
ADP release can explain spatially-dependent kinesin binding1

times2

Trini Nguyen1† , Babu Janakaloti Narayanareddy 2† , Steven P. Gross 1,2,3,4*, and3

Christopher E. Miles 1,5,6*
4

1Center for Complex Biological Systems5

2Department of Developmental and Cell Biology6

3Department of Physics and Astronomy7

4Department of Biomedical Engineering8

5Department of Mathematics9

6Center for Multiscale Cell Fate, University of California, Irvine, Irvine, CA 9269710

November 7, 202311

†Co-first authors12

*Corresponding Authors: Steven P. Gross, 2222 Nat. Sci I, Irvine, CA 92697, Email: sgross@uci.edu;13

Christopher E. Miles, 340G Rowland Hall, Irvine, CA 92697, E-mail: chris.miles@uci.edu14

Classification: Biophysics and Computational Biology15

Keywords: intracellular transport, biophysics, motor proteins, ADP release, protein-protein interactions,16

simulation-based inference17

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2023. ; https://doi.org/10.1101/2023.11.08.563482doi: bioRxiv preprint 

https://orcid.org/0000-0003-4965-4470
https://orcid.org/0000-0001-5992-1793
https://orcid.org/0000-0001-5494-403X
sgross@uci.edu
chris.miles@uci.edu
https://doi.org/10.1101/2023.11.08.563482
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract18

The self-organization of cells relies on the profound complexity of protein-protein interactions. Challenges in di-19

rectly observing these events have hindered progress toward understanding their diverse behaviors. One notable20

example is the interaction between molecular motors and cytoskeletal systems that combine to perform a variety21

of cellular functions. In this work, we leverage theory and experiments to identify and quantify the rate-limiting22

mechanism of the initial association between a cargo-bound kinesin motor and a microtubule track. Recent23

advances in optical tweezers provide binding times for several lengths of kinesin motors trapped at varying dis-24

tances from a microtubule, empowering the investigation of competing models. We first explore a diffusion-limited25

model of binding. Through Brownian dynamics simulations and simulation-based inference, we find this simple26

diffusion model fails to explain the experimental binding times, but an extended model that accounts for the ADP27

state of the molecular motor agrees closely with the data, even under the scrutiny of penalizing for additional28

model complexity. We provide quantification of both kinetic rates and biophysical parameters underlying the29

proposed binding process. Our model suggests that most but not every motor binding event is limited by their30

ADP state. Lastly, we predict how these association rates can be modulated in distinct ways through variation of31

environmental concentrations and spatial distances.32

Significance Statement33

Cytoskeletal-motor assemblies self-organize to achieve cellular functions ranging from delivering intracellular34

cargoes to generating forces in mitosis. Advancements in single-molecule experiments have revealed immense35

detail about motor detachment and stepping, but relatively little regarding the attachment process. With newly36

available spatially parameterized motor binding times from an optical trap, the evaluation of mechanistic mod-37

els for binding becomes possible. We find that a model limited by both diffusive search and ADP-release best38

explains the data. The coupled chemo-mechanical nature of this interaction is more malleable than either sepa-39

rately, possibly explaining the rich diversity and regulation observed in cells. More broadly, our study provides a40

timely vignette on leveraging computations with experiments to understand how geometry and other complexities41

shape protein-protein interactions.42

Introduction43

Life depends on an immensely diverse and complex array of protein-protein interactions [1]. These interactions44

are richly regulated in both space and time (e.g., via post-translational modifications, fluctuating concentrations45

[2]) to modulate affinities, promiscuities, and sensitivities [3]. Understanding how these interactions are parame-46

terized by both chemical and physical factors is broadly limited due to challenges in observing interaction events47

directly [4]. While predicting interactions from molecular structures (e.g., from molecular dynamics simulations) is48

an invaluable approach, these investigations still suffer from the same observational limitation in their validation49

[5].50

One variety of such interactions of diffuse importance across cellular function are those between molecular51

motors and cytoskeletal filaments. Cytoskeletal motors, specifically kinesin-microtubule assemblies, self-organize52

to perform a zoo of cellular behaviors, including the delivery of cargoes in intracellular transport [6], generation53

of forces to guide genetic material in mitosis [7, 8], and guiding of axonal growth [9]. Each of these wildly54

different behaviors is fundamentally achieved through molecular motors binding, stepping, and unbinding from55

cytoskeletal filaments [10]. Over the last several decades, advancements in single-molecule experiments have56

revealed extensive details about the latter two components [11–13]. Stepping and unbinding are, in some sense,57

downstream of binding, suggesting clear merit in understanding the details underlying the process.58

