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ABSTRACT
Background. Currently, ferritin heavy chain (FTH1) has been increasingly found to
play a crucial role in cancer as a core regulator of ferroptosis, while its role of non-
ferroptosis in head and neck squamous cell carcinoma (HNSCC) is still unclear.
Methods. Herein, we analyzed the expression level of FTH1 in HNSCC using TCGA
database, and FTH1 protein in HNSCC tissues and cell lines was determined by
immunohistochemistry (IHC) and western blotting, respectively. Then, its prognostic
value and relationship with clinical parameters were investigated in HNSCC patients.
Additionally, the biological function of FTH1 in HNSCC was explored.
Results. The current study showed that FTH1 is significantly overexpressed in HNSCC
tissues and related to poor prognosis and lymph node metastasis of HNSCC. FTH1
knockdown could suppress the metastasis and epithelial-mesenchymal transition
(EMT) process of HNSCC.
Conclusion. Our findings indicate that FTH1 plays a critical role in the progression and
metastasis of HNSCC and can serve as a promising prognostic factor and therapeutic
target in HNSCC.

Subjects Bioinformatics, Cell Biology, Molecular Biology, Oncology, Otorhinolaryngology
Keywords HNSCC (head and neck squamous cell carcinoma), FTH1 (ferritin heavy chain),
Prognosis, Metastasis, Biomarker

INTRODUCTION
Head and neck cancers are the sixth most common tumor globally, arising in the upper
respiratory tract, of which squamous cell carcinoma accounts for about 90% (Bray et al.,
2018). The pathogenesis of the incidence of HNSCC between Occident and China is very
different. The leading causes of HNSCC in China are smoking and drinking, while the
incidence of HNSCC caused by HPV infection has increased, especially oropharyngeal
squamous cell carcinoma in the Occident (Chaturvedi et al., 2011). The incidence of
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HNSCC is increasing globally, but the continuous development of traditional surgery,
radiotherapy, chemotherapy, targeted therapy and even immunotherapy have failed to
improve the 5-year survival rate of patients significantly. Compared with HPV-positive
patients, the treatment prognosis of negative patients is relatively poor, which prompts
scientists to seek personalized treatment based on individual patients’ genomic information
(Johnson et al., 2020; The Cancer Genome Atlas Network, 2015). An in-depth understanding
of the molecular biological mechanisms of HNSCC will help discover new molecular
biomarkers and potential targets, also provide a basis for early diagnosis and precise
treatment.

In 1937, Laufberger isolated a new protein from horse spleen with iron content as high as
23% of dry weight, called ferritin (Laufberger, 1937). Although there were some reports of
ferritin found in human serum, it was not until 1972 that Addison used immunoradiometric
assay to confirm that ferritin does exist in human serum (Addison et al., 1972). Ferritin is
composed of 24 middle-hollow round subunits, including heavy chain (FTH1) and light
chain (FTL1) (Arenas-Salinas et al., 2014; Goralska et al., 2005). Ferritin plays essential
functions such as iron metabolism, signal transduction, immunity, angiogenesis and
inflammation, and plays a vital role in many diseases and even tumors (Hazard & Drysdale,
1977; Wang et al., 2010). Dysregulated iron metabolism is a tumor Hallmark (Torti &
Torti, 2013). In HNSCC, it was first reported by Maxim & Veltri (1986) that ferritin may
be a valuable tumor biomarker. In the serum of HNSCC patients, the ferritin content was
significantly higher than in the healthy group and the ferritin content in advanced patients
was also much higher than that in early-stage patients. There is evidence that the ferritin
content in HNSCC patients decreased significantly after receiving successful treatment for
five months and returned to normal after five years (Hu et al., 2019). Among the genes
encoding the light and heavy chain proteins in ferritin, only FTH1 has ferroxidase activity,
while FTL1 is mainly related to iron nucleation and the stability of assembled ferritin
(Arosio & Levi, 2002). Recent proteomics studies of some tumors have found that ferritin is
mainly present in the form of ferritin H in malignant tissues (Lukina et al., 1993). In recent
years, FTH1 as a master regulator of ferroptosis has been reported as a prognostic factor
in brain cancer, pancreatic cancer, kidney cancer and breast cancer (Chekhun et al., 2014;
Huang et al., 2019; Rosager et al., 2017; Su, Lei & Zhang, 2017). However, the prognostic
value and biological function of FTH1 in HNSCC is still worth further exploration.

