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Abstract

Ambient air pollutants, including PM2.5 (aerodynamic diameter d ~2.5 μm), PM10 (d ~10 μm), and 

ultrafine particles (UFP: d < 0.1 μm) impart both short- and long-term toxicity to various organs, 

including cardiopulmonary, central nervous, and gastrointestinal systems. While rodents have been 

the principal animal model to elucidate air pollution-mediated organ dysfunction, zebrafish (Danio 
rerio) is genetically tractable for its short husbandry and life cycle to study ambient pollutants. Its 

electrocardiogram (ECG) resembles that of humans, and the fluorescent reporter-labeled tissues in 
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the zebrafish system allow for screening a host of ambient pollutants that impair cardiovascular 

development, organ regeneration, and gut-vascular barriers. In parallel, the high spatiotemporal 

resolution of light-sheet fluorescence microscopy (LSFM) enables investigators to take advantage 

of the transparent zebrafish embryos and genetically labeled fluorescent reporters for imaging 

the dynamic cardiac structure and function at a single-cell resolution. In this context, our review 

highlights the integrated strengths of the genetic zebrafish system and LSFM for high-resolution 

and high-throughput investigation of ambient pollutants-mediated cardiac and intestinal toxicity.
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1. Introduction

Pollution is a leading risk factor for death globally, responsible for around one in six 

premature deaths (Chen and Hoek, 2020; Committee on Assessing Causality from a 

Multidisciplinary Evidence Base for National Ambient Air Quality Standards et al., 2022; 

Fuller et al., 2022). Air quality standards established by the World Health Organization 

(WHO) were not met by 99 % of the world’s population in 2019, leading to an estimated 4.2 

million premature deaths worldwide (Vohra et al., 2021; Josey et al., 2023). Environmental 

pollutants have been identified as a major risk factor for multiple health conditions, 

including allergies, autism, colorectal adenomas, diabetes, inflammatory bowel disease, and 

obesity (Zanobetti and Schwartz, 2002; Wu et al., 2013; Guo et al., 2020; Celebi Sozener 

et al., 2022). Acute or chronic exposure to air pollutants further impairs the cardiovascular, 

gastrointestinal, and respiratory systems, increasing morbidities and mortalities (Vignal et 

al., 2021).
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Particulate matter (PM) with a diameter of less than or equal to 0.1 μm, known as ultrafine 

particles (UFP), is an important health risk due to its high concentration, surface-volume 

ratio, and potential to translocate across the bronchial epithelium into the circulatory system 

(Nordenhäll et al., 2000; Donaldson et al., 2002). UFPs are predominantly composed of 

organic carbon that is redox active as they undergo photochemical reactions, particularly 

in the summer, leading to the formation of secondary organic aerosols to increase their 

biotoxicity (Sardar et al., 2005; Daher et al., 2013; Yang et al., 2020). Exposure to UFP 

increases plasma sCD40L levels, a soluble 18-kDa trimer released by the activated immune 

cells (T-lymphocytes) and blood coagulation components (platelets), promoting thrombus 

formation (Ruckerl et al., 2007). UFP has also been shown to reduce the production of 

endothelial nitric oxide (NO) via endothelial NO synthase (eNOS)-glutathionylation (Du et 

al., 2013). However, investigating the mechanism whereby PM2.5 and UFP impair organ 

systems remains experimentally challenging in vivo.

To this end, light-sheet fluorescence microscopy (LSFM) enables to image the 3-D 

developing hearts, vascular network, and blood cells in vivo (Ding et al., 2018a, 2018b). 

LSFM illuminates the focal plane with a thin sheet of light, minimizing exposure time 

and photo-toxicity to the samples, thereby allowing for rapid imaging acquisition and 

time-lapse observation of the live zebrafish in response to ambient pollutant exposure. 

LSFM was demonstrated to quantify 2,4,6-Trinitrotoluene (TNT)-mediated developmental 

toxicity, revealing impaired heart tube looping and cardiovascular hypoplasia, which 

resulted in reduced cardiac contractility and vascular circulation (Eum et al., 2016). By 

virtue of its high spatial and temporal resolution, LSFM was also utilized to elucidate 

microvascular injury and regeneration after tail amputation using the green fluorescent 

protein (GFP)-labeled vascular network Tg (fli:GFP) transgenic line (Ding et al., 2018a; 

Roustaei et al., 2022). Furthermore, LSFM was instrumental in tracing the 3-D distribution 

of tissue-specific cardiac progenitor cells with the rainbow fluorescent reporters in the 

embryonic and neonatal mouse hearts (Ding et al., 2018a). Clinically, LSFM further 

demonstrated impaired myocardial contractility after chemotherapy-induced toxicity using 

the Tg(cmlc2:GFP) transgenic line to visualize the myocardium (Packard et al., 2017). 

In this context, integrating the high spatiotemporal resolution of light-sheet imaging with 

genetically labeled fluorescent reporters in the zebrafish lines can advance the field of 

ambient pollutant-mediated organ toxicity.

