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Abstract

Recent breakthrough in spatial transcriptomics has brought great opportunities for exploring

gene regulatory networks (GRNs) from a brand-new perspective. Especially, the local

expression patterns and spatio-temporal regulation mechanisms captured by spatial

expression images allow more delicate delineation of the interplay between transcript fac-

tors and their target genes. However, the complexity and size of spatial image collections

pose significant challenges to GRN inference using image-based methods. Extracting regu-

latory information from expression images is difficult due to the lack of supervision and the

multi-instance nature of the problem, where a gene often corresponds to multiple images

captured from different views. While graph models, particularly graph neural networks, have

emerged as a promising method for leveraging underlying structure information from known

GRNs, incorporating expression images into graphs is not straightforward. To address

these challenges, we propose a two-stage approach, MIGGRI, for capturing comprehensive

regulatory patterns from image collections for each gene and known interactions. Our

approach involves a multi-instance graph neural network (GNN) model for GRN inference,

which first extracts gene regulatory features from spatial expression images via contrastive

learning, and then feeds them to a multi-instance GNN for semi-supervised learning. We

apply our approach to a large set of Drosophila embryonic spatial gene expression images.

MIGGRI achieves outstanding performance in the inference of GRNs for early eye develop-

ment and mesoderm development of Drosophila, and shows robustness in the scenarios of

missing image information. Additionally, we perform interpretable analysis on image recon-

struction and functional subgraphs that may reveal potential pathways or coordinate regula-

tions. By leveraging the power of graph neural networks and the information contained in

spatial expression images, our approach has the potential to advance our understanding of

gene regulation in complex biological systems.
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Author summary

Spatial expression images are valuable resources for reconstructing gene regulatory net-

works (GRNs) due to their rich spatio-temporal patterns. However, computational meth-

ods for image-based GRN inference are still in the early stages of development. In this

study, we aim to extract comprehensive information from multiple images for each gene

and utilize known GRN to infer unknown interactions.

To achieve this, we implement contrastive learning to extract gene regulatory features

from spatial expression images and also develop a multi-instance graph neural network

model, MIGGRI, for GRN inference. Our approach demonstrates good performance in

GRN inference for Drosophila eye and mesoderm development based on spatial expres-

sion patterns.

Compared to previous methods, MIGGRI exhibits high accuracy, robustness, and

interpretability. Especially, MIGGRI can handle missing data and identify crucial regula-

tors and pathways involved in the regulation process of Drosophila development. Our

findings provide a promising approach for image-based GRN inference and shed light on

the complex regulatory mechanisms underlying development processes.

Introduction

Reverse engineering gene regulatory networks (GRNs) has been a central task in systems biol-

ogy, as it provides a comprehensive understanding of the interplay between transcription fac-

tors (TFs) and their target genes. Traditionally, the task of GRN inference was based on gene

expression data obtained from microarray technology [1]. However, with the rapid develop-

ment of high-throughput technologies, such as RNA-sequencing, these have become the

major data source for GRN inference [2].

A lot of computational methods have been proposed based on various statistical methods

and machine learning models, including linear regression [3], mutual information [4], Pear-

son’s and Spearman’s correlation [5], Bayesian networks [6], and Gaussian graphical models

[7]. While methods based on gene co-expression often infer influential GRNs, where the net-

works consist of indirect interactions, transcription factor (TF) binding data has been lever-

aged to uncover physical/direct interactions, including ChIP-Chip or ChIP-Seq data. In

addition, the advances in multi-omics experiments have enabled the integration of various

types of data, such as transcriptomics, proteomics, interactomics, and epigenomics, to enhance

the robustness and scalability of GRN inference [8]. By leveraging these various sources of

data, researchers can gain a more comprehensive understanding of gene regulation and the

underlying mechanisms in complex biological systems.

Despite current progress, the inference of GRNs has remained an extremely challenging

task in bioinformatics. For one thing, most of the existing methods are incompetent to handle

large-scale networks; for another thing, the inference performance is largely limited by the

input data quality, due to the missing values and high noise in gene expression. More impor-

tantly, since the distribution of gene expression in space is crucial for identifying co-expression

patterns, the average expression levels obtained by microarray or RNA-seq often fail to reflect

true interactions between genes.

In recent years, with the rapid development of spatial transcriptomics, especially various in
situ hybridization (ISH) technologies for visualizing gene expression distribution, like RNA

ISH [9], SeqFISH [10], and MERFISH [11], methods based on spatial expression data have
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emerged [12]. As spatial data delineates complex spatio-temporal regulation patterns, the net-

work reconstruction can benefit more from the spatial expression data [13]. Early works utiliz-

ing spatial expression are mainly unsupervised, which predict gene interactions based on

certain similarities or correlations. For instance, the GINI method flattened the intensity of

each pixel of gene expression image in Drosophila embryo as a feature vector and adopted a

multi-variate Gaussian model to build the gene interaction network [14]; staNMF imple-

mented a non-negative matrix factorization method to identify the principal patterns of

expression images and inferred gene-gene interaction based on their similarity computed by

the principal patterns [15]. Due to the lack of supervision, the similarity or correlation-based

methods may identify indirect interactions rather than direct regulatory relations. In addition,

acquiring spatial expression images of a gene involves gathering data from multiple individu-

als, each with varying views. As a result, the images exhibit significant variations across differ-

ent samples, and the number of images per gene may differ, making it a challenging multi-

instance learning problem. Extracting effective tissue expression information features from

these multi-instance images remains a significant challenge in the field.

Benefiting from the increasingly revealed GRNs and deep learning techniques, supervised

deep neural networks have been employed in GRN reconstruction [16–18]. GripDL [17] con-

catenates two images (from a TF and a target gene respectively) and employs a single ResNet

[19] to predict the existence of regulatory interaction; while ConGRI [18] adopts a siamese net-

work [20] to learn the image-pair input. Li et al. proposed SDINet to fuse RNA-seq data and

gene expression image data [16]. However, these methods have some limitations. First, they

perform pairwise prediction without considering the GRN topology, i.e., the model input con-

sists of only the expression data of a gene pair. Second, they are unable to predict gene pairs

for which expression data is missing. Furthermore, the multi-instance problem has not been

effectively resolved yet.