Pursuits toward understanding motor-cytoskeleton binding have been clouded by complications in disentan-59

gling the measurements from convolving factors. That is, one must specify exactly the notion of binding that is60

being measured. To do so, consider the full process of self-assembly. Initially, a freely diffusing motor associates61

with a cargo, the motor-cargo complex then diffuses to close proximity to a cytoskeletal filament, and then the first62

motor binds to this cytoskeletal filament. After this initial binding, other motors associated with the cargo attach to63

the filament and go through cycles of reattachment. Due to the challenges in disentangling these steps, there is64
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enormous variety in the reported ranges for binding rates. While landing rate assays [14] provide direct measure-65

ments of motor-cargo association rates, these do not inform motor-cytoskeletal rates. With the exception of [15],66

very little data of direct measurements of motor-microtubule binding events exists, but this study corresponds to67

the reattachment of a secondary motor that is kept in close proximity to the filament by another. Effective binding68

on the timescale of seconds [16, 17] to tenths of a second [18] have been reported from indirect measurements69

and utilized heavily in other modeling works [19–22] to understand collective motor behavior. However, these ef-70

fective rates neglect geometric factors (such as organization on the cargo) that are known to crucially dictate the71

binding rate [23–26]. A mechanistic, biophysical model of the binding process is therefore necessary to reconcile72

the various experimental observations and modeling efforts.73

Optical Trap

Unbound Bind Walking Walking outside trap Unbind Bind

}Measure time to rebind

Figure 1: Experimental setup. An optical trap (pink) controls the average z-position of a polystyrene microbead
cargo. When the cargo-motor ensemble binds to the microtubule and begins to walk on it, a position-sensitive
diode (PSD) senses the displacement of the bead. As the motor walks farther from the center of the trap, the
force on the cargo (and consequently the motor) grows, eventually leading to unbinding from the microtubule and
resetting of the setup. The PSD measurements provide the timing between unbinding to rebinding, the binding
process modeled throughout the remainder of the work.

Here, we use a combined experimental and computational approach to explore different possible biophysical74

models of how the motor-microtubule binding process occurs. The investigation is based on the initial associ-75

ation time between a cargo-bound kinesin and microtubule from recent optical trap measurements (Fig. 1) on76

a variety of motor lengths and trapped distances away from the microtubule. The span of setups allows explo-77

ration and validation of models otherwise impossible with a single dataset. We first investigate the null model of78

a diffusion-limited search performed by the motor head. Through Brownian dynamics simulations coupled with79

simulation-based inference, we find that this model fails to capture a delay in binding at close distances. We80

find reconciliation with the data after the addition of an ADP-release requirement prior to binding to the model,81

motivated by known mechano-chemistry of motors. Through approximate Bayesian computation techniques, we82

quantify underlying rates and biophysical parameters governing this process and predict that most motor binding83

events are limited by tubulin-stimulated ADP release. Lastly, we provide predictions on how this process can be84

modulated distinctly by varying environmental concentrations or spatial distance, highlighting the complexity and85

regulatability of this interaction. Altogether, our study provides a new state-of-the-art mechanistic understanding86

of the motor-cytoskeletal binding process, a crucial ingredient in understanding the self-organization of motor-87

cytoskeletal assemblies used in cellular function. More broadly, our work illustrates how complexities arising from88

spatial and chemo-mechanical factors that shape protein-protein interactions may be understood through the89

combined efforts of theory and experiments.90

Results91

Diffusion-limited binding does not capture the qualitative behavior of experimental data.92