Herein, we aimed to clarify the clinical significance and biological function of FTH1 in
HNSCC. The results reveal that the expression of FTH1 in cancer was elevated compared to
adjacent tissues and FTH1 overexpression indicated a higher risk of lymph node metastasis
and poor prognosis of patients with HNSCC. Furthermore, FTH1 deletion dramatically
inhibited the metastasis and EMT of HNSCC cancer cells. Collectively, the current study
suggests that FTH1 represented a novel prognostic andmetastatic biomarker and a potential
therapeutic target for HNSCC. A preprint has previously been published (Liu et al., 2022).
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Figure 1 The workflow framework of this study.
Full-size DOI: 10.7717/peerj.16493/fig-1

MATERIALS & METHODS
Data acquisition and tissue specimens
Aworkflow framework of this research is presented in Fig. 1. The RNA-Seq and clinical data
of HNSCC dataset (528 cases) were downloaded from The Cancer Genome Atlas (TCGA)
database. A total of 499 HNSCC samples, with 41 cases of matched adjacent normal tissues,
withoutmissing expression andmissing follow-upwere selected for the subsequent analysis.
Besides, 21 sets of HNSCC tissue sections including cancer and adjacent normal tissues
used for Immunohistochemistry (IHC) were collected from the First Affiliated Hospital of
the University of South China. None of the patients received any preoperative anticancer
treatment before surgical procedures. Their pathological diagnosis was confirmed by at
least two pathologists. This study was approved by the Medical Ethics Committee of The
First Affiliated Hospital of University of South China (Number: 2021ll0916001) and the
requirement of consent was waived for the retrospective analysis.

Immunohistochemistry (IHC)
IHC was performed as our previous studies (Deng et al., 2020; Gong et al., 2018), using
the PV-9000 IHC Reagent (ZSGB-BIO, Beijing, China). In brief, tissue sections were
dewaxed with turpentine and then hydrated with a gradient of decreasing concentration
of ethanol. The antigen retrieval was executed by boiling 10 mmol/l citric acid buffer (pH
6.0) for 15 min. After endogenous peroxidase was inactivated, the sections were blocked
with normal goat serum (ZSGB-BIO, Beijing, China) for 10 min. Then the sections were
incubated overnight with anti-FTH1 antibody (Affinity; 1:200) at 4 ◦C, followed by the
horseradish peroxidase labeled secondary antibody. For the negative control, the normal
rabbit IgG was applied. Finally, the positive signals were visualized by chromogenic agent
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DAB and nuclei were counter-stained with hematoxylin. Signal strength was scored as
follows: 0 (negative), 1 (weak), 2 (moderate) and 3 (strong). The staining distribution
score is based on the percentage of positive cells: 0 (0–5%), 1 (5–24%), 2 (25–49%), 3
(50–74%) and 4 (75–100%).

Cell culture and transfection
HNSCC cell lines (Fadu, SCC4, Cal27, HN8 and Cal33), 293T and immortalized non-
malignant cell line DOK were obtained from Shanghai Cell Bank (The Chinese Academy of
Science, Shanghai) or ATCC. DOK cells were cultured with RPMI 1640 (Gibco). HNSCC
cell lines and 293T cells were cultured in DMEM (Gibco, Waltham, MA, USA). The culture
mediums were supplemented with 10% FBS (Gibco) and all cells were cultured at 37 ◦C
with 5% CO2.