Recently, the development of graph neural networks [12, 16] has greatly enhanced the perfor-

mance of the prediction tasks with graph-structured data. Instead of taking a pair of gene fea-

tures as input, GNNs learn from graphs, including both node features and graph topological

information. Thus, GNNs have become a good choice for modeling gene interaction networks,

and a few GNN-based GRN inference methods have been proposed [12, 16, 21]. Especially, with

the rapid accumulation of single-cell data, gene expression in single cells has been used to

improve the node features in graphs [12, 16]. However, GNN-based methods for spatial expres-

sion data are relatively few. The major reason is that RNA-seq and scRNA-seq yield quantitative

data and allow high-throughput assaying for whole genomes, which are more suitable for corre-

lation-based gene interaction identification; while spatial expression data is often in a multi-

instance format involving high-resolution microscopic images with high complexity, large sizes,

low quantitative power, and low throughput. Extracting effective image features that preserve

spatial expression patterns and integrating them into the prediction model is a challenging task.

In this study, we predict gene regulatory interactions directly based on spatial expression

images, considering that the spatio-temporal gene expression patterns involved in these images

are indispensable to accurately infer gene regulatory networks. Although without resolved

quantitative values, the expression levels and spatial patterns represented in the form of pixel

intensities and their distribution in images can be abundant information resources. Here we

propose a method called MIGGRI, a Multi-Instance Graph neural network model for Gene

Regulatory network Inference, which consists of two major components: 1) a contrastive

learning-based feature extractor for expression images, and 2) a multi-instance GNN model to

perform the network inference and address the multi-instance issue (each gene corresponds to

multiple expression images). We evaluate MIGGRI on two GRNs of Drosophila, specifically

related to eye development and mesoderm development. Our assessment is based on a large
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collection of Drosophila embryonic spatial gene expression images, which constitute one of the

largest datasets available from the genome projects of model organisms. The contributions of

this work can be summarized as follows.

• We propose a GNN model, MIGGRI, for GRN inference using spatial expression images.

Equipped with a contrastive learning-based feature extractor and a multi-instance aggrega-

tor, MIGGRI effectively captures gene regulation information from images and considers

expression patterns from multiple images comprehensively.

• MIGGRI achieves outstanding performance on large-scale GRN inference, and outperforms

the deep learning models designed for regulatory interaction prediction by a large margin.

Besides, it can identify important links in the networks and the subgraphs composed of these

links reveal pathways involved in the regulation process.

• We evaluate the model’s ability to handle missing data and find that it exhibits a high degree

of tolerance towards genes without spatial expression information. Moreover, our analysis of

the model’s ability to reconstruct missing images indicates that the gene representations

learned by the model capture valuable spatial expression patterns present in expression

images.

Materials and methods

Gene regulatory interaction data

This research is conducted on two GRNs of Drosophila that are involved in the development

of the eye and mesoderm, respectively. For the Drosophila eye development dataset, we con-

struct a partial GRN according to the study of [22] as the training data. The known regulatory

interactions were validated by both co-expression relationships (by RNA-Seq) and physical

interactions (using computational motif inference), and we only use the high-confident inter-

actions (drawn from direct evidence) in the training to ensure the reliability of the labels. This

partial network is very sparse, whose density is 0.55%, suggesting that a lot of regulatory links

may remain unknown. (The density is computed by
2jEj

jVjðjVj� 1Þ
, where jEj is the number of edges,

and jVj is the number of nodes in the graph.) Compared to the eye development GRN, the size

of the mesoderm development network is much smaller, where the known regulatory interac-

tions are verified by ChIP-chip experiments [23].

Spatial expression data

The spatial expression data are from the Berkeley Drosophila Genome Project (BDGP) [24,

25], which houses the largest number of digital images of gene expression patterns in Drosoph-
ila embryogenesis by RNA in situ, including 8591 genes and over 14000 ISH images at differ-

ent developmental stages of Drosophila embryos. When performing hybridization operations

to obtain gene expression patterns, probes are designed, added, and hybridized to only one tar-

get gene at a time, followed by staining or other operations. Thus, each image records the

expression distribution for a single gene. Moreover, each gene may correspond to a set of

images captured from different views, i.e., lateral, ventral, and dorsal. To ensure image quality,

we extract standardized images from the FlyExpress database [26–28], where the images are

further processed (cropping, aligning, and scaling to the size of 320×128). Fig 1 displays some

examples of expression images for gene CG10002. In these images, pixel intensity corresponds

to the expression level of the gene, with darker areas indicating higher expression levels.
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In the BDGP dataset, the development process of Drosophila is divided into 16 specific

stages, which are further classified into 6 phases. Note that the study of [22] identified the eye

development GRN using samples from fruit fly larvae, while the eye development begins early

in the embryo (a lot of genes are annotated by eye-related terms in BDGP). Thus we use the

images from the last phase range of the embryonic period, which corresponds to stage 13–16

in BDGP’s development stage division. Our experiments demonstrate that the prediction

results based on the spatial expression from the last developmental stage of the embryo are

highly consistent with the labeled data, achieving over 80% accuracy for the eye development

dataset and over 70% accuracy for the mesoderm development dataset.

Construction of training and test sets

To assess the performance of MIGGRI, for both GRNs, we randomly select 20% of the known

interactions as the positive interactions in the test set, and the remaining 80% of the interac-

tions are divided into the training and validation set with a ratio of 9:1. The negative data is

randomly sampled from gene pairs that are not connected in the known network, meaning

that it has no overlap with the high- or medium-confidence links (These randomly sampled

pairs may still have unknown interactions and may not necessarily represent true negatives).