To investigate the biophysical mechanisms of the first association between a cargo-bound motor and a micro-93

tubule, we compare binding time data of three kinesin lengths (33, 45, and 60 nm) attached to a polystyrene94

bead that is laser-trapped at several distances away (0, 20, 40, and 60 nm) from a microtubule. Concentrations95

of motors in solution are diluted such that at most one motor is on each bead. Throughout the remainder of the96

work, we consider the binding time to be that between the unbinding reset event and the next time of detectable97

direction of the bead, as schematically shown in Fig. 1. See Materials and Methods for further details on the98
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Figure 2: Schematic of models. Left: State diagram of the simple diffusion model of kinesin-microtubule bind-
ing. Through random motion of the cargo and motor head, binding time is determined by the stochastic search
process of the motor reacting when in close proximity to the microtubule. Right: Model of binding process that
considers ADP release. We consider a cargo-motor ensemble that is in State 1, unbound from the microtubule
and bound to ADP on both motor heads. From here, the motor can release ADP from one of its heads, transi-
tioning to State 2, or bind weakly to the microtubule in State 3. To bind strongly to the microtubule and transition
to State 4, the motor must meet two requirements: ADP is released from one of its motor heads and it must be
within a binding distance to the microtubule. We consider two types of ADP release: a non-tubulin stimulated rate(
kADP
off

)
, and a faster tubulin-stimulated rate (kADP,Fast

off ).

experimental setup. The resulting binding times can be seen in Fig. 3ABC (black). Times are on the order of99

seconds, which is in line with other measurements of binding as discussed in the Introduction. Intuitively, as the100

cargo is moved away from the microtubule track, binding times increase. The most straightforward explanation101

for this is a "random search" mechanism rate-limiting the binding, schematically shown in Fig. 2 as the "diffusion102

model". That is, the "null" model for binding, as assumed elsewhere [10], is that the motor head undergoes103

random motion until it reaches close proximity to the microtubule track and then binds with some reactivity.104

To investigate whether such a diffusion-binding model can explain the binding time across experimentally105

observed conditions, we developed a Brownian dynamics simulation of the proposed model. The stochastic106

model includes the random motion of the cargo, both translation and rotational, and the diffusive search of a107

motor head attached via a tether to this cargo. The tether is assumed to be of the known length of each motor108

and exerts a Hookean force when extended beyond this length. The initial configuration of the motor head is109

assumed to be downward, based on the fast timescale of resetting in the optical trap (tenths of a second). When110

the motor head enters a specified distance of the microtubule due to random motion, the binding reaction occurs111

at an unknown, microscopic rate. Additional model details and discussion of assumptions can be found in the112

Materials and Methods. Ultimately this leads to two unknown parameters: the diffusivity of the motor head, and113

the microscopic reactivity.114

Through a suite of simulation-based inference techniques [27–29] (further details in Methods and Materials),115

we obtain fits to the diffusion model over all experimental setups for the two unknown parameters: the diffusivity116

of the motor head, and the microscopic binding rate. The resulting fits can be seen in Fig. 3ABC (green) for the117
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mean time to bind for the three motor lengths and various distances. There appears to be reasonable qualitative118

agreement with the experiments, where increasing distances increases binding time. The corresponding param-119

eter fits can be found in Table 1. While the diffusivity of the motor head is challenging to quantify [30], our fitted120

value on the order of 1000-10000 nm2/s is within ranges considered for kinesin elsewhere [31]. Upon further121

scrutiny, the mean binding times shown in Fig. 3ABC, especially at close distance display a distinct qualitative122

disagreement between the diffusion model and experimental measurements. In the diffusion model, as the cargo123

is trapped closer, the motor is effectively instantly able to bind. However, experimental values show a plateau of124

times around 1 second, even for close distances. This plateau points to the binding process being a multistep125

process.126
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Figure 3: Model fits and cross-validation. ADP-release model captures qualitative behavior in experimental
data, while the simple diffusion model cannot. In vitro optical trap experiments were used to measure mean
binding times (black) for three motor lengths: 33 nm A, 45 nm B, and 60 nm C. The horizontal axis shows
average distances between the cargo and microtubule (MT), which were varied for each experiment. Two binding
models (simple diffusion only in blue and ADP-release in red) were simulated and fitted to the experimental data.
n = 100 for simulated data varied for experimental data. Data are presented as mean ± SEM. D: Cross-validation
was performed to determine the predictive power of each model. For three rounds, data was trained on two motor
lengths, and tested on the third.