2. Comparison of small animal models to study environmental pollutants

Rodent exposure to air pollution has been used to demonstrate cardiovascular disorders. 

Ambient UFP exposure promotes oxidative stress, leading to a reduction in high-density 

lipoprotein (HDL) and an acceleration in atherosclerosis in the ApoE-knockout (ApoE−/−) 

mice (Araujo et al., 2008; Bell et al., 2017; Holme et al., 2020). UFP exposure also initiates 

the pro-inflammatory signaling pathways to impair vascular endothelial homeostasis, 

priming the inflammatory responses and oxidative stress (Beck-Speier et al., 2005). 

UFP exposure studies in hyperlipidemic low-density lipoprotein (LDL) receptor knockout 

(LDLR−/−) mice revealed that NF-κB signaling pathways promoted inflammatory responses 

and vascular calcification (Li et al., 2013; Dorans et al., 2016). Short-term exposure (1–7 

days) to ambient fine particle concentrations also triggered elevated diastolic blood pressure 
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(Huang et al., 2018), acute coronary syndrome, myocardial infarction, cardiac arrhythmia, 

and heart failure, especially among susceptible populations living in urban areas (Lederer 

et al., 2021; Zhang et al., 2022). Furthermore, PM2.5 exposure alters the intestinal flora 

of mice, causing gut microbiota dysbiosis, dysregulated liver metabolism, increased blood 

viscosity, vascular endothelial dysfunction, and risks of ischemic heart disease (Xu et al., 

2019; Liang et al., 2020; Ran et al., 2021; Alexeeff et al., 2021).

While rodents have been the common model to assess the toxicity and biodistribution of 

nanomaterials, the zebrafish (Danio rerio) model has emerged as an efficient screening 

model for toxicity and counter-measures (Fako and Furgeson, 2009; Cassar et al., 2020). 

The zebrafish developmental genome is 80 % conserved with that of humans (Barbazuk et 

al., 2000). Despite having a two-chambered heart and a lack of pulmonary vascular system 

(Fig. 1a), the adult zebrafish electrocardiogram (ECG) is analogous to that of humans, 

exhibiting a typical P wave for atrial contraction, QRS for ventricular depolarization, and T 

wave for repolarization (Fig. 1b) (Vornanen and Hassinen, 2016). Due to their small size, 

short developmental stages, and transparent gut and circulatory systems, the zebrafish model 

is viable for investigating pollutants-mediated brain, cardiovascular, liver, and gut-vascular 

barrier impairments (Zhong et al., 2022) (Table 1). In addition, embryonic pigmentation can 

be suppressed by 1-phenyl 2-thiourea (PTU) (Karlsson et al., 2001).

Unlike rodents, zebrafish embryological development can be monitored in vivo, obviating 

the need for dissecting the uterus to harvest the embryos. Zebrafish embryos can survive the 

first five days of their development without active cardiac contraction, receiving oxygen by 

passive diffusion through the skin at the embryonic stage and obtaining nutrients from the 

yolk, which allows convenient embedding in gas-permeable agarose for stable long-term in 
vivo imaging (Kaufmann et al., 2012). These features render the zebrafish a viable model 

for genetic manipulation or experimental intervention to investigate various organ systems in 

real-time (Bakkers, 2011; Kamei et al., 2010). In contrast, avian and mammalian embryos 

die in the absence of a functional cardiovascular system during organ development (Table 2).

Numerous transgenic strains can serve as a genetically tractable system with fluorescently 

labeled proteins. They enable time-lapse in vivo imaging of the entire organ development, 

injury, and regeneration (Fig. 2). For example, we can observe neural crest cell migration 

to the cardiovascular systems at the early developmental stages with Tg (−5sox10:nfsB-
mCherry; myl7:nuc-EGFP) transgenic line (Ding et al., 2018b; Gudapati et al., 2018). 

Whole-brain and cardiac functional imaging of calcium currents by GCaMP reporter 

under a pan-neuronal or cardiomyocyte promoter allows for the simultaneous recording 

of electrical activity with the use of high-speed LSFM (Ahrens et al., 2013). Quiescent and 

dividing cardiomyocytes can be detected in vivo with a fluorescent ubiquitylation-based 

cell cycle indicator (FUCCI) transgenic zebrafish line, and the ratio between proliferating 

and non-proliferating cardiomyocytes after an injury can be quantified to assess the cardiac 

regeneration (Chen et al., 2019). Furthermore, the zebrafish model provides a molecular 

toolbox for genetic manipulation, such as reverse genetics (i.e., gene knock-down) by 

morpholino injection or CRISPR/Cas9 editing (Kabashi et al., 2010; Li et al., 2021; Timme-

Laragy et al., 2012; Yin et al., 2015). In the ensuing paragraph, we will demonstrate that this 
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gain- and loss-of-function manipulation of the tissue-specific phenotypes can be visualized 

via advanced imaging modalities.