The positive-to-negative ratio is set to 1:1 in both the training set and test set. Statistics of the

datasets are shown in S1 and S2 Tables.

Problem formulation

This study aims to reconstruct large-scale gene regulatory networks (GRNs) based on gene

spatial expression data and partial network topology. A GRN can be denoted by a graph

G ¼ ðV; EÞ, where V is the set of nodes, i.e. genes, and E is the set of edges, i.e. gene-gene

interactions.

Due to the multi-instance nature, a gene corresponds to a set of expression images

I i ¼ fI
V
i ; I

D
i ; I

L
i g, where IV

i , ID
i , and IL

i denote three subsets of images captured at the orien-

tation of ventral, dorsal, and lateral, respectively. In our model, the node representation xi of

the ith node is generated by first a CNN-based feature extractor and then an aggregator (Eq

(1)),

xi ¼ AggregateðCNNðI iÞÞ ð1Þ

The inference of GRNs is essentially a link prediction task in graphs. In this study, we per-

form supervised learning to identify unknown interactions, i.e. to predict whether there is an

edge existing between two given nodes based on the existing edges in the graph. Let X and A

be the node feature matrix and adjacency matrix, respectively. Through the GNN training, we

can get the updated node feature matrix X0, i.e.,

X0 ¼ GNNðX;AÞ: ð2Þ

Fig 1. The expression images of gene CG10002 from developmental stage 11–12.

https://doi.org/10.1371/journal.pcbi.1011623.g001
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Thus, an updated adjacency matrix A0 can be inferred according to X0. In this way, all

potential interactions could be revealed.

Model overview

The proposed MIGGRI exploits both gene spatial expression information and known regula-

tory interactions to predict unknown interactions. Gene regulatory networks can be naturally

modeled as graphs where nodes are genes and links between genes denote their interactions.

Thus the prediction module adopts a GNN as the backbone network. Since incorporating

image information into GNN is not straightforward and to ensure high-quality initial node

embeddings for the graph, we propose a two-stage learning scheme. The first stage aims to

extract features from gene expression images. One challenge of this stage is to preserve regula-

tory interaction-related features from high-dimensional image data in a limited supervision

scenario (only a portion of regulatory relations is known). To address this challenge, we adopt

a siamese convolutional network to learn the pairwise interaction information of the expres-

sion images, whose input is a pair of images (from a TF and a target gene, respectively) and the

target output is a binary label (1 for interaction and 0 for no interaction). Importantly, as genes

have multiple instances of spatial expression images, the pairwise setting allows us to construct

a large number of input pairs that exceed the number of known regulatory relations. This pro-

vides more variants for MIGGRI to capture the regulatory-related features. By optimizing the

contrastive loss, the convolutional layers can be trained to extract image features that are corre-

lated to regulatory interactions. Then, in the second stage, a multi-instance GNN is designed

to aggregate the multi-instance features with graph topology information. MIGGRI takes both

the node features and the adjacent matrix denoting links in the graph as input. The adjacent

matrix can be directly generated by known regulatory interactions, while the gene representa-

tion is learned from gene spatial expression data before training the GNN.

Fig 2A shows the network architecture for Stage I. Note that each gene may contain multi-

ple expression images captured at different orientations (ventral, dorsal, and lateral), the input

two images should be in the same orientation to avoid differences caused by views. After train-

ing, each image is passed through the CNN to yield an embedding vector. Then, each gene

may correspond to multiple embedding vectors, which are aggregated into a single representa-

tion in Stage II. As shown in Fig 2B, there is an aggregator that yields node embeddings for the

downstream GNN. Through training the GNN, node embeddings get updated, and finally we

use a decision module to infer gene interactions according to the dot product of the final

embeddings of two genes.

We describe the two stages in detail in the following sections.

Stage I: Extracting ISH image features with a siamese convolution network

CNNs have been widely adopted to learn features from image data, by fitting functions from

input images to output labels. In this study, the target output is the existence of regulatory

interaction between two genes. Thus, we adopt a siamese network structure to allow pairwise

input.

Specifically, an input pair is denoted by P ¼ hIp;oi ; I
q;o
j i, where Ip;oi and Iq;oj denote the pth

image from the ith gene and the qth image from the jth gene, respectively, which have the

same orientation o (o 2 {V, D, L}). Let the label of P be yi,j (1 for regulatory relation and 0 for

no regulatory relation). Apparently, for a single pair of genes, there may be multiple input

pairs of images with the same label. Following the previous works [17, 18], negative samples

are randomly selected from the gene pairs which are not connected in the known GRN.
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Benefiting from the pairwise input setting, the training examples are greatly increased com-

pared to single-image input, which enables sufficient training for the CNN layers.

Here we use a modified VGG-16 as the backbone CNN model, and the siamese network is

trained with the contrastive loss Lc as shown in Eq (3) [29],

Lc ¼
1

2
jjxp;oi � xq;oj jj

2

2
; if yi;j ¼ 1

1

2
maxð0;m � jjxp;oi � xq;oj jj2Þ

2
; if yi;j ¼ 0

8
<

:
; ð3Þ

wherem denotes the distance margin, a predefined hyperparameter. Through contrastive

learning, the model will pull the image feature embeddings close for the interacting pairs of

genes while push away those non-interacting pairs.