The shRNA-encoding lentiviral vectors for FTH1 knockdown were purchased from
GeneCopoeia (GeneCopoeia, Rockville, MD, USA). The shRNA target sequences for
human FTH1were as follows: shFTH1-1: 5′-CCATGTCTTACTACTTTGACC-3′; shFTH1-
2: 5′-CCATCAAAGAATTGGGTGACC-3′. The procedures of lentivirus packaging were
performed using Lenti-Pac™ HIV lentivirus packaging kit (GeneCopoeia, Rockville, MD,
USA). The negative control, nominated as Lv-control, was packaged with the empty vector.
After 48–72 h of transfection, lentiviral particles were harvested to infect cell lines. Stable
transfected cells were selected with puromycin (GeneCopoeia; 2 µg/ml) for 2 weeks and
the inhibitory efficiency of FTH1 was confirmed by Western blotting.

Cell migration and invasion
Cell migration and invasion assay was conducted using wound healing and Transwell
invasion assays as reported in our previous studies (Liu et al., 2020; Yang et al., 2020). For
wound healing assay, stable transfected cells were seeded in a 6-well plate and scratched
using a 10 µl tip when cells reached 90% confluency and then cells were cultured using
serum-free medium for 48 h. Transwell invasion assays were performed using Transwell
chambers (Corning, NY, USA) pre-coated with 15% Matrigel (Corning, USA). Cells were
seeded into the upper chamber (2 × 104 cells/well), while the lower chamber was placed
with the medium containing 10% FBS. After 48 h, the cells on the lower surface were fixed
utilizing paraformaldehyde and stained using crystal violet. After removing the cells on the
upper surfaces, the stained cells were counted under a microscope.

Gene set enrichment analysis (GSEA)
Gene set enrichment analysis (GSEA) was performed using GSEA 4.0.1 software to explore
the potential functions enriched in subgroups of high or low expression of FTH1. The
gene set ‘c2.cp.kegg.v7.4. symbols.gmt [curated]’ from the MSigDB database was used as
reference for GSEA. The enriched sets with P-value < 0.05 and FDR (false discovery rate)
< 0.25 were considered statistically significant.

Western blotting
Whole-cell proteins were extracted using RIPA lysis buffer (NCM Biotech, China) with the
proteasome inhibitor (BeyotimeBiotechnology, Jiangsu, China) and centrifugated to collect
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the supernatant. After determination of the protein concentration, the collected supernatant
was added with SDS buffer, incubated for 10 min at 100 ◦C, separated by SDS-PAGE and
then transferred to the PVDF membrane (Millipore, Bedford, MA, USA). The membranes
blocked with 5% skimmed milk was incubated overnight with primary antibody against
FTH1 (1:1000 dilution; Affinity), E-cadherin (1:2000 dilution; Proteintech), N-cadherin
(1:1000 dilution; CST), Vimentin (1:1000 dilution; CST) at 4 ◦C. Finally, the antigen-
antibody complexes were visualized using enhanced chemiluminescence reagents (Thermo
Fisher Scientific).

Statistical analysis
All statistical analyses were performed using R software (version 4.1.0; R Core Team,
2021). Student’s t test and Wilcox test were used to evaluate differences between two
groups. Kruskal Wallis test and one-way analysis were used to analyze differences among
multiple groups. Overall survival (OS) and disease-free survival (DFS) analysis were
conducted using the Kaplan–Meier method with the log-rank test. The chi-square test
and Fisher’s exact test were utilized to analyze the correlation between FTH1 expression
and the clinicopathologic parameters. Univariate and multivariate Cox regression analyses
were performed to identify independent prognostic factors. A value of P < 0.05 indicates
statistical significance. Asterisks (*, **, ***) represented P < 0.05, P < 0.01 and P < 0.001,
respectively.