3. Animal models to study environmental pollutants-mediated 

cardiovascular and gastrointestinal toxicity

3.1. Zebrafish as a model to study environmental toxicology

Ecotoxicology refers to the impact of contaminants on an organism, population, community, 

ecosystem, and biosphere level (Lynch et al., 2001), whereas environmental toxicology 

studies the exposure of chemicals and physical agents to living organisms (Shahid et 

al., 2020). Zebrafish have been used in toxicology studies long before their well-known 

applications in developmental biology. In 1952, almost two decades before the founding of 

the United States Environmental Protection Agency (EPA), Battle and Hisaoka examined 

the effect of ethyl carbamate (urethane) on cell differentiation and organization using 

zebrafish embryos (Battle and Hisaoka, 1952). Urethane was a carcinogenic compound 

widely used to treat cancer and as an analgesic before World War II, later found in many 

alcoholic beverages. The researchers documented the abnormalities in various embryonic 

structures after urethane exposure, including edema of the body cavities, malformation 

of the circulatory system, and impaired differentiation of the central nervous system. 

Subsequently, in 1957, Jones and Huffman published a method paper describing the protocol 

for testing chemicals that affected mitosis in zebrafish embryos (Jones and Huffman, 1957).

At the turn of the century, researchers from the University of Cincinnati first attempted 

to generate several transgenic zebrafish lines as aquatic sentinels (Carvan et al., 2006). 

The transgenic lines would carry the luciferase (LUC) reporter gene controlled by pollutant-

inducible DNA response elements. They utilized the natural bioconcentration process to 

provide a more relevant measure of the toxicant level than directly testing the water. The 

designed system has been shown in zebrafish cell line ZEM2S to respond to aromatic 

hydrocarbons (e.g., dioxins), heavy metals (e.g., cadmium), and electrophiles (e.g., tBHQ) 

(Carvan et al., 2000). However, like many others at that time, the researchers had difficulty 

obtaining stable germline transmission by injecting plasmids into the embryo. Likely for 

this reason, the research with these sentinels was discontinued. Fortunately, the then-nascent 

Tol2 transposon technology became the standard method to generate transgenic zebrafish for 

the next decade, developing a new generation of toxicant reporter lines (Bambino and Chu, 

2017; Kawakami, 2005). The rapid growth of environmental health research using zebrafish 

also ensued, characterizing the toxicity of many pharmaceuticals and personal care products 

found in the modern-day aquatic environment, such as antibiotics, steroid hormones, and 

non-steroidal anti-inflammatory drugs (NSAIDs) (Porretti et al., 2022).

Moreover, air pollutants can affect aquatic organisms through atmospheric depositions and 

rain runoffs, contributing to the acidification of lakes and coastal waters (Lovett et al., 2009). 

The behavioral and physiological changes in zebrafish caused by these compounds served as 

a testament to the environmental impact of our ever-increasing urbanization. The following 

sections will focus on pollutant-mediated cardiovascular and gastrointestinal toxicity studies.
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3.2. Environmental pollutants and cardiovascular health

Ambient air pollutants (PM10, PM2.5, UFP, and NO2
− ⋅ ) from diesel exhaust, shipping 

and vehicle emissions, metal processing, and industrial combustion contribute to the 

increase in cardiovascular mortality (Franklin et al., 2015; Lin et al., 2018). Investigators 

have commonly employed the rodent model to elucidate the mechanisms supporting the 

epidemiological and clinical findings. Studies in utero and postnatal development using 

a mouse model have demonstrated that air pollution during this critical period increased 

the susceptibility to heart failure in adulthood (Weldy et al., 2014). Moreover, gestational 

exposure to air pollutants in mice revealed morphological and functional changes in the 

placenta, such as reduced volumes, calibers, and surface areas of maternal blood spaces, 

which compromised fetal weight (Veras et al., 2008). Despite being an excellent postnatal 

and fetal development model to study ambient air pollutant exposure, the mouse embryo 

requires uterus support and lacks optical clarity (Table 1).

On the other hand, chick embryos have been broadly used for angiogenesis studies due to 

their ability to survive ex ovo and translucent nature, allowing for direct visualization of 

blood vessels and angiogenic events using confocal microscopy and time-lapse imaging 

(Ribatti, 2012). However, the large size of the chick embryo renders high-throughput 

screening of toxins experimentally challenging. Alternatively, the zebrafish embryo has 

emerged as an experimentally conducive model to study cardiac development, toxicity, 

injury, and regeneration.