Fig 2. Overview of MIGGRI. (A) Stage I: Image embedding extraction via a siamese convolution network learned by contrastive loss. The gene

expression images ofDrosophila embryos were captured at different orientations (ventral, dorsal, and lateral), thus the input two images should

be in the same orientation to avoid differences caused by views. (B) Stage II: GRN inference via the multi-instance graph neural network. For

each gene, its multiple image embeddings are first aggregated into a single feature vector that serves as the node embedding in the graph. During

the training procedure, the node embeddings are updated. Finally, unknown links between pairs of genes are predicted by the dot product

operation on their node embeddings.

https://doi.org/10.1371/journal.pcbi.1011623.g002
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Stage II: Multi-instance graph neural network

Given the image embedding vectors learned in Stage I, we first design an aggregator to convert

the set of image embeddings for a gene to a single gene representation (as formulated in Eq

(1)). There are three alternative aggregators, based on mean pooling, max pooling, and a long

short-term memory (LSTM) network with random shuffling. The first two aggregators have

no parameters, which just take the mean or max value per dimension over the given set of

image vectors; while the LSTM is a special type of recurrent neural network to learn represen-

tation for the input sequence. As our input is a set instead of a sequence, a random shuffling

strategy is adopted to ensure order invariance, i.e. in each training epoch, the order of image

embeddings in the set is randomly shuffled.

Then we use a two-layer GNN to learn from the aggregated feature for each gene node and

the partially known network structure. We employ the GraphSAGE-mean [30] as the back-

bone network. Unlike the two other popular GNN models, GCN and GAT, GraphSAGE-

mean involves a crucial step of taking the mean operation on the embeddings over the neigh-

borhood for a given node. As a result, GraphSAGE is particularly well-suited for semi-super-

vised learning tasks, especially when some node features are missing. In our experiments,

GraphSAGE-mean shows better performance than GCN and GAT. The comparison of differ-

ent backbone networks is provided in S4 Table. The message passing and aggregating mecha-

nism is formulated in Eq (4).

hðlþ1Þ

N ðiÞ ¼ MEANðfhðlÞj ; 8j 2 N ðiÞgÞ

hðlþ1Þ

i ¼ sðWðlÞ � CONCATðhðlÞi ; h
ðlþ1Þ

N ðiÞ ÞÞ;

ð4Þ

where hðlÞi is the feature vector of the ith node in the lth layer. N ðiÞ is the set of neighbors of

gene i and W(l) is the weight matrix of the lth layer. MEAN(�) is an operator that computes the

average vector for a set of vectors, and σ denotes the activation function.

After training the GNN, we adopt the dot product of two gene embeddings (houti and houtj ) to

predict whether the interaction exists, as described in Eq (5).

ŷij ¼ sðh
out
i � h

out
j Þ: ð5Þ

Results

Experimental settings

In Stage I, we optimize the siamese convolution network by Adam optimizer [31] with a learn-

ing rate of 5e-6. The distance marginm in the contrastive loss is set to 1, which is a common

choice in previous studies [18, 32]. For the eye development GRN, the model is trained for 50

epochs with batch size 16. For the mesoderm development GRN, the model is trained for 22

epochs with batch size 32.

In Stage II, we train the LSTM-based aggregator and GraphSAGE jointly. We use the Adam

optimizer with a learning rate of 5e-2. The decision threshold for the existence of interaction is

set to 0.5. Based on the best performance on the validation set, the model on eye development

dataset is trained for 78 epochs, and the model on mesoderm development dataset is trained

for 3 epochs.
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MIGGRI achieves promising performance for GRN inference

We compare our method with four baseline models, namely staNMF [15], SIFT_LoR [33–35],

GripDL [17], and ConGRI [18]. Details are listed below.

• StaNMF: an unsupervised learning method that extracts principal patterns from gene

expression images based on nonnegative matrix factorization and selects the set of principal

patterns with a stability criterion;

• SIFT_LoR: a supervised learning method using SIFT descriptor [33] and logistic regression;

• GripDL: a deep CNN model that performs binary classification based on combined gene

pair images;

• ConGRI: a deep learning model that employs a siamese network for feature extraction and

multi-layer perceptron (MLP) for prediction.

The first baseline is an unsupervised model, the second one is a traditional machine learn-

ing method with classic feature extraction, and the remaining ones are deep learning methods.

Especially, GripDL and ConGRI adopt CNN to extract image features but do not leverage net-

work topology. The implementation of staNMF, GripDL, and ConGRI are publicly available.

We follow the original implementations by directly using their source codes, and these meth-

ods were all primarily designed for the reconstruction of regulatory networks using spatial

gene expression images. SIFT_LoR uses scale-invariant feature transform (SIFT) to extract

image features, which is a classical algorithm in computer vision (CV) with a standard imple-

mentation. We adopt the hyperparameter settings provided in the original implementations of

staNMF, GripDL, and ConGRI, and well-tune the hyperparameters of SIFT_LoR to ensure

consistency and comparability.

We use two common metrics, accuracy and F1 score (formulated in Eq (6)), to assess the

performance.

Accuracy ¼
TPþ TN

TPþ FPþ TNþ FN
;

F1 score ¼
2� TP

2� TPþ FPþ FN
;

ð6Þ

where TP, FP, TN, and FN correspond to the number of true positives (correctly predicted

interaction), false positives (incorrectly predicted interaction), true negatives (correctly pre-

dicted non-interaction), and false negatives (incorrectly predicted non-interaction),

respectively.

The comparison results on the eye development dataset are shown in Fig 3A. As can be

seen, supervised deep learning-based methods have great advantages over traditional algo-

rithms, indicating that deep learning structures can exploit gene expression images and extract

better features. Compared with the second-best model ConGRI, MIGGRI increases the accu-

racy by 6.2% and F1 by 8.7%. Among these models, the unsupervised method staNMF per-

forms the worst because it identifies indirect gene-gene interaction based on similar

components in the images rather than regulatory interaction. The traditional method SIF-

T_LoR also has very poor performance, indicating that the SIFT features are unable to reflect

the expression patterns. ConGRI also adopts contrastive learning to extract image features

while it uses fully connected MLP for classification. MIGGRI improves ConGRI with a multi-

instance GNN leveraging the graph topological information, thus achieving the best prediction

PLOS COMPUTATIONAL BIOLOGY MIGGRI

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011623 November 8, 2023 9 / 24

https://doi.org/10.1371/journal.pcbi.1011623


performance. The results suggest that the topological information improves the performance

of inferring gene regulatory interaction.