A chemo-mechanical ADP-release model of binding better explains observed times.127

With the observation that a simple diffusion model does not produce a delay in binding at close distances seen128

in experimental measurements, we sought a model that may explain this phenomenon. For a possible explana-129
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tion, we turn to the rich mechanochemistry of the kinesin motor. It is known that the nucleotide state of each130

motor head crucially determines its strong or weak affinity to the microtubule [32–34] and through cycles of this131

nucleotide state (ATP, ADP, released), processive stepping is achieved [35]. We posit that this nucleotide-based132

regulation of "binding" extends beyond that of processive stepping, and even the preliminary attachment between133

the cargo-motor ensemble and the microtubule. That is, we posit that the experimentally observed binding times134

correspond to a strong binding event, and therefore the underlying nucleotide state of the motor heads, plays a135

significant role in arriving at this state.136

To investigate whether a model including nucleotide state may better explain the experimentally observed137

times, we extend the model to account for 4 possible states, as shown in Fig. 2. In this model, the motor-cargo138

ensemble begins in State 1 with both motor heads in an ADP state, undergoing the same random motion as139

the diffusion model. From here, the ensemble can enter one of two states: State 2, where ADP is released140

from either motor head, or State 3, when the ensemble diffuses close to the microtubule and weakly binds to141

it. From either of these states, the ensemble can then strongly bind to the microtubule either through diffusion142

(from State 2), or the ADP molecule is released (from State 3). We consider two types of ADP release, a fast143

tubulin-stimulated release and a slow non-tubulin-stimulated release [36–41]. We consider ADP release as a144

requirement for strong binding based on the neck-linker model for stepping where an ADP-bound head has a low145

affinity for the microtubule, then this trailing head moves forward along the microtubule bound to ADP, and when146

it steps down onto the microtubule, ADP is released [42]. Importantly, our description is coarse-grained to not147

track the heads separately, but we consider the ADP release to describe either motor head. The assumption that148

the ensemble begins in State 1 has two parts: we assume that if the motor detaches in an ATP-bound state, this149

phosphate release is fast [35], but then the corresponding ADP release is slow without tubulin [39].150

Using the same simulation-based inference approaches for the diffusion model, we fit the observed binding151

times for all 3 motor lengths and distances simultaneously for the extended ADP-diffusion model, with 7 unknown152

parameters, 2 from the diffusion model, 4 reaction rates, and 1 corresponding to the strength of attachment in the153

weak binding state. The result of the fits can be seen in Fig. 3ABC in pink. The overall fit is discernibly better for154

the 33 nm and 45 nm motor lengths, and arguably worse for 60 nm at long distances, but notably, the model now155

captures the qualitative feature of a plateau of times at short distances. While only the mean binding times were156

used to fit, Figs. S.2 and S.3 show close agreement in full distributions of binding times as well.157

Beyond the qualitative improvement, the inherent danger in quantitatively assessing whether the ADP-release158

model better explains the data comes from the increased model complexity [43]. Intuitively, a model with more159

parameters has more flexibility to produce a better fit, and careful attention must be paid to model selection.160

In lieu of commonly-used information-theoretic techniques (AIC, BIC), even for simulation-based inference [44],161

we instead leverage the structure of our experimental observations to compare models based on their ability162

to explain unseen experimental circumstances. We perform a cross-validation procedure where we fit both the163

diffusion and ADP+diffusion models to the binding times for 2 of the 3 motor lengths, withholding one for testing164

on the trained models. In each validation test of withholding a motor length, the more complex model generalized165

better, shown in Fig. 3D. From this, we conclude that the ADP-diffusion model better explains the observed166

binding times, even under cross-validation-based scrutiny [45].167

Kinetic and biophysical parameters of the ADP-binding model can be estimated.168

Beyond the qualitative lesson of identifying the ADP-diffusion model as explaining the data, our fitting procedure169

provides rich quantitative insight into the underlying processes by estimating underlying parameters, shown in170

Table 1 and Fig. 4. Some kinetic rates have been previously measured, and serve as support for the model,171

whereas others are, as far as we know, unmeasured. The values reported in Table 1 are point estimates from a172

simulation-based inference optimization procedure [27]. The values that have been previously measured agree173

within an order of magnitude. As validation of this optimization procedure for point estimates, we also performed a174

separate simulation-based inference technique, sequential approximate Bayesian computation (sABC) [28] to ob-175

tain samples of an (approximate) posterior distribution shown in Fig. 4. The reason for this method was two-fold:176

for one, the agreement between the point estimates arising from the two procedures validates the approximations177

involved in the techniques, and the latter sABC approach produces valuable uncertainty quantification that we178

were unable to employ but may very well be possible using the techniques of [27]. Further details on these pro-179

cedures can be found in the Materials and Methods. Somewhat surprisingly, all parameters of the model seem180

to be identifiable, as shown in the relatively tightly-shaped posterior distributions.181
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Parameter Simple Diffusion Model Diffusion w/ ADP State Model Previous Literature
kADP
off