Zebrafish models have been selected to study aquatic ecotoxicity from natural and synthetic 

compounds (Bambino and Chu, 2017; Bhagat et al., 2020; Busquet et al., 2014). The 

marine ecosystem faces multiple sources of contamination (e.g., fungicides) that promote 

severe cardiovascular defects in zebrafish embryos (Chen and Li, 2021; Huang et al., 2020; 

Liu et al., 2017; Ma and Li, 2021). Medical drugs such as antibiotics are ubiquitous in 

the environment, and they are well-recognized for promoting cardiac defects in zebrafish 

embryos, including decreased calcium signaling and myocardial contraction (Gauthier and 

Vijayan, 2019; Ping et al., 2022; Shen et al., 2019; Zhang et al., 2020). Nanomaterials 

are widely used in biomedical and environmental fields, and researchers have shown that 

they induced developmental abnormalities in zebrafish, such as delayed hatching, vascular 

defects, and retardation of cardiac looping (Bai and Tang, 2020; Bangeppagari et al., 2019; 

Hu et al., 2017; Yang et al., 2021). Moreover, personal care products containing triclosan 

caused alteration in zebrafish heart looping and cardiac toxicity in a dose-dependent manner 

(Saley et al., 2016).

In mammals, the common route of air pollutant exposure to cardiovascular circulation is via 

the lungs (Kelly and Fussell, 2011). In zebrafish embryos, passive gas exchange primarily 

occurs via the skin during the first seven days post-fertilization (Kämmer et al., 2022; Lin 

et al., 2006). This embryonic or larval stage allows ambient ultrafine particles to enter the 

circulatory system when zebrafish are immersed in the pollutant-treated water. (McLeish 

et al., 2010). PM10 exposure promotes the production of reactive oxygen species (ROS) 

to impair cardiac development in zebrafish embryos, including increased sinus venous and 

bulbusarterious (SV-BA) distance, retarded vascular subintestinalis growth, accompanied 
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by functional defects such as decreased heart rate, obstructed blood flow, and reduced 

venous return (Cen et al., 2020). Similar to PM10, extractable organic matter (EOM) from 

PM2.5 affects cardiac development and function, while N-acetyl-L-cysteine (NAC), a ROS 

scavenger, rescues the impaired cardiac development (Ren et al., 2020). mRNA and miRNA 

microarray studies further revealed that zebrafish embryos exposed to silica nanoparticles 

and methylmercury (MeHg) developed NF-κB-mediated inflammation, which decreased 

myocardial contraction (Hu et al., 2017). Together, these studies support the use of zebrafish 

to advance cardiovascular toxicity research.

3.3. Environmental pollutants and gastrointestinal barriers

The gastrointestinal (GI) tract is among the primary organs that ambient air pollutants can 

access via direct consumption of contaminated food or indirect inhalation of ambient UFP or 

PMs (Li et al., 2015; Salim et al., 2014). In the latter, PMs can be indirectly deposited in the 

oropharynx via mucociliary clearance and be swallowed along with saliva and mucus (Mutlu 

et al., 2018). Once in the GI tract, PMs alter the gastric epithelium and gut microbiome and 

elicit a pro-atherogenic serum lipidomic profile (Li et al., 2017).

Murine models are commonly used in GI research due to mammals’ highly conserved 

digestive systems, even though different species can have distinct digestive tract designs 

due to dietary habits (Nguyen et al., 2015). The composition of gut microbiota can also 

vary widely between animal species and individuals within a species. UFP exposure by 

LDLR−/− mice resulted in gut microbiota dysbiosis, leading to alterations in the microbiome 

diversity. The gut microbiota dysbiosis is associated with increased TNF-α and atherogenic 

metabolites such as lysophosphatidylcholine (LPC) 18:1 and lysophosphatidic acids (LPAs) 

in the intestines and blood circulation (Li et al., 2017). While mice models provide a host 

of gene knockouts, it is challenging to extrapolate the findings to humans when studying 

the composition of gut microbes (i.e., administering external microbes to germ-free mice) 

or conducting ecosystem interventions such as dietary adjustment. The ion transport via 

secondary messengers (cGMP and cAMP) differs between rodents and humans, making 

rodents a less favorable model to study ion transport in the gut (Foulke-Abel et al., 2020).

In zebrafish, the cellular composition and function of the intestine resemble those of higher 

vertebrate organisms, serving as both a digestive and immune organ (Wallace et al., 2005). 

The molecular pathways regulating injury and immune responses are also conserved (Zhao 

and Pack, 2017). The zebrafish model provides an optically transparent model to track 

nano-particles that transmigrate across the gut-vascular barrier (Dai et al., 2014; Zhong 

et al., 2022). The effects of air pollutants in an aquatic organism can be recapitulated 

by micro-gavage of pollutants into the intestinal bulb to assess gut-vascular permeability 

or by microinjection directly into the circulatory system for rapid biodistribution (Baek 

et al., 2020; Cocchiaro and Rawls, 2013). Zebrafish optical transparency further allows 

using laser-scanning confocal microscopy (LSCM) to assess the subcellular phenotypes. For 

instance, acute ingestion of UFP can be visualized to transmigrate across the embryonic 

intestinal barrier to the vascular circulation in the transgenic zebrafish line Tg(flk1:mCherry) 
(Fig. 3).
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The gut-vascular barrier regulates paracellular trafficking and systemic dissemination 

of ingested microbes and toxins. UFP ingestion down-regulated Notch1-mediated tight-

junction protein expressions such as zonula occludens1 (ZO-1) and Claudin-1, increasing 

endothelial permeability and impairing the gut-vascular barrier (Baek et al., 2020). In 

addition, UFP exposure inhibited FOXO1/Notch1 complex, hindering vascular regeneration 

after tail amputation (Baek et al., 2018b). These findings suggested that the downregulation 

of tight-junction proteins and the inhibition of FOXO1/Notch1 complex by UFP disrupted 

the gut-vascular development and regeneration.