The results from the experiment on the mesoderm development dataset are consistent with

those of the eye development dataset, as shown in Fig 3B. Despite the mesoderm network

being much smaller than the eye development network, MIGGRI still outperforms all other

models, achieving an accuracy of 0.716 and an F1 score of 0.725. Notably, MIGGRI surpasses

the second-best model, ConGRI, by 2.9% in prediction accuracy and 2.5% in F1 score. This

highlights that the topology of a small graph can still enhance the node embeddings.

Investigating the major components in MIGGRI

In addition to the comparison with the existing methods for inferring gene interactions, we

also investigate the impact of the major components in MIGGRIby using the eye development

dataset. To assess the importance of the topology of known GRN and the spatial image infor-

mation, we compare the ROC Curves of MIGGRI, ConGRI, and GraphSAGE (w/o image).

ConGRI also employs contrastive learning for image feature extraction. However, instead of

using GNN, it concatenates the embeddings of two genes and feeds them into a multi-layer

perceptron for prediction. GraphSAGE (w/o image) aims to provide baseline performance for

assessing the contribution of the spatial expression data. Thus, this model has exactly the same

graph structure and GNN model as those of MIGGRI while no spatial expression information

is involved, i.e. all gene representations in the graph are randomly initialized in GraphSAGE

(w/o image). As shown in Fig 4A, GraphSAGE (w/o image) benefits from the powerful learn-

ing ability of GNNs, which obtains an AUC (Area under the ROC Curve) of 0.70 by learning

the network topological information. ConGRI adopts contrastive learning to extract image fea-

tures and achieves an AUC of 0.82, outperforming the GraphSAGE (w/o image) by 0.12. Com-

pared with the previous two models, MIGGRI reaches 0.88 on the AUC score, which has an

obvious advantage over the other two methods. The results again show that topological infor-

mation benefits the gene regulatory interaction inference, and suggest that both the proper

representation of spatial expression data and the topological information are important for

inferring gene regulatory interaction.

Then, we compare different aggregation modules. The aggregation module enables our

method to handle the multi-instance input. As each gene is associated with a set of images and

Fig 3. Performance comparison of GRN inference for Drosophila eye development (A) and mesorderm development (B).

https://doi.org/10.1371/journal.pcbi.1011623.g003
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each image corresponds to an embedding vector, the aggregator aims to output a single vector

for each gene, thus a simple pooling method can also be used. Here we compare max pooling,

mean pooling, and the shuffled LSTM method (adopted by MIGGRI). The comparison results

are shown in Fig 4B. The three aggregators all achieve over 0.8 accuracy. The mean pooling

method performs better than max pooling, perhaps because the mean operator leads to more

stable representations. In contrast to pooling-based methods, LSTM has learnable parameters

and achieves the best overall performance.

Predicting GRNs with missing data

As mentioned in the Introduction section, the missing data issue is very common in transcrip-

tomics data. For instance, in our datasets, some genes may have expression images from only

one or two orientations or even no image at all, while they are associated with regulatory inter-

actions in the known GRN. Previous methods often discard genes with missing features,

which limits their prediction capability. In contrast, GNN-based models can alleviate the reli-

ance on input features by leveraging the relationships between genes captured by the graph

structure. To evaluate the robustness of MIGGRI in scenarios with missing data, we conduct

an experiment using a network with missing expression data. Specifically, we use 90% of the

genes in the Drosophila eye development dataset, with their expression image features serving

as input node features. For the remaining 10% of genes, we initialize their node features with

random vectors following a normal distribution. We design three tasks for performance com-

parison. The task settings and their results are shown in Fig 5. Here we use mean pooling as

the feature aggregator (the results of using other aggregators have the same trend and are

given in S3 Table).

As can be seen, the accuracy of Task II is slightly higher than that of Task I.The experiments

are repeated 20 times with random splits and we compute the statistical significance of the per-

formance difference using pair-wise t-tests. We find that the accuracy difference is statistically

significant at a 95% significance level, with a p-value of 0.036. This result suggests that adding

genes without expression images can enhance the prediction accuracy for those genes with

complete expression information. This finding demonstrates that link predictions in the graph

can benefit a lot from the network topology, as the newly added genes introduce more links in

the network and more data for training. The results of Task III demonstrate that MIGGRI can

Fig 4. (A) ROC curves of MIGGRI, ConGRI and GraphSAGE (w/o image). (B) Comparison of three alternative aggregation modules in MIGGRI.

https://doi.org/10.1371/journal.pcbi.1011623.g004
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tune randomly initialized gene features into useful embeddings, achieving fairly good predic-

tion accuracy (AUC 0.848 and F1 0.740).

The capability of handling missing data is a great advantage of MIGGRI over previous GRN

inference methods. Although the deep learning models, GripDL and ConGRI, achieve high

accuracy on standard datasets, they are unable to handle the genes with no expression data, as

they only use expression images as the input features. Therefore, MIGGRI has potentially

much wider application in various GRN inference scenarios.

Recovering the missing expression images

The experiment in the previous section shows how MIGGRI deals with the missing data issue,

and we can see that the GNN-based model learns meaningful representation for the genes

without spatial expression information. In this section, we further exploit the trained model to

recover the missing expression images.

First, MIGGRI is trained on a network consisting of genes with complete information, then

the nodes with randomized feature vectors are added to the network (the associated links of

these nodes are also added). Second, we keep the model’s parameters unchanged and compute

gradients of the loss function with respect to the feature vector of each newly added gene.

Through the gradient descent, we optimize the representations of these randomly initialized

gene nodes. In the third step, we use the inferred gene representations to recover spatial

expression images.