(
s−1

)
0 0.008 0.008-0.1 [36, 37, 40, 41]

kADP,fast
off

(
s−1

)
0 2.12 1.14-300 [37–41]

kADP
on

(
s−1

)
0 883.8584 425 [41]

kMT
on

(
s−1

)
80.5925 70.652

kMT
off

(
s−1

)
0 0.2 0.31 [46]

Dm

(
nm2 s−1

)
4459.8 1994

κw

(
pNnm−1

)
0 0.002

Table 1: Fitted Parameters. Dm is the diffusion constant of the tethered motor head. κw is the stiffness constant
of the weak bond between the motor and the microtubule when the motor is weakly bound to it. Parameters are
fitted using a Bayesian optimization algorithm [27]. Some parameters were not found in previous literature.

prior
posterior

Figure 4: Estimates of microscopic parameters from fitting the ADP-diffusion model. Joint (Approximate)
Posterior Distribution of ADP release Model Parameters. Black curves in the marginal densities from approximate
Bayesian Computation (ABC) are the posterior distributions, and the grey curves are the priors. A kernel density
estimator [47] was applied to discrete samples to form posterior estimate curves.

Most motors strongly bind via tubulin-stimulated ADP release.182

These quantitative estimates of the underlying microscopic rates also provide conceptual lessons about motor183

binding. Referring to the model schematic in Fig. 2, motors are able to achieve the strong binding state either184

through an intermediate weak binding state (State 3) after which ADP release occurs, or directly from a diffusing185

state (State 2). Although we do not observe these transitions directly, their relative proportions can be deduced186

from the data and can be seen in Fig. 5 for all motor lengths and distances. Fig. 5A shows that for all motor187

lengths, the frequency of the diffusion-based transition to strong binding (State 4) from diffusion (State 2) is more188

frequent for shorter distances. Moreover, the extent of decrease in these events is most extreme for shorter189

motors. These observations make sense in light of this being the diffusion-based search step. The more chal-190

lenging of a search (longer distances, or shorter motor), leads to less frequent encounters. This then leaves191
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Figure 5: Cataloging typical binding events. Motors typically bind via tubulin-stimulated ADP release. Portion
of transitions from States 2 (panel A) and 3 (panel B) to 4 are plotted for each motor length with respect to mean
distance between the microtubule and the cargo. C: Mean percent of transitions that occur from each state.
The mean of all events from all experimental conditions (motor length and mean spacing between cargo and
microtubule) were taken. Parameters from Table 1 were used.

the remaining pathway from the weak binding state, the frequency of which can be seen in Fig. 5B. For short192

distances, the frequency remains relatively constant but then increases for long distances. The overall frequency193

is the highest for the shortest motor and lowest for the long. These transitions intuitively complement those of194

the diffusive search component. While we have focused on the parameterization of these relative frequencies,195

the most important note is likely their overall magnitude. In Fig. 5C, we show our predicted percent transitions,196

averaged over all the experimental conditions, in which most (over 80%) of initial binding interactions arise via a197

preliminary weak binding state and subsequent ADP release (States 3 to 4). While there may seem to be a para-198

dox that the transition rate between States 2 to 4 is very low, which one might interpret as the ADP released state199

having low affinity, we emphasize this quantity is a byproduct of the competing rates between physical binding200

and ADP capture. That is, State 2 does not have lower affinity for the microtubule, but rather, simply occurs less201

often than ADP rebinding. A full report of the relative proportions of each transition can be found in Figs. S.5202

and S.6.203

Binding rates can be distinctly modified by physical and chemical factors.204

The quantity and structure of experimental data have thus far allowed for significant progress in understanding205

binding from retrodictive reconciliation with a model. We conclude with predictions that emphasize the broader206

lessons and may serve as the basis of validation in future experiments. The exploration of typical binding events207
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Figure 6: Predicted binding time changes from chemical and physical perturbations. A: An example of a
chemical change, kADP,Fast

off , was varied in the simulation and resulting simulated binding times are plotted. Data
are presented as mean ± SEM. B: Physical changes, such as changing the cargo size, can also be made to
study the resulting binding times.