Both mice and zebrafish are viable models for gastrointestinal and cardiovascular research. 

They provide complementary insights into disease development, injury, and repair. Mice 

have been widely used to study the underlying mechanisms of gastrointestinal diseases. 

At the same time, zebrafish models offer unique advantages such as rapid development, 

optical clarity, and high fecundity for genetically tractable studies. By combining the unique 

features of these two models, researchers can gain a comprehensive understanding of air 

pollutants-mediated organ dysfunction and develop therapeutic targets.

4. Imaging techniques to elucidate environmental pollutants affecting 

zebrafish vasculature and gastrointestinal barrier in vivo

To provide state-of-the-art imaging modalities, we will highlight the strengths of laser-

scanning confocal microscopy (LSCM) and light-sheet fluorescence microscopy (LSFM), 

respectively, and to introduce high spatial and temporal resolution imaging of the entire 

zebrafish embryo in vivo (Fig. 4).

The fundamental principle of laser-scanning confocal microscopy (LSCM) is based on a 

pinhole fluorescence microscopy (Fig. 4d). In the illumination path, the light is focused onto 

the area of interest via a lens to reduce out-of-focus excitation. The fluorescent light will 

pass through a pinhole in the detection path before reaching the camera. This pinhole blocks 

the out-of-focus signal, providing confocal microscopes with a superior image contrast to 

a widefield system, effectively increasing the lateral and axial resolution. For example, 

Baek et al. demonstrated the UFP-mediated disruption of the gut-vascular barrier via the 

FITC-conjugated dextran (10 kDa) (Baek et al., 2020). LSCM was capable of localizing the 

dextran molecules leaking into the anterior venous capillary plexus (AVP) and caudal vein 

capillary plexus (CVP) from the intestine (Fig. 3e). The high spatial resolution of LSCM 

was necessary to resolve the embryonic capillaries (diameters <1 μm).

By virtue of its capability of large-volume and time-lapsed imaging with rapid acquisition 

and minimal photo-toxicity, LSFM has demonstrated an unparalleled strategy to image the 

entire zebrafish in real-time. Instead of a cone-shaped beam and point-by-point detection, 

LSFM illuminates the sample with a thin sheet of concentrated light and acquires the whole 

plane of fluorescence signal in one frame (Fig. 4e). In a classic design, the excitation beam 

path is orthogonal to the detection beam path. This orthogonal optical path grants LSFM 

superior resolving power for deep photon penetration into the thick sample because the 

incident path remains the same at each z-position. In other words, the scattering of excitation 
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light does not increase with depth. The result is that LSFM can image more than twice as 

deep as confocal (Pediredla et al., 2016).

In our custom-built LSFM (Fig. 5), beam splitters can be employed to align laser sources 

of varying wavelengths, facilitating multi-channel illumination. Rapid switching between 

distinct lasers is accomplished using an acousto-optic tunable filter (AOTF). Subsequently, 

a beam expander is deployed to broaden the beam, followed by a half mirror that bifurcates 

the beam. The divided beams are then illuminated from opposite directions to the sample 

chamber. The beam is subsequently modulated into a light sheet by combining a cylindrical 

lens and an illumination lens. The sample chamber is designed with multiple axes of 

freedom (5-axis in Fig. 5), allowing for adjustments of the illumination direction for the 

specimen. This custom design contributes to the versatility and efficacy of LSFM as a 

powerful imaging technique in biological research (Ding et al., 2018b; Wang et al., 2021a). 

With high-speed cameras, LSFM can take images at 200 frames per second, becoming the 

ideal tool for large-volume 3-D + time scanning with high spatial and temporal resolution. 

Another important application of LSFM is to allow 3-D imaging for prolonged periods. 

Unlike confocal microscopy, where most of the emitted light will be blocked by the pinhole, 

LSFM collects a larger portion of the signal and needs lower laser intensity for excitation, 

thereby preventing phototoxicity and photobleaching to the specimen.

The LSFM system can be custom-built for rapid data acquisition, followed by a post-image 

synchronization algorithm for 4-D registration and reconstruction (Wang et al., 2021a). 