To achieve this goal, we train a decoder, whose inputs and target outputs are the feature

embeddings and expression images of the genes with complete information, respectively. The

decoder’s structure is shown in Fig 6, which is a deconvolution network with residual connec-

tions. The reconstruction loss is the min-squared-error between the generated images and

ground truth (GT) images. We use the Adam optimizer to train the decoder for 10 epochs

with a batch size of 64. The learning rate is set to be 2e-4. In the experiment, 10% of the genes

are left as the unseen genes, which are removed from the training graph and not used for train-

ing. After training, the model parameters are frozen and we add those unseen genes into the

graph with randomly initialized features. Through gradient descent with respect to the feature

Fig 5. Results of GRN inference with missing data. The pie charts on the left show numbers of samples and percentages of the four datasets, where Dtr

and Dte denote the training and test sets with image information, D0tr and D0te are the training and test sets without image information, and ‘!’ denotes

fitting a mapping function from the training set (left) to the test set (right). Here the mapping function is learned by MIGGRI. The bar chart on the

right shows the performance of three tasks.

https://doi.org/10.1371/journal.pcbi.1011623.g005
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vectors of the unseen nodes, we obtain updated representations for the unseen genes, which

are fed into the trained decoder to yield the recovered images. As images from different orien-

tations vary a lot, we train three decoders for the three orientations, respectively.

Fig 7 shows some examples of recovered images. Although the generated images have

blurred texture, they retain some spatial distribution information of gene expression, especially

the high-intensity regions. To evaluate the generation quality regarding the retained spatial

distribution information in images, we use an annotation tool for Drosophila embryos,

Annofly [36], that predicts anatomical and developmental terminology (In the BDGP data-

base, each gene is annotated by some terms from a controlled vocabulary (CV), i.e. an ontology

describing anatomical and developmental properties. The CV terms correspond to local

regions in the images, such as ‘brain primordium’, ‘ventral nerve cord primordium’, and ‘head

mesoderm PR’.) for spatial expression images. As can be seen from Fig 7, among the top 5 pre-

dictions, the predicted terms of generated images have a lot of overlap with those for the GT

images. Take the gene AP-2 as an example, there are 3 terms in common between the two top

5 lists, and the most confident term of GT image (‘embryonic/larval muscle system’) ranks the

second for the generated image. CG10669 and KrT95D have 3 and 2 common terms respec-

tively between their generated and GT images. The overlap in the annotation terms suggests

that the recovered images are semantically similar to the GT images. In other words, the

Fig 6. Architecture of the decoder.

https://doi.org/10.1371/journal.pcbi.1011623.g006
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generated features contain essential information that describes the functions and properties of

genes.

Predicting for unknown interactions

Given the gene representations yielded by the trained GNN, it is convenient to predict the exis-

tence of interaction between all gene pairs. Here we obtain the possibilities of interaction for

all the unknown links in the graph of Drosophila eye development and analyze the top 100

ones by searching them in the FlyBase [37] and STRING [38] database to find supporting evi-

dence of their regulatory relationship and the known pathways that they belong to. Especially,

we find two prominent sub-networks. The first one is a network mainly composed of trans-

membrane proteins, as shown in Fig 8A. The Sec61 protein complex expressed by Sec61α and

Fig 7. Top 5 predicted CV terms by Annofly for generated expression images (left) and ground truth (GT) images

(right). The pixel intensity denotes expression level, and deep blue region means high expression region.

https://doi.org/10.1371/journal.pcbi.1011623.g007
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Sec61β genes in the network translocates secretory and membrane proteins into the lumen of

the endoplasmic reticulum (ER), where they attain their correct three-dimensional structure.

During this period, proteins undergo post-translational modification [39]. Both CaBP1 and

ERp60 in the network are also located in ER and involved in the regulation of protein folding

[40]. The widely conserved ER membrane protein complex (EMC) facilitates the biogenesis of

a wide range of membrane proteins. For instance, ER membrane protein complex is required

for the insertions of late-synthesized transmembrane helices of Rh1 in Drosophila photorecep-

tors [41]. Generally, the entire network is involved in protein export and protein processing in

the endoplasmic reticulum. It constructs and influences Golgi-associated vesicle membranes

and endoplasmic reticulum vesicular transporters, and is essential for Drosophila eye develop-

ment [42, 43].

The second one belongs to the Epidermal Growth Factor Receptor (EGFR) signaling path-

way [37], which mainly includes two regulatory interactions, i.e. Egfr–S and ttk–phyl, where

Egfr and ttk are TFs. Both of the two links have predicted scores greater than 0.95. Fig 8B

shows their interactions. The EGFR signaling pathway plays an important role in cell recruit-

ment, ommatidium spacing, cell proliferation, and survival in Drosophila eye development.

Both over-activation and under-activation of the EGFR signaling pathway can lead to omma-

tidial rotation defects [44, 45]. The EGFR signaling pathway is essential during eye develop-

ment, and the expression of a dominant-negative EGFR completely prevents retinal formation

[46]. Activation of the EGFR pathway recruits photoreceptor cells and cone cells in the Dro-
sophila eye, and ED, a cell adhesion molecule, can inhibit EGFR signaling by regulating the

activity of the ttk transcriptional repressor [47]. In addition, the degradation of the gene ttk
through the gene phyl binds to the BTB domain of ttk during eye development [48, 49]. At the

same time, the physical interaction between the gene ttk and the gene phyl has been verified in

various experiments [49–51], and the gene ttk has an inhibitory gene regulation effect on the

gene phyl [52].

In addition to the two networks discussed earlier, MIGGRI recognizes more interactions

that form small functional networks (two examples are shown in S1 Fig). It is worth noting

that, in addition to the high-confident interactions used for training from [22], MIGGRI pre-

dicts a number of interactions that are still under study. The study of [22] provides a larger

number of medium-confident interactions than high-confident interactions, and we find that

Fig 8. Two prominent sub-networks composed of links from the top 100 predicted interactions that are not in the

known GRN. (A) A network participating in protein export and protein processing in the endoplasmic reticulum. (B)

A sub-network of the EGFR pathway.

https://doi.org/10.1371/journal.pcbi.1011623.g008
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although some prediction results are not confirmed in the database and literature, they are

present in the medium-confident interactions. Some of these predictions are listed in S6 Table.