in the previous section points toward conceptualizing this process as a distinct mechanical diffusive search and a208

chemical step from the nucleotide state. Regulation and perturbations of each of these components should there-209

fore be discernible. To explore these two scenarios, we predict how the binding times should be altered in two210

hypothetical experimental perturbations shown in Fig. 6. In the first, panel A shows how if one could modulate the211

tubulin-stimulated ADP-release rate, the effective spatially-dependent binding rate shifts up or downward for all212

distances. In contrast, there are numerous physical experiments that could plausibly alter the physical properties213

of the system. In Fig. 6B, we show the predicted effect of changing the cargo size, which would consequently214

modify the overall diffusivity of the ensemble and the random search time. For short distances that are not limited215

by this diffusive search, the difference is negligible, but for long distances, the effect becomes magnified. Predic-216

tions for other motor lengths can be found in Fig. S.7. While we do not currently have the technological capability217

to validate these experimental predictions, we hope they will be the basis of future validation or invalidation of our218

proposed binding model.219

Discussion220

Conclusion221

Altogether, our results point toward a model of the initial binding between a cargo-bound kinesin and a microtubule222

track being more complex than just diffusion-limited search of the motor head presumed elsewhere[10, 31].223

Motivated by the known mechano-chemistry of motor stepping, where the nucleotide state of each motor head224

dictates microtubule affinity [36, 39, 48], we posit that the observed binding times correspond to a nucleotide-225

state-limited strong binding event. To validate this hypothesis, we considered a coarse-grained computational226

model that incorporates both diffusive search and the ADP state of motor heads, and through simulation-based227

inference and model selection, ultimately found compelling agreement with the experimental measurements both228

in the observed binding times and in agreement with estimated microscopic parameters measured elsewhere229

[37–41]. Even with only observed binding times, our model predicts that the "typical" binding event is modulated230

distinctly by both environmental and physical factors. From a design perspective, these orthogonal modulations231

allow for more fine-grained control and malleability than either separately.232

Motor binding times have been estimated and measured many times prior [14–17], but these studies cannot233

easily disentangle the physical configuration the binding arises from, whether it be from a landing experiment,234

DNA origami, or motors re-attaching while another is already bound. The absence of this consideration jux-235
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taposes the increasing body of evidence that spatial organization plays a vital role in motor binding [23–26].236

By distilling both the experimental assay and corresponding model to the minimal ingredients of a single mo-237

tor attachment, we can clarify this process with unprecedented precision and generalizability. That is, while we238

have shown that our model successfully recapitulates the experimental data from our optical trap assay, we have239

moreover provided quantitative details about the underlying process that can be used to calculate binding times240

in other configurations. That is, one could imagine taking our fitted model and adapting it to DNA-origami cargo241

to reconcile the observed binding rates of [15, 17]. Discrepancies between the predictions and observations may242

occur, but these provide crucial details about the underlying chemistry and physics that we advocate warrant243

further investigation.244

Limitations and Assumptions245

We have not, and likely cannot ever fully rule out other conceptual models and confounding factors of binding246

time. The key qualitative feature we sought to replicate was the binding delay on the order of 1 second in close-247

proximity cargoes. Our ADP release model successfully recapitulates this, and we provide testable hypotheses248

that can be used to invalidate the model in Fig. 6. We considered several other possible factors that may explain249

or contribute to this delay. The most pressing possibility is whether this delay arises as an artifact of failure to250

detect optical trap displacements faster than this. Assuming an unloaded kinesin velocity of around 500 nm/s, a251

