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ABSTRACT

Drug-metabolizing enzymes and transporters (DMETs) are key reg-
ulators of the pharmacokinetics, efficacy, and toxicity of therapeu-
tics. Over the past two decades, significant advancements in
in vitro methodologies, targeted proteomics, in vitro to in vivo ex-
trapolation methods, and integrated computational approaches
such as physiologically based pharmacokinetic modeling have un-
equivocally contributed to improving our ability to quantitatively
predict the role of DMETs in absorption, distribution, metabolism,
and excretion and drug-drug interactions. However, the paucity of
data regarding alterations in DMET activity in specific populations
such as pregnant individuals, lactation, pediatrics, geriatrics, or-
gan impairment, and disease states such as, cancer, kidney, and
liver diseases and inflammation has restricted our ability to realize
the full potential of these recent advancements. We envision that a
series of carefully curated articles in a special supplementary issue
of Drug Metabolism and Disposition will summarize the latest pro-
gress in in silico, in vitro, and in vivo approaches to characterize

alteration in DMET activity and quantitatively predict drug disposi-
tion in specific populations. In addition, the supplementary issue
will underscore the current scientific knowledge gaps that present
formidable barriers to fully understand the clinical implications of
altered DMET activity in specific populations and highlight oppor-
tunities for multistakeholder collaboration to advance our collec-
tive understanding of this rapidly emerging area.

SIGNIFICANCE STATEMENT

This commentary highlights current knowledge and identifies gaps
and key challenges in understanding the role of drug-metabolizing
enzymes and transporters (DMETs) in drug disposition in specific
populations. With this commentary for the special issue in Drug
Metabolism and Disposition, the authors intend to increase interest
and invite potential contributors whose research is focused or has
aided in expanding the understanding around the role and impact
of DMETs in drug disposition in specific populations.

Commentary

Early clinical drug development generally involves evaluation of a
new drug in healthy individuals (Karakunnel et al., 2018). In the major-
ity of the cases, other critically important specific populations such as
pregnant individuals, pediatrics, and patients with the underlying disease
condition are excluded. Although in some instances late-stage clinical
trials enroll a diverse patient population with respect to age, ethnicity,

hepatic and kidney dysfunction, pediatrics (primarily adolescents), and
varying body mass index, information related to determining a safe and
effective dosing regimen in specific populations is mostly derived from
data collected in otherwise healthy individuals. Below are a few se-
lected examples to illustrate how altered expression and/or activities of
drug-metabolizing enzymes and transporters (DMETs), along with on-
togeny related changes, can alter the pharmacokinetics (PK) and/or
pharmacodynamics profile of drugs in various specific populations and
may potentially result in suboptimal efficacy and/or unknown risk of ad-
verse effects.
Sex. In recent years, sex-related differences in the PK of drugs have

been widely attributed to differences in body weight, plasma volume,
gastric emptying time, plasma protein levels, and the activities of key
DMETs. Available data suggests that men appear to have higher activi-
ties of some phase I and phase II enzymes and efflux drug transporters
such as P-glycoprotein compared with women (Schwartz, 2003; Gandhi
et al., 2004; Soldin and Mattison, 2009; Yang et al., 2012). Furthermore,
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sex differences in the PK of drugs have been shown to correlate with
sex-dependent adverse drug reactions in women (Zucker and Prendergast,
2020). A well known example is the sedative-hypnotic drug zolpidem, in-
dicated for the treatment of insomnia. A decade after its approval, post-
marketing reports highlighted cognitive deficits in women, with this
adverse event directly associated with higher systemic exposure of zolpi-
dem in women compared with men (Zucker and Prendergast, 2020).
Subsequently, a drug safety communication issued by the US Food and
Drug Administration recommended that the initial dose of zolpidem be
reduced in women because of slower elimination relative to men (https://
wayback.archive-it.org/7993/20170111080036/http://www.fda.gov/
Drugs/DrugSafety/ucm334033.htm).
Pregnancy. Several studies have reported significant changes in the

PK of drugs during pregnancy due to physiologic changes that lead to al-
tered activities of DMETs (Hebert et al., 2008; Zhang et al., 2020). For ex-
ample, the systemic exposure of metoprolol and lamotrigine is decreased
by up to fivefold due to increased metabolic clearance during pregnancy
(Hogstedt et al., 1985; Pennell et al., 2004). Another study by Mlugu et al.
(2022) demonstrated that the 4b-hydroxycholesterol/cholesterol ratio was
significantly higher in pregnant women compared with nonpregnant
women. Further, in pregnant women, the authors reported a significant in-
crease in 4b-hydroxycholesterol/cholesterol ratio from the second trimester
to the third trimester of pregnancy. The increased cytochrome P450 3A4
(CYP3A4) activity is also evident in the study by Mlugu et al. (2022). In
this study, systemic exposure of midazolam (CYP3A4 substrate) was sig-
nificantly decreased (1.9-fold) during pregnancy (28–32 weeks gestation)
compared with that during postpartum (6–10 weeks). In the same study,
increased renal P-glycoprotein activity was also evident as digoxin (P-gp
substrate) renal secretion was twofold higher during pregnancy compared
with that during postpartum (Hebert et al., 2008).
Age. Most clinically relevant DMETs show unique developmental