RESULTS
Differentially expression and prognostic value of FTH1 and FTL1 in
HNSCC
The differential analysis of TCGA-HNSC transcriptome data showed that the expression
levels of FTH1 and FTL1 in HNSCC samples were significantly higher than those in
adjacent normal samples (Figs. 2A, S1A), which were also confirmed using paired sample
analysis (Figs. 2B, S1B). FTH1 in HNSCC cells was overexpressed compared with DOK, an
immortalized non-malignant cell (Fig. 2C). The IHC staining showed that FTH1 protein
was highly expressed in HNSCC tissues compared with matched adjacent epithelial tissues
(Figs. 2D–2F). Based on FTH1 and FTL1, the coding genes for the heavy chain and light
chain of ferritin significantly highly expressed in tumor samples fromHNSCC patients, and
we further analyzed their clinical prognostic value. In the Kaplan–Meier survival estimate,
we found that only high expression of FTH1 in tumors indicates worse OS probability
(P = 1.39e−03) and DFS probability (P = 4.054e−05), while FTL1 has no prognostic
value (Figs. 3A and 3B, Figs. S1C and S1D). From the above results, it can be indicated that
the expression of FTH1 has the prognostic value of OS and DFS simultaneously and the
clinical outcomes of patients with high FTH1 expression are worse.

Correlation between FTH1 and clinical parameters
We generalized these patients’ baseline parameters with age, gender, smoking, drinking
history, pathological grade, clinical stage, T/N/M stage, OS and DFS according to the high
and low expression levels of FTH1 (Table 1). The preliminary correlation between FTH1
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Figure 2 Elevated expression of FTH1 in HNSCC tissues. (A) Differential expression of FTH1 in HN-
SCC and adjacent normal tissues in TCGA dataset. (B) Paired difference analysis of FTH1 mRNA expres-
sion in TCGA-HNSCC dataset. (C) The protein level of FTH1 in HNSCC cell lines and immortalized non-
malignant cell line DOK was tested by western blot. Representative IHC staining demonstrates the expres-
sion of the FTH1 protein in adjacent normal (D) and HNSCC (E) tissues (100 µm: 200×, 50 µm: 400×).
(F) The IHC score was significantly higher in HNSCC tissues than in adjacent tissues. *** P < 0.001.

Full-size DOI: 10.7717/peerj.16493/fig-2

Figure 3 High levels of FTH1 predicts a worse prognosis of HNSCC patients. Kaplan–Meier curves
showed OS (A) and FDS (B) in HNSCC patients in terms of FTH1 expression.

Full-size DOI: 10.7717/peerj.16493/fig-3
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expression and clinicopathological features was obtained by logical regression analysis,
as shown in Table 2. It shows that FTH1 expression is associated with smoking (no vs.
yes, P = 0.008), pathological grade (G3 & $ vs. G1 & @, P < 0.01), N stage (N+ vs. N0, P
< 0.01) and clinical stage (Stage III & IV vs. Stage I & II, P < 0.05). After that, we further
performed a Wilcoxon signed-rank test on clinicopathological features that distribute in
high and low FTH1 expression groups. In addition to the differences in FTH1 expression
among patients with a history of drinking (P < 0.001), the results of smoking (no vs. yes,
P < 0.05), pathological grading (G3 & $ vs. G1 & 2, P < 0.01), N staging (N+ vs. N0, P
< 0.01) and clinical stage (Stage III & IV vs. Stage I & II, P < 0.05) conform to logistic
regression (Figs. 4A–4I).

We further performed a stratified Kaplan–Meier analysis for OS and DFS in TCGA-
HNSC patients with the differential clinical features related to FTH1 expression. The related
results showed that FTH1 expression had the prognostic value of OS (P = 0.004) and DFS
(P < 0.001) in the G1 & 2 stage, but not in the G3 & 4 group (Figs. 5A and 5B, Figs. 6A and
6B). FTH1 expression has prognostic value of OS (both P < 0.05) and DFS (both P < 0.05)
whether lymphatic metastasis or not (Figs. 5C and 5D, Figs. 6C and 6D); FTH1 expression
has a predictive value of DFS (P = 0.002) but no predictive value of OS (P = 0.072) in the
early stage (Stage I & II) population, while in advanced patients, have prognostic value
regardless of OS (P = 0.013) or DFS (P = 0.004) (Figs. 5E and 5F, Figs. 6E and 6F). Finally,
we were pleasantly surprised to find that FTH1 expression has a good prognostic value for
both OS and DFS in smokers (P < 0.001), while not in non-smokers (Figs. 5G and 5H,
Figs. 6G and 6H). From the results of the stratified analysis, we guess that FTH1 expression
has better prognostic value for smokers, advanced and pathologically well-differentiated
patients, and its prognostic value is not affected by the status of lymph node metastasis.

