are in excellent agreement along the diagonal.

As with restrained conventional REMD, a single most populated cluster is observed, 

at ~ 35% of the ensemble in initially-extended simulations, and 27% in initially-native 

simulations. The second most populated cluster comprises ~ 22% of the ensemble. These 

populations correspond to the bimodal RMSD histograms in Figure S22c and d, where two 

peaks at 300 K can be observed at 3.1 and 3.8 Å RMSD.

R-REMD simulations reproduce the reference ensemble for the AUA hairpin system

Based on the good accuracy obtained when applying R-REMD to the CGUG hairpin, 

we expected cluster populations from R-REMD to match the reference results from 

conventional REMD, indicating that coupling to the reservoir accelerated convergence but 

did not alter the low temperature ensembles. The R-REMD cluster populations at 300 K 
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were compared to the reference 300 K data from restrained conventional REMD (Figure 6c). 

The most populated cluster is reproduced, and all of the significant clusters in the reference 

data are present with R-REMD. Average populations generally fall along the diagonal, with 

one cluster (cluster 2) showing differences in population larger than the error bars. However, 

this is likely due to weaknesses in the reference data, since the reference population for this 

cluster was still changing at 10 μs of simulation (cluster 2 in Figure 7a). Thus, we concluded 

that R-REMD accurately reproduced the reference ensemble, within convergence limitations 

of the reference data.

Populations vs. time for the top five clusters demonstrate that coupling to a reservoir 

provides a dramatic improvement in convergence rate as compared to conventional REMD 

(Figure 7c). The populations plateau within 200 ns of R-REMD, and are reproducible 

between the independent simulations. The conventional REMD simulations were unable to 

achieve a comparable level of precision after 1 μs (Figure 7b) or even after 10 μs (Figure 

7a), suggesting a gain in efficiency of at least 50x by coupling to a reservoir. However, this 

comparison does not include the cost of generating the reservoir, discussed in more detail 

below.

Precise ensembles permit analysis of the accuracy of this RNA force field + water model 
combination

One metric for force field accuracy is the ability to reproduce experimental structures. 

While force field development is outside of the scope of this study, we show an example 

of how precise RNA ensembles generated by R-REMD can provide feedback on force 

field accuracy. Since only two RNA systems were simulated, the observations are likely 

not general enough to suggest specific force field modifications. As we demonstrate, the 

comparisons performed in this section underscore a greater need for more sequence variety 

in force field parameterization and testing.

Structure representatives from the top five clusters in the R-REMD ensembles (aggregate > 

50% of the ensemble for each hairpin) were compared to the respective native structure 

(Table 1). Ideally, the most highly populated cluster in simulations would show high 

similarity to that based on experiments. Alternatively, a high population of non-native 

structures could suggest biases in the force field. For brevity, the representative structures 

were analyzed for the most populated cluster and the cluster with the lowest RMSD among 

the top 5 clusters.

The most populated cluster for the CGUG hairpin does not adopt any native-like properties 

(Figure 8a), with an RMSD of 4.0 Å (Table 1). The stem is incorrectly formed, with G1 base 

pairing with C9 instead of C10, resulting in a staggered stem. This may occur due to the 

stem sequence, which is composed entirely of CG pairs and therefore lacks the specificity to 

strongly favor the correct alignment. Drawing conclusions about base slipping during stem 

formation, however, requires more data on systems where slipping could occur, i.e. other 

RNA systems where the stem contains repeats. Additionally, the G3 base forms hydrogen 

bonds with a phosphate oxygen on G7, and the G7 base interacts with a U6 phosphate 

oxygen. Indeed, interactions between base and phosphate were identified as too strong in the 

ff99bsc0χOL3 force field used here, and adjusted in the ff99bsc0χOL3_LJBB force field.39
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The second most populated cluster is the closest to the native structure, with a representative 

RMSD of 2.4 Å, exhibiting a native stem and a loop that contains some native-like 

properties (Figure 8b). Residues G5, U6, and G7 stack similarly to the native structure. 