patterns (Shi and Klotz, 2011; Brouwer et al., 2015; Elmorsi et al.,
2016; Chapron et al., 2022), thus presenting uncertainties in quantitative
PK predictions, especially in the pediatric population for whom under-
standing of DMET abundance across the age continuum is inadequate.
For example, Liu et al. (2021) proposed a physiologically based phar-
macokinetic modeling framework to predict neonatal PK. The sensitiv-
ity analysis conducted by the authors showed that the OCT2 activity in
term newborns is 25%–50% of the value implemented in the model and
highlighted the need for additional evaluation to investigate OCT2

ontogeny in the newborns. Further, changes in key physiologic pro-
cesses in the elderly population can also significantly alter drug disposi-
tion (McLachlan and Pont, 2012). For example, reduced phase I and II
metabolism and reduced renal clearance is reported in elderly popula-
tion, which may have a substantial effect on drug disposition. Recently
published data have indicated a 2.3-fold increase in the systemic expo-
sure of midazolam in healthy elderly population compared with healthy
adults, and this was attributed to reduced activity of CYP3A4 (Rattana-
cheeworn et al., 2021).
Disease State. Disease-associated changes in the activity of DMETs

can have a significant impact on the PK and/or toxicity of drugs (Stau-
dinger, 2013; Cheng et al., 2016; Evers et al., 2018). The effect of liver
diseases such as alcoholic liver disease (ALD) and nonalcoholic fatty
liver disease such as nonalcoholic steatohepatitis (NASH) on DMET ac-
tivity has been widely evaluated, and it has been demonstrated that the
severity of the disease state is directly linked to its impact on the activi-
ties of various DMETs that are implicated in the ADME of drugs (Vild-
hede et al., 2020; Ladumor et al., 2023; Lin et al., 2023). In chronic
liver diseases, the abundance of hepatic CYP3A4 and organic anion
transporting polypeptide (OATP) transporters is substantially reduced,
which can lead to drug accumulation, thus requiring dose adjustment
(Verbeeck, 2008; Lin et al., 2023). To this end, a study by Weersink
et al. (2018) systematically evaluated the safety of 209 drugs in liver cir-
rhosis patients. Based on their analysis, the authors recommended avoid-
ing all nonsteroidal anti-inflammatory drugs in the setting of liver cirrhosis
(due to altered pharmacodynamics) as these patients are at higher risk of
renal insufficiency with nonsteroidal anti-inflammatory drug use com-
pared with the healthy population. Further, the authors also indicated that
several calcium channel blockers are also deemed either unsafe or require
dose adjustment in liver cirrhosis patients due to altered pharmacokinetics
as most calcium channel blockers are primarily cleared by the liver.
Severe liver diseases may also alter kidney function and renal trans-

porter activity. A recent study by Frost et al. (2023) indicated a signifi-
cant decrease in the abundance of organic anion transporter (OAT)-3 in
NASH, ALD, and viral hepatitis C, decrease in the abundance of
OAT4 in NASH and that of urate transporter 1 (URAT1) in ALD and
viral hepatitis C. Therefore, it is important to consider renal transporter
changes in addition to hepatic DMETs for potential dose adjustment in
the chronic liver disease patient population. Like liver diseases, chronic
kidney diseases have also been shown to significantly alter the PK of a

Fig. 1. Illustration of challenges (top part of the fig-
ure) in predicting PK, pharmacodynamics, and drug-
drug interactions due to alteration in DMETs in
various specific populations. Newer approaches and ad-
vanced methodologies including in vitro tools, in vitro
to in vivo extrapolation (IVIVE) methods, and physio-
logically based pharmacokinetic (PBPK) modeling will
enable us to improve the understanding of DMETs in
specific populations to achieve clinical success of thera-
peutic drugs (bottom part of the figure). *External fac-
tors, including diet, concomitant medication use, and
smoking.
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drug or its metabolites due to decreased renal excretion. Changes in the
expression/activity of DMETs in the liver and gut of patients with
chronic kidney disease can further impact the disposition of drugs (Sun
et al., 2006; Nolin et al., 2008; Yeung et al., 2014).
Altered expression and/or activities of clinically relevant DMETs have

also been identified as key drivers in PK variability across diverse popula-

tions (Yang et al., 2013) (Fig. 1). Over the last few years, biomarkers,

exosome analysis, and targeted proteomics have emerged as powerful

tools to quantitatively evaluate or measure the protein levels or activity of

DMETs in key organs involved in drug disposition (liver, intestine, kid-

ney, and brain) and have led to improvements in in vitro to in vivo ex-

trapolation and the prediction of interindividual variability in the PK of

drugs through coupling with physiologically based pharmacokinetic

modeling (Prasad et al., 2019; Ahire et al., 2023). However, there are still

considerable knowledge gaps in our understanding of the modulation of

the abundance and activity of DMETs in specific populations and the

subsequent impact on drug disposition (Table 1).
To shine light on the recent advancements in our understanding of the

changes in DMET expression and/or activity in various specific popula-

tions and stimulate discussions for future research to address the current

knowledge gaps, the overarching goals of this special supplementary is-

sue in Drug Metabolism and Disposition are to 1) summarize the latest

advancements in in silico, in vitro, and in vivo approaches to characterize

alteration in DMET activity and quantitatively predict drug disposition in

specific populations; 2) underscore the current scientific knowledge gaps

that present formidable barriers to fully understanding the clinical impli-

cations of altered DMET activity in specific populations; and 3) highlight

opportunities for multistakeholder collaboration to advance our collective

understanding of this rapidly emerging area.
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