Independent predictive power of FTH1
The Cox regression analysis results of FTH1 expression level and clinicopathological
features for OS prognosis have been shown in Table 3. Univariate cox analysis showed
that metastasis (P = 0.026, HR: 3.721, 95% CI [1.177–11.764]) and FTH1 expression
(P < 0.001, HR: 1.646, 95% CI [1.254–2.161]) were statistically significant. Moreover,
multivariate cox analysis showed that both of them still had good statistical significance
(metastasis, P = 0.031, HR: 3.547, 95% CI [1.122–11.214]) and (FTH1 expression level,
P < 0.001, HR: 1.658, 95% CI [1.252–2.194]). The above analysis results indicate that in
addition to the independent prognostic value of metastasis, FTH1 expression level can also
be used as an excellent independent prognostic factor.

GSEA reveal FTH1-related pathways and molecular functions
ThroughGSEA,we explored the differences in the downstream activated signaling pathways
between the low and high FTH1 expression groups to search for its potential carcinogenic
mechanism. After screening of high expression in the group in MSigDB gene set (c2.
Cp. Kegg. V7.1. Symbols. gmt), we found that 24 significant enrichment pathways (FDR
< 0.25, NOM p-value < 0.05) are mainly concentrated in six aspects between the degree
of enrichment of pathways: energy metabolism, glycometabolism, protein and amino
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Table 1 Clinicopathologic parameters of TCGAHNSCC patients.

Clinicopathologic parameters FTH1 expression P-value

Low (n= 250) High (n= 249)

Age 0.177
<60 118 23.65% 102 20.44%
≥60 132 26.45% 147 29.46%
Gender 0.418
Female 71 14.23% 62 12.42%
Male 179 35.87% 187 37.47%
Smoker 0.009
No 68 13.63% 43 8.62%
Yes 177 35.47% 201 40.28%
Alcohol history 0.059
No 34 6.81% 21 4.21%
Yes 69 13.83% 80 16.03%
Histologic grade 0.001
G1 + G2 196 39.28% 163 32.67%
G3 + G4 45 9.02% 76 15.23%
T stage 0.186
T1 + T2 94 18.84% 81 16.23%
T3 + T4 146 29.26% 163 32.67%
N stage 0.001
N0 99 19.84% 140 28.06%
N1-N3 134 26.85% 104 20.84%
M stage 0.372
M0 234 46.89% 235 47.09%
M1 1 0.20% 4 0.80%
Clinical stage 0.018
Stage I + Stage II 67 13.43% 46 9.22%
Stage III + Stage IV 173 34.67% 199 39.88%
OS event <0.001
Alive 186 37.27% 147 29.46%
Dead 64 12.83% 102 20.44%
DFS event <0.001
Free 184 36.87% 132 26.45%
No 52 10.42% 86 17.23%

metabolism, other metabolisms, cell adhesion and motility and tumor-associated signal
pathways (Figs. 7A–7D).

FTH1 knockdown suppresses HNSCC metastasis by attenuating EMT
As previously mentioned, FTH1 was associated with lymph node metastasis. Hence,
wound-healing and Transwell assays were performed to identify FTH1 affecting migration
and invasion capabilities of HNSCC cells. Attractively, FTH1 knockdown suppressed
wound healing rates in Fadu and HN8 cells (Figs. 8A–8D). Similar results were obtained in
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Table 2 Correlation between the clinicopathologic parameters and FTH1 expression (logistic regres-
sion).