For instance, Xbp1 appears in two of the identified interactions, encoding a transcription fac-

tor that mediates the unfolded protein response. Xbp1 mutants fail to develop beyond the sec-

ond instar larval stage, indicating a requirement to resolve inherent ER stress during normal

development. Su(H) is predicted to interact with Xbp1. Su(H) is a key transcriptional regulator

that has been shown to be tightly linked to processes such as eye development in Drosophila.

Another gene predicted to interact with Xbp1 is noc, which has also been proven to be associ-

ated with Drosophila eye development [37]. Therefore, by cross-verifying the predicted poten-

tial interactions obtained by MIGGRI with the reported medium-confident ones, new

discoveries of true interactions can be achieved.

What’s more, note that the negative pairs in our dataset are randomly sampled from the

links that are not included in [22], while a few of them may be unrevealed interactions. We

check the prediction results on the negative training data and find several links with high pre-

diction scores. Then we search them in the STRING database [38] and find supporting evi-

dence for some of them as listed in Table 1. For instance, grh and vvl participate in a regulatory

network controlling epithelial maturation. Reduction of the POU domain TF Ventral veins

lacking (Vvl) largely ameliorates the airway morphogenesis defects of grhmutants. Vvl and

Grh proteins additionally interact with each other and regulate a set of common enhancers

during epithelial morphogenesis [53]. In Drosophila,ac is a basic helix-loop-helix activator

(bHLH A) gene which affects Su(H) and proneural bHLH A protein binding during Notch sig-

naling [54]. Moreover, the ac–sc proneural genes are expressed in clusters of cells that prefig-

ure the positions of each macrochaete, and ara is also involved in this process. The lack of ara
will lead to the failure of expression [55].

In addition, we analyze the GO terms for all genes present in the predicted links with scores

greater than 0.95, using BiNGO [56] in Cytoscape [57]. Fig 9 shows 19 biological process GO

terms related to eye development, which are ranked by p-value (detailed values are showin in

S5 Table). For example, the genes annotated by terms like ‘compound eye photoreceptor cell

differentiation’ and ‘compound eye retinal cell programmed cell death’ involve in regulating

the development of important components such as the retina and photoreceptor of eyes.

Besides, there are many other terms not included in Fig 9, which denote basic cell activities,

such as ‘regulation of transcription, DNA-dependent’. They are also essential for Drosophila
eye development. Overall, a substantial proportion of the genes in the top predicted interac-

tions are closely related to eye development.

Interpreting the crucial subgraphs for prediction

The results of previous sections have shown that in MIGGRI, the judgment of the regulatory

relationship between a pair of genes does not just depend on their own information but also

on their neighborhood genes, which constitute a subgraph. In this section, we explore the bio-

logical significance of such subgraphs. Especially, we select the master regulator grh, a hub

gene in the Drosophila eye development GRN with the largest degree, which can regulate a

Table 1. Gene regulatory interactions with high confidence on STRING.

Gene 1 Gene 2 Confidence score Reference

grh vvl 0.738 [53]

ara ac 0.641 [55]

Su(H) ac 0.628 [54]

https://doi.org/10.1371/journal.pcbi.1011623.t001
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total of 197 target genes. The link grh–dlp is in the test set and successfully identified by MIG-

GRI. We apply the GNN-Explainer [58] (Details are described in Suppl. Materials) to find the

links in the known graph that contribute to the prediction.

Fig 10 shows the subgraph including the important links highlighted by GNN-Explainer for

predicting grh–dlp, which includes 12 genes. By searching the FlyBase, we find that the genes

grh, dlp, and PtpE4 are all in the Fibroblast Growth Factor Receptor (FGFR) signaling pathway,

which is an important pathway regulating cell morphogenesis involved in differentiation [59]

and related to Drosophila eye development [60]. The importance level of PtpE4–grh ranks in

the top 5.4% among the related interactions. We also search these three genes as a group in

STRING and find that they function in cell morphogenesis involved in differentiation.

The consistency between the identified subgraph and known pathways suggests that MIG-

GRI can capture real regulation knowledge from GRN topology, which is a good interpretation

for the learned model, i.e. the learned model could serve as a knowledge base. By applying an

analysis tool, like GNN-Explainer, to a specific link in the network, a subgraph that determines

the link can be recognized, which may facilitate the discovery of potential pathways.

Discussion

We present a novel deep learning-based model, MIGGRI, for reconstructing gene regulatory

networks (GRNs) in Drosophila eye development and mesoderm development. The proposed

model has demonstrated superior performance compared to traditional methods and recent

deep learning models, achieving substantial improvements in the reconstruction of GRNs.

The proposed model utilizes a contrastive learning scheme to generate high-quality image

feature representations for genes. This feature extraction process is guided by known regula-

tory relationships and differentiates between interacting and non-interacting pairs. The quality

of image embeddings relies on sufficient training at this stage, and it has a great impact on the

Fig 9. Enriched GO terms for the genes with links of predicted score over 0.95. The detailed information is provided in S5 Table.

https://doi.org/10.1371/journal.pcbi.1011623.g009
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final performance. Although contrastive learning mitigates the small data issue by generating

numerous input image pairs for training, the model performance may be degraded for datasets

with very few known interactions, such as the Mesoderm data. Nevertheless, when compared

to methods that use single images as input, MIGGRI has a much higher capacity for handling

small data.

As for the feature aggregation, the LSTM-based aggregator is adopted to generate a compre-

hensive representation for each gene from all image features that record their expressions.