This system provides high spatiotemporal resolution and minimal photobleaching and is 

suitable for in vivo visualization of developing zebrafish embryos’ hearts (~0.4 × 0.5 × 

0.6 mm3 at ~30 s) (Ding et al., 2018b) and visualization of AV valve leaflet excursion at 

five days post-fertilization (dpf) in zebrafish (Baek et al., 2018a). This high spatiotemporal 

resolution can be experimentally conducive to studying cardiovascular function post-injury 

and during regeneration. For instance, our group has demonstrated the displacement analysis 

of myocardial mechanical deformation (DIAMOND) in a doxorubicin injury model using 

LSFM (Chen et al., 2019). LSFM allowed us to separate the 3-D-reconstructed heart into 

six radial segments and compare their contractile function after doxorubicin injury. The 

results showed spatial heterogeneity in myocardial damage and regeneration, revealing that 

the cardiac susceptibility to doxorubicin differed throughout the heart.

Compared to LSCM, LSFM provides higher imaging acquisition speed, lower phototoxicity, 

and deep tissue penetration and is uniquely suitable for 3-D imaging of larger tissues (Table 

3). Although applications of LSFM in UFP studies have not yet been reported, Wiles et 

al. demonstrated the use of LSFM in tracing the interaction between two microbial species 

within the intestine of zebrafish embryos over 12–15 h (Wiles et al., 2016). The 4-D 

time-lapse imaging allowed for studying the change in size and spatial distribution of the 

native microbial community upon invasion by another species. In summary, 4-D imaging 

combined with computational fluid dynamics (CFD) simulation has transformed the study 

of zebrafish mechanobiology, enabling researchers to quantitatively characterize different 

components of the cardiovascular system, such as trabeculation (Lee et al., 2018), valves 

(Hsu et al., 2019), red blood cells (RBCs) (Wang et al., 2021a, 2021b), and vasculature 
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(Roustaei et al., 2022). Thus, both LSCM and LSFM hold great promises to empower the 

study of UFP in cardiovascular and gastrointestinal health.

In addition to LSCM and LSFM, several optical/non-optical methods have shown promise in 

advancing environmental toxicity research (Table 4). Two-photon fluorescence microscopy 

(2PFM) is another fluorescence imaging method to image living tissue up to about 

one millimeter in thickness (Helmchen and Denk, 2005). Unlike traditional fluorescent 

microscopes, where the excitation wavelength is shorter than the emission wavelength, 

two-photon fluorescence microscopy requires simultaneous excitation by two photons with 

longer wavelengths than the emitted light (Denk et al., 1990). The laser is focused onto a 

specific location in the tissue and scanned across the sample to sequentially produce the 

image. 2PFM is commonly used for intravital imaging of organs or time-lapse imaging 

of cellular dynamics (Al-Rekabi et al., 2023). For instance, it has been used to trace the 

real-time deposition of aerosol PM2.5 in the murine lung and the clearance of instilled 

fluorescent beads by the tracheal mucosa (Li et al., 2019; Veres et al., 2017). Despite its low 

scanning speed and challenging focusing process, 2PFM is a powerful tool for research in 

the interaction between air pollutants and the pulmonary system at high-resolution.

Further advancements in the field include CLARITY (Clear Lipid-exchanged 

Acrylamide-hybridized Rigid Imaging/Immunostaining/In situ-hybridization-compatible 

Tissue hYdrogel) and expansion microscopy (ExM), two groundbreaking strategies that 

augment imaging depth and resolution by transforming the opaque tissue into a porous 

transparent hydrogel (Du et al., 2018; Sim et al., 2021). Both CLARITY and ExM use 

acrylamide/bis-acrylamide to form the gel backbone, while ExM adds sodium acrylate to 

enable hydrogel swelling. The physical enlargement of a specimen enhances its resolution to 

the nanoscale, allowing the visualization of zebrafish intestinal microvilli and the bacterial 

colony residing on them (Sim et al., 2021). Such techniques are also compatible with 

fluorescent labeling and thus useful for anatomical characterization in toxicity research. For 

example, researchers have demonstrated the power of ExM to study dietary zinc-mediated 

toxicity on medaka retinal development (Wang and Wang, 2022). Similar method was used 

to examine silver nanoparticles-mediated toxicity in zebrafish skeletal muscle and notochord 

development (Wang and Wang, 2023).

Super-resolution imaging, such as stimulated emission depletion (STED) microscopy, has 

been extensively employed. STED ingeniously employs a mechanism that deactivates 

fluorescence in specific sample regions, yielding an extraordinarily concentrated, effectively 

super-resolved fluorescence spot (Blom and Widengren, 2017). Complementing optical 

innovations, machine learning-based algorithms, specifically focusing on deep learning, 

augment the resolution of digital images (Kaderuppan et al., 2020). Such computational 

techniques enable surpassing the diffraction limit of light, thereby facilitating super-

resolution capabilities without necessitating specialized hardware. So far, ultra-high-

resolution imaging mainly serves the observation of organelle dynamics and has limited 

applications in pollutant toxicity research. Nevertheless, these methods opened doors for 

studying the subcellular damage by pollutants with unprecedented details.