15 nm bead displacement for detection corresponds to fractions of a second, and does not explain the observed252

delay on the order of a second. In our model, we assumed the motor was configured downward initially, but this is253

likely not the case. However, based on the estimates of a cargo taking 0.2 seconds to complete a full rotation at254

this viscosity [26], we do not believe this can explain the delay. Furthermore, we are unsure what a realistic initial255

configuration of the motor may be, as a more detailed model of the cargo resetting in the optical trap likely requires256

consideration of hydrodynamic effects that couple rotation and motion and distant-dependent diffusivity [49]. One257

last possibility we note is the conceptual model where a motor begins in a "crumpled" state, and then unfurls with258

some delay to bind. Our model of the kinesin stalk is crude, and one could imagine other possibilities such as259

a worm-like chain model considered for the neck linker [50]. However, these models primarily differ when under260

load, rather than undergoing a diffusive search. Therefore, we leave the investigation of other polymer models261

for the stalk to future work. We note the coarse-grained approximation of the whole motor head as a single262

spatial point with a single nucleotide state. We also leave to future work more detailed models with two distinct263

motor heads, as we do not believe this would greatly change the qualitative lessons emerging from our work.264

Lastly, we identify that this binding model may be limited to kinesin, and perhaps even only some kinesins. Future265

investigation warrants investigating other motors binding details, e.g., dynein, through the procedure outlined in266

this work.267

Context in Cytoskeletal-Motor Systems268

The focus of this work is understanding the binding between a single cargo-bound kinesin and a microtubule track.269

This setup follows the spirit of a now long-established and successful line of investigation of cytoskeletal-motor270

assemblies by isolating fundamental building blocks. We attempt to situate our advances in the broader context271

of the wildly complex array of cytoskeletal-motor interactions and the feedback between them. We emphasize272

the chemo-mechanical nature of our binding model in the context of the enormous literature on how physical273

and chemical changes to microtubules affect motor behavior. For instance, geometry of the microtubule network274

dictates cargo-microtubule distances [51, 52], and motors themselves reorganize microtubules through forces275

[31]. A zoo of microtubule-associating-proteins (MAPs) and the tubulin code are known to interfere with motor276

function [53, 54], including in the recruitment of motors [55–57]. Our model may shed light on explaining the277

mechanisms by which these microtubule decorations modify motor binding, and serve as the basis for future278

investigation. Through the decomposition of how chemical and physical factors modulate binding, our study may279

be the basis for discerning the mechanism of MAPs regulation of motors. For instance, one could imagine C-280

terminal tails may serve as physical tethers or may alter nucleotide states, and such an investigation remains for281

the future. More broadly, this understanding serves as a key step toward understanding how cells regulate binding282

to direct cargo and perform even more cytoskeletal-motor functions such as coordinate mitosis [58]. Moreover,283

this understanding may help aid in the design of increasingly sophisticated synthetic systems [59], where spatial284

distances can be prescribed.285
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Broader Lessons for Probing Protein-Protein Interactions286

The difficulty in directly observing protein-protein interactions makes their study challenging. Two main avenues287

of approaches have been historically successful, each at extremes of chosen level of detail. Molecular dynamics288

simulations are a gold standard for predicting interactions. We build on the immense insight they have illuminated289

on the interactions between microtubules and kinesin [60, 61] and otherwise would not have considered the ADP290

release in our model. However, these approaches built from microscopic components have immense difficulty291

in scaling up to more complex systems with multiple interacting components, such as between motor, cargo,292

and cytoskeletal filaments. At the other extreme, "spherical cow" models of diffusion-limited reactions [62, 63]293

have revealed many qualitative lessons of protein-protein interactions, but remain challenging to quantitatively link294

with data because even the inclusion of modest complexities like orientation constraints [64] make the analyses295

prohibitively complex.296

Our work adds a timely vignette to other studies [65, 66] that illustrates the value of striking an intermediate297

level of complexity in understanding protein-protein interactions. This balance allows for the incorporation of298

microscopic details from more fine-grained studies, but remains vigilantly coarse-grained to directly connect with299

data. We highlight major components of the work that we believe will be of broader use in other probing of protein-300

protein interactions. For one, we leveraged measuring interactions in a variety of conditions. Equipped with only a301

single motor length or trapped distance, the diffusion model would have fit to a seemingly satisfactory degree. By302

probing a model’s ability to explain data across conditions, we were able to identify the ADP model. Furthermore,303

our work was made possible by recent advances in simulation-based inference [67]. While model fitting has304

historically been bogged down in the complications of the procedure, we now live in an age where it is plausible305

to perform inference on any model that can be thought of (and simulated), with rapidly improving techniques306

beyond those we utilized in this work [68]. Neither of these lessons is specific to the context of cytoskeletal-307

motor interactions, and therefore we hope serves as an outline for other pursuits in data-driven discovery of308

protein-protein interactions.309

Material and Methods310

Optical Trap Experiments311

The optical trapping setup was assembled on an inverted Nikon TE200 microscope using a 980 nm, single mode,312

fiber-coupled diode laser (EM4 Inc). The laser power was set to achieve a trap stiffness, κt, of ∼0.045 pN nm−1
313

while using the polystyrene bead of 0.56 µm (streptavidin conjugated, Spherotech).314