Since the LSTM is originally designed for sequence data, a random shuffling strategy is applied

to ensure order invariance. We compare the randomly shuffled LSTM aggregator with two

set-based aggregators, namely mean-pooling and max-pooling. The experimental results dem-

onstrate that the randomly shuffled LSTM outperforms the other two aggregators. While we

do not provide a further comparison with other aggregation methods in this paper, it is worth

noting that it would be feasible to integrate attention-based or transformer-based aggregation

methods into our proposed model. In our future work, we plan to explore additional aggrega-

tion methods to further improve the performance of our model.

Fig 10. The heat map of a subgraph that determines the prediction for the interaction grh–dlp identified by GNN-Explainer. The red dashed line

represents the interaction of interest, and the color of edges denotes their weights. For a clear visualization, we remove some edges with low weight.

https://doi.org/10.1371/journal.pcbi.1011623.g010

PLOS COMPUTATIONAL BIOLOGY MIGGRI

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011623 November 8, 2023 18 / 24

https://doi.org/10.1371/journal.pcbi.1011623.g010
https://doi.org/10.1371/journal.pcbi.1011623


The proposed MIGGRI framework exhibits outstanding performance on the Drosophila
development datasets. However, the current study is limited by the availability of other large-

scale gene regulatory networks and corresponding accessible spatial expression data. The

BDGP database provides an abundance of spatial expression data for Drosophila, enabling

comprehensive and large-scale study of GRNs. Additionally, Drosophila genes are extensively

annotated as a model species, and the standardized expression images are relatively free of

noise and artifacts. This facilitates more accurate identification of potential gene regulatory

interactions and provides ideal conditions for assessing model performance and validating

deep learning efficacy. Furthermore, using embryo images, the reconstructed images can be

clearly observed, offering model interpretability that is not possible with complex mammalian

tissues.

To assess the robustness of MIGGRI to noisy images, we conduct supplementary experi-

ments by using raw images from BDGP for the reconstruction of eye development GRN.

These raw images are much noisier than the standardized images, with multiple embryos or

partial embryos appearing randomly in the image with varying angles (as illustrated in S2 Fig).

We maintain the same dataset splits and other experimental settings as before and only change

the input images to raw images from BDGP. The results show that all methods experience a

decrease in performance. Specifically, MIGGRI achieves an accuracy of 75.3%, ConGRI 72.5%,

and GripDL 67.6%. Despite the impact of noise on MIGGRI’s performance, it still outperforms

ConGRI by 3.7% in accuracy, indicating that MIGGRI retains its advantages over other meth-

ods when handling noisy images.

Although the scope of this study is limited to Drosophila and ISH imaging data, the MIG-

GRI framework has the potential to be a versatile tool for gene regulatory network (GRN)

inference in various organisms and expression data. The contrastive learning approach used in

MIGGRI allows for the learning of image features related to gene regulatory patterns in an

end-to-end manner, without incorporating specific features about the organism or image type.

As more gene expression image databases become available, particularly with the emergence

of spatial expression platforms such as Visium [61], CosMX [62], and MERSCOPE [63], MIG-

GRI can be applied to a wider range of spatial expression data and GRNs.

Compared to methods based on gene expression or TF-binding data, image-based GRN

methods are still in their early stages, and their potential is yet to be fully explored. The follow-

ing features have the potential to expand the range of application scenarios for MIGGRI.

• It has good prediction performance for genes without spatial expression data, and we can

reversely generate their expression images from the trained model, which may provide clues

on their expression distribution. Therefore, the existing knowledge on interacting gene pairs

can be incorporated into the network and boost the performance of the whole network no

matter whether their spatial expression data is given.

• It allows further mining on the subgraphs that may correspond to combinatorial regulation

(as illustrated in Fig 10). Thus, the downstream analysis based on the model could provide

new insight into the joint regulation of TFs and key network motifs.

• It can be easily applied to other GRNs and expression data obtained from a variety of high-

throughput technologies, as the multi-instance GNN is a general framework whose node fea-

tures can represent image embeddings, single-cell RNA-seq data, etc. Moreover, the model

can also be adapted to node-level prediction tasks on GRNs, like identifying cancer driver

genes, by replacing the dot product module with a classification module based on node

embeddings.
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Conclusion

Recent advances in spatial transcriptomics have revolutionized gene regulation studies and

enabled the extensive discovery of co-expression patterns distributed in tissues and organs.

There is an urgent need of computational methods for GRN reconstruction based on spatial

expression data alongside large-scale data generation. Although increasing efforts to use sin-

gle-cell and spatial expression data have been made, most of the attempts deal with scalar- or

vector-based gene expression levels instead of the whole picture of expression in space, due to

the difficulty in integrating information from numerous high-dimensional microscopic

images and regulatory networks into learning models.

This study attempts to provide an image-driven protocol for elucidating gene regulatory

interactions and we present MIGGRI, a multi-instance GNN model for inferring GRNs from

spatial gene expression images. In the experiments on large-scale benchmarks and an indepen-

dent test set, MIGGRI achieves significant improvement compared to other reconstructing

methods. With the increasing throughput and resolution of the imaging techniques of spatial

transcriptomics, image-based approaches will be of paramount importance in elucidating gene

expression patterns and regulatory events in various organs, tissues, as well as whole organ-

isms. As more and more GRNs have been revealed, MIGGRI can help refine regulatory net-

works, impute missing links, and extend our understanding of complex gene regulation

mechanisms.
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tors. Advances in Neural Information Processing Systems 32: Annual Conference on Neural Informa-

tion Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada; 2019.

p. 9240–9251.

59. Muha V, Müller HAJ. Functions and Mechanisms of Fibroblast Growth Factor (FGF) Signalling in Dro-

sophila melanogaster. International Journal of Molecular Sciences. 2013; 14(3):5920–5937. https://doi.

org/10.3390/ijms14035920 PMID: 23493057

60. Sieglitz F, Matzat T, Yuva-Aydemir Y, Neuert H, Altenhein B, Klämbt C. Antagonistic Feedback Loops
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