Gonzalez-Ramos et al. Page 10

Sci Total Environ. Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. Future directions and conclusion

As we gain a deeper understanding of how ambient fine particle pollution by vehicle 

emissions and industrial combustion affects human health, we uncover another pressing 

issue: micro- and nano-plastic pollution. Over the last decades, microplastic (MP) 

abundance and distribution have increased in salt, fresh, drinking, and wastewater, posing 

an imminent threat to aquatic organisms and humans (Agathokleous et al., 2021; Xu et al., 

2020). Plastics are non-biodegradable and become brittle upon ultraviolet (UV) exposure, 

breaking into smaller fragments that accumulate in marine environments, fresh water, and 

soil (Fackelmann and Sommer, 2019). Plastic pollution in marine ecosystems threatens 

marine biodiversity and contributes to the decline of coral reefs worldwide (Pinheiro et al., 

2023). Recent studies have shown that nanoplastics (NPs) infiltration triggers cardiotoxicity 

in zebrafish embryos (Dai et al., 2023; Sun et al., 2021). Moreover, studies in both zebrafish 

and mouse models have demonstrated that MPs ingestion alters gut microbiota by disrupting 

the intestinal barrier and triggering metabolic disorders (Jin et al., 2019; Qiao et al., 2019).

However, few studies have shown the size- and shape-dependent accumulation of MPs/NPs 

in zebrafish and their toxicity (Lee et al., 2019). A study using nano-size polystyrene 

particles (20 nm) injected in the yolk of zebrafish embryos has unveiled that polystyrene 

particles can cross the blood-brain barrier and cause oxidative DNA damage in the brain 

(Sökmen et al., 2020). Another study showed that particles smaller than 50 nm appeared 

to travel away from the GI system toward the eyes compared to the larger particles that 

remained in the intestine (Van Pomeren et al., 2017).

Although the exact mechanism of MP/NP transport is still unclear, research has shown that 

RBCs carriage may be a potential route. A study by Geiser et al. reveals that ultrafine 

polystyrene spheres (< 1 μm) were up-taken by RBCs, and they are not membrane-bound 

(Geiser et al., 2005). In addition, treating macrophages with CytD (phagocytosis inhibitor) 

did not prevent particle movement into the cell. These findings suggest that endocytic 

pathways which involve vesicle formation are not likely to account for particle translocation. 

Instead, passive uptake due to particle adhesion caused by Van Der Waal electrostatic 

interactions proved to be a preferable dissemination course to multiple organs (Rimai et al., 

2000).

Since MPs and NPs are ubiquitous in everyday life, they are likely also bound to organic 

matter. The zebrafish model could provide crucial information on mixture toxicity and the 

interaction of MPs/NPs with other environmental toxicants through fluorescent labeling, 

transgenic lines, advanced microscopy, and post-processing machine learning strategies.

In conclusion, due to their small size, short developmental stages, and optical clarity, 

the zebrafish model has emerged as a valuable animal model for studying environmental 

pollutants-mediated multi-organ toxicity. Developmentally, this model organism possesses 

some essential conserved physiology with humans as a promising strategy for forward 

and reverse genetic approaches. However, more efforts are needed to elucidate the effects 

of other pollutants, such as MPs and NPs, which threaten aquatic organisms’ cardiac 

and gastrointestinal health. Thus, integrating the zebrafish model with light-sheet imaging 
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provides a reliable strategy to investigate environmental pollutants’ impacts on human health 

and the underlying mechanism.
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HIGHLIGHTS

• Environmental pollutants threaten cardiovascular and gastrointestinal health.

• Zebrafish serves as a genetically tractable model to study environmental 

toxicity.

• 4-D imaging and transgenic reporters provide molecular insights into 

pollution-impaired organ development and function.
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Fig. 1. 
Zebrafish system. Anatomy of a zebrafish embryo. The heart is visible at ~1 mm below 

the skin. (a) Zebrafish have one atrium (A) and one ventricle (V). (b) Comparison 

between human and adult zebrafish ECG reveals resembling atrial activation and ventricular 

depolarization features. (c) Zebrafish embryonic cardiovascular circulatory system. Arterial 

circulation is denoted with arrows in red and venous in blue. (d) This the 3D view reveals 

that the DA originates from the ventricle, and the PCV returns to the atrium. Arterial SVs 

connect with the DLAV, which drains to the PCV via venous SVs. (e) Cross-sectional 

view of 3D embryonic cardiovascular circulatory system; OFT, outflow tract; G, gills; 

V, ventricle; A, atrium; Tr, trabeculation; DA, dorsal aorta; SV, segmental vessel; DLAV, 

dorsal longitudinal anastomotic vessel; and PCV, posterior cardinal vein. Panel c, d, and 

e figures were adopted Mehrdad Roustaei Computational Simulations of the 4D Micro-

Circulatory Network in Zebrafish Tail Amputation and Regeneration., doi:https://doi.org/