Parameters Total (n) Odds ratio (OR) P-value

Age (>60 vs. ≤60) 499 1.288 (0.904–1.838) 0.161
Gender (Male vs. Female) 499 1.196 (0.804–1.783) 0.377
Smoker (Yes vs. No) 489 1.796 (1.17–2.781) 0.008
Alcohol history (Yes vs. No) 489 1.877 (1.004–3.573) 0.051
Histologic grade (G3+4 vs. G1+2) 480 2.031 (1.335–3.117) 0.001
T stage (T3+4 vs. T1+2) 484 1.296 (0.894–1.881) 0.172
N stage (N+ vs. N0) 477 1.822 (1.269–2.625) 0.001
M stage (M1 vs.M0) 474 3.983 (0.584–78.228) 0.218
Clinical stage (Stage III + IV vs. Stage I + II) 485 1.675 (1.096–2.579) 0.018

Table 3 Univariate andmultivariate cox regression of OS and clinicopathologic parameters in HNSCC
patients.

Parameters Univariate analysis Multivariate analysis

HR (95% CI) P-value HR (95% CI) P-value

Age (>60 vs. ≤60) 1.252 (0.956–1.639) 0.102
Gender (Male vs. Female) 0.764 (0.574–1.018) 0.066
Smoker (Yes vs. No) 1.089 (0.778–1.525) 0.618
Alcohol history (Yes vs. No) 0.952 (0.716–1.265) 0.733
Grade (G3+4 vs. G1+2) 0.939 (0.688–1.282) 0.692
T stage (T3+4 vs. T1+2) 1.245 (0.932–1.661) 0.137
N stage (N+ vs. N0) 1.263 (0.964–1.653) 0.090
M stage (M1 vs.M0) 3.721 (1.177–11.764) 0.026 3.547 (1.122–11.214) 0.031
Clinical stage (III+IV vs. I+II) 1.217 (0.878–1.688) 0.238
FTH1 (High vs. Low) 1.646 (1.254–2.161) <0.001 1.658 (1.252–2.194) <0.001

the Transwell invasion assays (Figs. 8E and 8F). Furthermore, we investigated molecular
markers of EMT by Western blotting. After FTH1 depletion, mesenchymal markers
(N-cadherin and vimentin) are suppressed, while the epithelial marker E-cadherin was
upregulated (Figs. 9A and 9B).

DISCUSSION
Currently, FTH1 has attracted much attention as a core regulator of ferroptosis (Tang et
al., 2021), but its role of non-ferroptosis in HNSCC is still ambiguous. The current study
suggests that the role of FTH1 in tumors depends on the context in which it is present.
FTH1 can be used as a tumor promoter in metastatic melanoma cells (Di Sanzo et al.,
2011a), brain cancer (Rosager et al., 2017), pancreatic cancer (Su, Lei & Zhang, 2017) and a
tumor suppressor in non-small cell lung cancer (Biamonte et al., 2018a) and ovarian cancer
(Lobello et al., 2016), while the role of FTH1 in breast cancer is still controversial (Aversa
et al., 2017b; Chekhun et al., 2014). In this study, we discovered that FTH1 is significantly
overexpressed in HNSCC tissues in the TCGA-HNSC database, and further, IHC was used
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Figure 4 Correlation between FTH1 expression and clinicopathologic parameters.Distribution of the
FTH1 expression stratified by clinicopathologic parameters: (A) pathological grade (G1 & 2 and G3 & 4),
(B) T stage (T1 & 2 and T3 & 4), (C) N stage (N0 and N+), (D) M stage (M0 and M1), (E) clinical stage
(Stage I & II and Stage III & IV), (F) Age (≤60 and >60), (G) Gender (Female and Male), (H) smoking
(No and Yes), (I) Alcohohistory (No and Yes). ns P > 0.05; * P < 0.05; ** P < 0.01; *** P < 0.001.