However, G7 is flipped along the χ dihedral, and forms a base pair with C4 that is not 

present in the native structure, burying the C4 inside the loop and showing distortion in the 

loop backbone. Unlike the most populated cluster, there is no excessive base pairing between 

bases and phosphates.

The cluster representatives for the AUA hairpin more closely resemble the corresponding 

native structure. Cluster 4 has the lowest heavy-atom RMSD (2.1 Å), and the RMSDs for 

the third, fourth, and fifth clusters are between 2 and 3 Å (Table 1). However, the RMSD 

of most-populated cluster is 3.1 Å, indicating that a structure somewhat more distant from 

the native is preferred by this combination of force field and solvent model. Notably, the 

OP1 phosphate oxygens of A6 and U7 are in close contact (3.5 Å) in the experimental native 

structure (indicated in Figure 9), suggesting possible charge-charge repulsion mitigated by 

local structured water or ions; these effects are not expected to be reproduced accurately in 

an implicit solvent model.

The stem in the most populated cluster reproduces the native base-pairing pattern (Figure 

9a). The presence of an A-U base pair reduces the likelihood of base slipping as observed 

in the CGUG hairpin stem. Native-like stacking is present for U7, A8, and G9. However, in 

the simulation structure the A6 base is flipped into solvent relative to the native structure, 

indicating poorer match to experiment. There is also a clockwise twist in the loop backbone 

compared to the native structure. Additionally, the A6-U7 phosphate oxygen distance is 

higher in the most populated cluster than in the native structure (8.3 Å vs 3.5 Å).

The cluster representative with a 2.1 Å RMSD to the native structure shows geometry more 

similar to, but still distorted relative to the native structure (Figure 9b). Unlike the most 

populated cluster, A6 is not flipped into solvent. There is some overlap in base positions for 

the loop between the cluster representative and the native structure, but backbone overlap is 

less accurate. There is also a clockwise twist in U7 and A8 relative to the native structure. 

This is accompanied by a 6.4 Å A6-U7 phosphate oxygen distance, still significantly higher 

than in the native structure. This suggests that the distortions may result from inability to 

stabilize the close-packed phosphate groups.

We have shown that the combination of GB-Neck2 and ff99bsc0χOL3 struggles 

to reproduce native loop and stem conformations for the CGUG hairpin, and loop 

conformations for the AUA hairpin. Neither system is able to fully reproduce the native 

structure. Notably, a staggered stem is observed in the most populated cluster for the CGUG 

hairpin, and the A6 in the AUA hairpin is flipped out in the most populated cluster. Both 

AUA clusters are unable to reproduce the short phosphate oxygen distance present in the 

native structure. The closest structure to the native conformation for both hairpins contained 

native stems, but loops which contained distortions in the backbone relative to the reference.

It is possible that the lack of agreement with experiment arises from the implicit water 

model used here. We carried out preliminary MD simulations of the AUA hairpin using 

Lam et al. Page 23

J Chem Theory Comput. Author manuscript; available in PMC 2023 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the OPC80 explicit solvent starting from the NMR-based structure. Simulations using the 

ff99bsc0χOL3 force field36, both with and without 12 neutralizing Na+ ions, as well as 

simulations with the ff99bsc0χOL3_LJBB force field39 with neutralizing Na+, were all 

unable to maintain the phosphate pair close contact. This distance plateaus at 6 – 8 Å 

(Figure S23), the same range as seen in the highly populated clusters from implicit solvent. 

Although a more detailed investigation of the conformational preferences in explicit water 

is beyond the scope of this study, these limited results suggest that the deviation from 

experiment in our simulations may be a result of divalent ions present in the experimental 

sample, or errors in these RNA force fields, rather than the implicit water model.

The overall anecdotal nature and lack of obvious trends between the two systems 

underscores a greater need for future RNA force field development to use a diverse set 

of test structures, with a range of sequence and structure motifs as demonstrated in our prior 

study with proteins30.