10.1098/rsif.2021.0898.
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Fig. 2. 
Light-sheet fluorescence microscopy imaging of neural crest-derived cells migrating to the 

developing heart tube. (a) Overview of 36 hpf transgenic zebrafish embryo expressing 

nuclear eGFP in cardiomyocytes (green) and mCherry in neural crest and neural crest-

derived cells (red). By 36 hpf, colocalization of eGFP and mCherry indicates many neural 

crest-derived cells contribute to the heart tube (yellow signal). (b and c columns) Time-lapse 

image series of the developing embryonic heart from 26 hpf to 30 hpf shows the integration 

of neural crest cells into the heart. For (a) and (b), scale bar: 50 μm. This figure is adopted 

from Varun Gudapati Visualization of Neural Crest Cell Migration to the Dorsal Surface of 

Developing Zebrafish Myocardium, doi:https://doi.org/10.1161/circ.138.suppl_1.17251.
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Fig. 3. 
Acute UFP ingestion disrupts intestinal epithelial barrier integrity. Transgenic Tg(flk1: 
mCherry) zebrafish embryos at 2 dpf were micro gavaged with FITC-conjugated dextran 

(FD10, 10 kDa) and UFPs. (a-b) Anatomy of endothelial vasculature in the Tg(flk1: 
mCherry) zebrafish. (c) Experimental design: At 2 dpf, embryos were randomly chosen 

for micro-gavage with FD10 solution with or without UFP. In parallel, EDTA at 20 mM 

was gavaged as a positive control. Intestinal epithelial barrier integrity and translocation 

of FD10 to vascular endothelium (flk1+) were evaluated at 7 h post gavage (hpg). (d) A 

schematic representation of micro gavage technique in an embryonic GI tract. FD10 solution 

was gavaged in the intestinal bulb without disrupting the esophagus, swimming bladder, and 

yolk sac. (e) Confocal images of the AVP and CVP at 7 hpg. In FD10 gavaged-controls, 

FD10 retained only in the intestinal bulb and mid-intestine. By contrast, co-gavaging FD10 

with UFP or EDTA accumulated FD10 in the AVP and CVP (white arrowheads). Scale bar: 

20 μm. (f) 40× confocal images of embryos exhibiting endoluminal FD10 fluorescence as an 

indicator of UFP infiltration. (g) Graphical representation of intestinal epithelium disruption 

upon UFP ingestion. DA: Dorsal aorta; PCV: Posterior caudal vein; AVP: Anterior venous 

capillary plexus; CVP: Caudal vein capillary plexus; Scale bar: 32 μm. This figure is 

adopted from Kyung In Baek An Embryonic Zebrafish Model to Screen Disruption of Gut-
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Vascular Barrier upon Exposure to Ambient Ultrafine Particles., doi:https://doi.org/10.3390/

toxics8040107.
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Fig. 4. 
Imaging modalities and their working principles for zebrafish UFP study.

(a) Zebrafish embryos can be conveniently imaged on an inverted fluorescence microscope. 

(b) Enlarged view of the sample mounting region. (c) The embryos can be mounted inside 

a glass bottom dish with gas-permeable agarose. Submerging in tricaine solution allows for 

the immobilization of embryos. (d) Laser-scanning confocal microscopy (LSCM) allows 

high-resolution imaging of subcellular structures by eliminating the out-of-focus signal with 

a pinhole disk. Only the in-focus signal (orange beam) can pass through the pinhole and 

reach the camera. A single objective can be used for both the illumination lens (IL) and 

the detection lens (DL). Due to the “point-by-point” scanning of LSCM, imaging speed 

is limited, resulting in only 3D stacks. (e) Light-sheet fluorescence microscopy (LSFM) 

enables fast volumetric imaging by illuminating an entire cross-section of the sample with 

a thin sheet of light (red beam). The emitted fluorescence signal (blue beam) from each 

section reaches the camera within the same distance, drastically improving the contrast in 

the z-direction. Instead of point-by-point scanning, LSFM scans across the sample plane by 

plane and thus can produce 3D + time stacks.
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Fig. 5. 
Key components and design of a custom multi-color light-sheet imaging system.

(a) The optical path layout of the system is shown, with two cylindrical lenses (CL1, CL2), 

each converting a laser beam into a sheet of light that illuminates a thin layer of the sample. 

The resulting fluorescent signal is captured by two detection lenses and passed to three high-

speed sCMOS cameras. An acousto-optic tunable filter (AOTF) coupled with filter wheels 

(FWs) allows for multi-color acquisitions. (b) The sample is positioned at the orthogonal 

intersection of the illumination lens (IL) and detection lens (DL). (c) A laser light-sheet is 

applied to illuminate the sample rapidly. The illuminated planes are orthogonally detected by 

the detection lens (DL). (d) A sheet of light transverses the embryo to produce 3D + time 

scans. M: mirror; HM: half mirror; BS: beam splitter; AOTF: acousto-optic tunable filter; 

BE: beam expander; TL: tube lens.
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