Full-size DOI: 10.7717/peerj.16493/fig-4

to verify the above results. Simultaneously, we found that the high expression of FTH1
correlated with lymph node metastasis and higher pathological grade and clinical stage
can act as an independent predictor of the poor prognosis of HNSCC. The results are
consistent with previous studies of FTH1 in multiple solid tumors, except for clinical stage
(Ali et al., 2021; Hu et al., 2021a; Hu et al., 2021b; Huang et al., 2019). Hence, we aimed to
the biological function of FTH1 in HNSCC, and the results demonstrated that endorsed
the metastasis of HNSCC cells. Briefly, the current study indicates that FTH1 plays a vital
role in the pro-oncogenic functions and is a potential biomarker and therapeutic target in
HNSCC.
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Figure 5 Stratified Kaplan–Meier analysis for OS in HNSCC patients. Stratified Kaplan–Meier analy-
sis for OS with the differential clinical features, (A) Grade 1+2, (B) Grade 3+4, (C) N0, (D) N+, (E) Stage
I+II, (F) Stage III+IV, (G) smoking, (H) no smoking, related to FTH1 expression in HNSCC patients.

Full-size DOI: 10.7717/peerj.16493/fig-5

Iron metabolism plays a crucial role in cancer metastasis by affecting some enzymes
activities. Iron overload increases the activity of metalloprotease-2/9 (MMP-2/9) activating
AP-1 via the ERK/Akt pathway (Kaomongkolgit et al., 2008). Increased iron concentration
caused by FPNoverexpression attenuates the ROS generation and impedes EMT (Shan, Wei
& Shaikh, 2018). The role of ferritin as an important iron metabolism regulator has been
extensively studied in tumors. However, there are few studies focusing on ferritin subunits
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Figure 6 Stratified Kaplan–Meier analysis for DFS in HNSCC patients. Stratified Kaplan–Meier analy-
sis for DFS with the differential clinical features, (A) Grade 1+2, (B) Grade 3+4, (C) N0, (D) N+, (E) Stage
I+II, (F) Stage III+IV, (G) smoking, (H) no smoking, related to FTH1 expression in HNSCC patients.

Full-size DOI: 10.7717/peerj.16493/fig-6

FTH1 and FTL1. Among them, only FTH1 has the enzyme activity to oxidize divalent
iron to trivalent iron (Timoshnikov et al., 2015). FTH1 helps the synthesis of ferritin by
enhancing the storage of iron in cells andmainly affects tumors’ progress by regulating iron
metabolism. The ratio of FTH1 and FTL1 in ferritin is specific, and ratio H/L and ferritin
are essential for cell survival. These two subunits are not interchangeable, and FTL1 cannot
compensate for the function of FTH1 (Ferreira et al., 2001). FTH1 plays an essential role
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Figure 7 Enrichment results frommultiple GSEA. (A) Energy metabolism, (B) glycometabolism, (C)
protein and amino metabolism, (D) other metabolisms, (E) cell adhesion and (F) motility and tumor-
associated signal pathways.

Full-size DOI: 10.7717/peerj.16493/fig-7

in the regulation of proliferation, angiogenesis, migration, EMT, stemness, inflammation
and immunoregulation. At present, the research of FTH1 in tumor pathogenesis mainly
exerts its functions by affecting iron metabolism. In the study of the proteomics in human
metastatic melanoma cells knocking down FTH1, 200 differential proteins were found,
mainly distributed in metabolic pathways related to tumor progression and metastasis (Di
Sanzo et al., 2011b). Knockdown FTH1 can inhibit the growth and invasion of melanoma.
The regulation of iron depletion by FTH1 can slow down the self-renewal of breast cancer
stem cells (Kanojia et al., 2012), while silencing FTH1 in SKOV3 cells can promote the
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Figure 8 FTH1 inhibition suppressed HNSCC cell migration.Migration ability of HNSCC cells (A–D)
were tested and quantified by wound healing assay. Invasive ability was examined and quantified by Tran-
swell invasion assay (E and F).

Full-size DOI: 10.7717/peerj.16493/fig-8

stemness of cervical cancer cells and the up-regulation of NANOG, SOX2, OCT4 (Lobello
et al., 2016). After down-regulating FTH1 in breast cancer, cervical cancer and non-small
cell lung cancer, cancer cells tend to be in amesenchyme state, which helps tumormetastasis
(Aversa et al., 2017a; Lobello et al., 2016). Here, we found that FTH1 silencing hampers the
EMT process in HNSCC cells. Our results illuminate that FTH1 functions as a crucial
regulator of EMT to enhance the metastasis of HNSCC.