Conclusions

Generating converged ensembles for RNA via MD can be a costly process, requiring 

multiple long simulations. As a result, RNA force field development and subsequent 

applications of MD simulations to RNA are computationally expensive. While enhanced 

sampling methods such as REMD accelerate sampling, converging simulations can still be 

difficult even for small hairpins. In this study, we explored coupling a reservoir to allow MC 

jumps between structures, while simultaneously reducing sampling space by introducing a 

general knowledge-based end-to-end restraint to eliminate sampling of structures that are not 

expected to be significantly populated for an RNA hairpin.

The introduction of an end-to-end restraint to REMD simulations resulted in a modest 
2-fold increase in refolding rates for the CGUG hairpin, and a similarly modest 3-fold 
increase for the AUA hairpin, with accurate ensembles relative to unrestrained REMD. 

Coupling a reservoir to REMD simulations provided a much more dramatic acceleration of 

sampling and convergence time. Ensembles from R-REMD were precise, and reasonably 

accurate compared to restrained REMD. The CGUG hairpin showed a 13-fold increase 
in refolding rates over restrained REMD simulations, while the AUA hairpin showed an 

impressive 142-fold increase. R-REMD simulations converged within 1 μs, an improvement 

over the multiple μs required for restrained REMD for both systems. However, this neglects 

the additional cost of generating the reservoir.

Future work should focus on additional optimization of the protocol. Generating a reservoir 

as described in this study is resource intensive, using 50 μs of simulation per reservoir. 

However, we demonstrated that there is potential to significantly reduce the computational 

cost, and future directions should explore how much simulation time can be reduced 

while maintaining accuracy. Furthermore, identifying an optimal reservoir temperature 

must be streamlined. Future RNA R-REMD simulations may also consider using explicit 

solvent, which incurs an additional computational cost compared to implicit solvents. 

This is particularly important for applications like RNA force field development, where 

the approximations from implicit solvent may not be sufficient. However, generating well-
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converged reservoirs using MD may remain intractable in explicit solvent, even at elevated 

temperatures.

A possible approach to overcoming these challenges is the use of non-Boltzmann (NB) 

R-REMD. Non-Boltzmann-weighted reservoirs can be generated by a wider variety of 

methods, such as metadynamics or accelerated MD, which do not rely on elevated 

temperature to accelerate sampling. Additionally, NB R-REMD reservoirs in protein systems 

require less simulation to generate than an equivalent Boltzmann-weighted reservoir66, 

making them a promising option for generating RNA explicit solvent reservoirs.
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Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

RNA
Ribonucleic Acid

GB
Generalized Born

MD
Molecular Dynamics

MC
Monte Carlo

CV
Collective Variable

REMD
Replica Exchange MD

T-REMD
Temperature REMD

H-REMD
Hamiltonian REMD

aMD
Accelerated MD

US
Umbrella sampling
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R-REMD
Reservoir REMD

RMSD
Root Mean Square Deviation

PDB
Protein Data Bank

Amber Assisted Model Building with Energy Refinement

NB
Non-Boltzmann
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Figure 1. 
(upper) Time-dependent heavy atom RMSD to the CGUG reference PDB structure for 10 μs 

of initially-extended (a) unrestrained and (b) restrained conventional REMD, first 1 μs of (c) 

unrestrained and (d) restrained conventional REMD, and (e) 1 μs R-REMD. The refolding 

rate (in μs−1) for each replica is indicated in each subplot. The average refolding rates are 

2.3, 4.7, and 61 μs−1 for (a), (b), and (e) respectively.
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Figure 2. 
Comparison of cluster populations in independent 300 K ensembles of the CGUG hairpin 

for various REMD methods. Populations are compared between initially extended and native 

runs from (a) unrestrained and (b) restrained conventional REMD simulations. Average 

populations are compared for initially-extended and native simulations in (c) R-REMD 

using different reservoirs, (d) unrestrained REMD and restrained REMD, and (e) restrained 

REMD and R-REMD. Error bars represent the difference from the average for two 

independent runs. Clustering was performed on all heavy atoms. The diagonal indicating 

hypothetical perfect match is in gray; populations for most clusters are near the diagonal. 