In addition to regulating iron metabolism, FTH1 also directly acts on oncogenes,
oncomiRs and the chemokine pathway.Dongiovanni et al. (2010) found that iron depletion
can up-regulate p53 and induce apoptosis. Further studies in NSCLC found that FTH1
regulates miR-125b/p53 axis up-regulates the pro-apoptotic protein BAX down-regulates
anti-apoptotic protein Bcl2 by destroying the mitochondrial membrane potential (MMP)
and mediating a cascade of enzymatic apoptosis (Biamonte et al., 2018b). Silenced-FTH1
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Figure 9 FTH1 knockdown suppresses HNSCC EMT. (A and B) Western blotting was performed to ex-
amine the expression of E-cadherin, N-cadherin and vimentin proteins after FTH1 depletion.

Full-size DOI: 10.7717/peerj.16493/fig-9

MCF-7 and H460 cells produced a large amount of ROS and activated the CXCR4/CXCL12
signaling pathway, thereby promoting cancer high migration (Aversa et al., 2017a). Our
GSEA analysis results suggest that FTH1 may plays an important role in multiple cell
adhesion signal pathways, such us ECM receptor interaction, focal adhesion, gap junction
and regulation of actin cytoskeleton.

FTH1 is present not only as a biological marker but can also be used in magnetic
resonance imaging (MRI) and nanomaterials. In breast cancer, serum biomarkers (CA 15-
3) combined with tumor-associated antigens and autoantibodies (heterogeneous nuclear
ribonucleoproteins F and FTH1) can improve the accuracy of breast cancer diagnosis
(Dong et al., 2013). FTH1 was used as an MRI reporter gene in liver cancer, which can be
used for the diagnosis and treatment of early liver cancer; also, with additional iron added,
it was more efficient and safer in nasopharyngeal carcinoma (Feng et al., 2012; Genove et
al., 2005; Zhou et al., 2020). FTH1 nanoparticles coated with EGF have been successfully
applied to breast cancer in vitro and in vivo (Li et al., 2012). The nano-ferritin-HFt-MP-
PAS40-Dox packaged with doxorubicin was safely applied to HNSCC, which had a higher
maximum tolerated dose (MTD) and better efficiency (Damiani et al., 2017). Currently,
siRNA, miRNA, piRNAs and other carriers can be effective tools for targeted FTH1 in the
tumor (Balaratnam, West & Basu, 2018), of which H-ferritin siRNA has achieved initial
success in improving the curative effect of gliomas in patients receiving chemotherapy (Liu
et al., 2011). Although ferritin is present in serum but not synthesized in serum, it is mainly
leaked by damaged tumor cells, and tumor cell damage mainly occurs in the advanced stage
(Kell & Pretorius, 2014), so this may cause the ferritin in serum to be unable to predict
early HNSCC. The overexpression of FTH1 in tumor tissues may be a good indicator
of its cancer-promoting function. In addition to ferroptosis, upregulation of FTH1 may
promote the invasion and metastasis of HNSCC. Therefore, the prognostic value of FTH1
for patients in the advanced stages and even posttreatment is worthy of further attention.

However, some limitations of our research should be acknowledged. Firstly, a larger
cohort of patients are required for exploring clinical significance. Additionally, the
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heterogeneity and subsites of HNSCC deserves further exploration. Furthermore, in
vivo experiments and validation of intermolecular regulation need to be further completed.
Thus, future studies with a larger cohort, in vivo experiments in mice and molecular
mechanism are warranted to further validate the current results.

CONCLUSIONS
This study found that the high expression of FTH1, not FTL1, could be an independent
predictor of the prognosis of HNSCC. In addition, FTH1 downregulation could weaken the
metastasis and EMT process of HNSCC. Henceforth, FTH1 could represent a promising
biomarker and have value as a therapeutic target for the inhibition of metastasis in
HNSCC.
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