Best fit lines are in red, with R2 and slope in plots. Representative structures for the top two 

clusters are pictured.
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Figure 3. 
CGUG hairpin cluster populations vs. time at 300 K for the top 5 most populated clusters 

in two runs of 10 μs conventional (a) unrestrained REMD and (b) restrained REMD, and 

for 1 μs of (c) restrained REMD and (d) R-REMD. Clustering was performed on all heavy 

atoms. Solid and dashed lines represent independent simulations with extended and native 

initial conformations, respectively. Rank order takes at least 6–8 μs to become reliable 

for conventional REMD, with some average populations still changing at 10 μs. R-REMD 

shows convergence around 0.5 μs.
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Figure 4. 
End-to-end distances during simulations of the CGUG hairpin. From top left to bottom right: 

(a) unrestrained REMD 384.2 K, (b) unrestrained MD 384.3 K, (c) unrestrained REMD 300 

K, (d) restrained MD 384.3 K. Normalized histograms of the distances are provided on the 

right, while the distance in the native structure is indicated with a dashed line. Unrestrained 

REMD and MD data at 384.3 K in (a) and (b) tend to sample predominantly structures with 

much longer distances than seen in the NMR-based structure or in REMD at 300 K (b). 

Adding a restraint (d) improves sampling of shorter distances at elevated temperatures.
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Figure 5. 
AUA hairpin system per-replica heavy atom RMSDs to the reference PDB structure as a 

function of simulation time for initially-extended (a) all 10 μs restrained REMD, (b) first 

1 μs restrained REMD, and (c) 1 μs R-REMD. Refolding rates for each replica (in μs−1) 

are provided in the subplots. The average refolding rate is 0.5 and 71 μs−1 for (a) and (c) 

respectively.
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Figure 6. 
Comparison of cluster populations in 300 K ensembles for the AUA hairpin system. 

Comparisons are made between (a) 10 μs restrained REMD simulations, (b) R-REMD 

runs using different reservoirs, and (c) restrained REMD and R-REMD. Clustering was 

performed on all heavy atoms. Error bars in (b) and (c) represent the difference from the 

average for independent runs. Error bars for (b) are too small to be clearly seen. The 

diagonal for perfect match is shown in gray. The line of best fit is in red, with slope and R2 

in each subplot. The representative structure is shown for the top cluster.
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Figure 7. 
AUA hairpin system cluster populations vs. time at 300 K for the top 5 most populated 

clusters in two runs of (a) all 10 μs conventional restrained REMD, (b) first 1 μs restrained 

REMD and (c) 1 μs R-REMD. Clustering was performed on all heavy atoms on all residues. 

Solid and dashed lines represent independent simulations with extended and native initial 

conformations for restrained REMD, and independent runs using different reservoirs for 

R-REMD, respectively.
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Figure 8. 
CGUG hairpin representative structures for clusters with the (a) largest population and (b) 

lowest heavy atom RMSD to the native structure. The native structure is colored in gray, and 

the loop and stem for cluster representatives in red and blue, respectively. Hydrogen bonds 

between the G7 base and U6 phosphate, and the G3 base and G7 phosphate are indicated in 

dashed lines in (a). Select residues are labeled, and C4* and G7* in (b) indicate the native 

structure.

Lam et al. Page 38

J Chem Theory Comput. Author manuscript; available in PMC 2023 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
AUA hairpin representative structures for clusters with the (a) largest population and (b) 

lowest heavy atom RMSD to the native structure. The native structure is colored in gray, 

and the loop and stem for cluster representatives in red and blue, respectively. The distances 

between phosphate oxygens on A6 and U7 are indicated with dashed lines, and the native 

distance is marked with an asterisk. A6 is labeled, with A6* indicating the residue in the 

native structure.
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Table 1.

Heavy-atom RMSDs in Å for the top 5 clusters of the CGUG and AUA hairpins, relative to the corresponding 

experimental structure.

Cluster CGUG Hairpin AUA Hairpin

1 4.0 3.1

2 2.4 3.8

3 4.2 2.6

4 4.3 2.1

5 3.6 3.0
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