Single motor experiments were carried out in the motility buffer (80 mM Pipes pH 6.9, 50 mM CH3COOK,315

4 mM MgSO4, 1 mM DTT, 1 mm EGTA, 10 µM taxol, 1 mg mL−1 casein). In all the rebinding rate assays,316

single-motor kinesin-coated polystyrene beads were prepared just before the measurements. The motors DK-317

406-His/K-560-His/DK-746-His (Kinesin-1, aa 1-560/Drosophila Kinesin aa 1-406/ Drosophila Kinesin aa 1-746;318

His tag at c-term) were diluted to ∼20 nM before mixing with ∼1 pM of biotinylated penta-His- antibody conjugated319

streptavidin beads stored at 4°C. This ratio produced the bead binding fraction of 10-15% and was maintained320

to maximize the probability of finding single motor beads in the solution. The bead-motor incubation (∼50 µL321

volume) was carried out at room temperature for 10 minutes. At the end of incubation, the sample chamber with322

preassembled microtubules was washed with ∼50 µL of warm filtered buffer just before injecting the incubated323

mixture. Experiments were carried out at room temperature in a motility buffer supplemented with 2 mM ATP and324

oxygen-scavenging system (0.25 mg mL−1 glucose oxidase, 30 µg mL−1 catalase, 4.5 mg mL−1 glucose).325

In general, small dust or debris in the solution gets pulled into the trap along with the bead. Trapped dust326

interferes with motor rebinding to microtubules. To prevent this interference, the large dust particles and aggre-327

gates of casein in the buffer were removed using a 100 nm centrifugal filter (Millipore). Another potential issue is328

the stage drift during measurement, and it was minimized with an automated drift correction system using an xyz329

piezo stage (PI) and custom software.330

All kinesin proteins were purified using HIS-tag and MT affinity purification after expressing them in Rosetta331

bacterial cells as described earlier [69]. DK406 plasmid was procured from Addgene (plasmid ID #129764,332

generously supplied by William Hancock lab). DK746 was designed in the lab after modifying the full-length333

DK980, also procured from Addgene (plasmid ID: #129762, William Hancock lab), using restriction enzyme334

digestion.335

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2023. ; https://doi.org/10.1101/2023.11.08.563482doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.08.563482
http://creativecommons.org/licenses/by-nc-nd/4.0/


Binding Detection336

Bead displacements in the trap registered by a position-sensitive diode (PSD; First Sensor AG) were acquired at337

3kHz using an analog-to-digital converter (ADC) card. The digitized PSD data was smoothed with a 40 point fast338

Fourier transform (FFT) filter and analyzed by custom Matlab code to score all the peaks greater than 15 nm and339

lasting more than 0.01 seconds (30 data points). The experimental method is fully described in [70].340

Brownian Dynamics Simulation341

The simulation consists of a motor that is bound to a cargo and a microtubule. The cargo is a three-dimensional342

sphere and is subject to translational and rotational diffusion. The motor’s condition is dependent on whether an343

ADP molecule is bound to it and whether it is bound to the microtubule. Whether the motor is weakly or strongly344

bound to the microtubule is dependent on whether it is bound to an ADP molecule. The transitions through345

these states (Fig. 2) are simulated using a Gillespie-style algorithm [71]. The motor is defined by its location346

of attachment to the cargo and its head location. Locations of the motor head and cargo center are calculated347

using the Euler-Maruyama method [72]. When the motor heads comes within binding reach of the microtubule, it348

has a constant rate of binding to it; otherwise, this rate is 0. The motor behaves as a spring, and when they are349

bound, they experience and exert force. When the motor is weakly bound to the microtubule, its off-rate depends350

on force. ADP molecules can also bind and unbind to the motor head at constant rates, but the ADP off-rate351

is dependent on whether the motor is weakly bound to the microtubule. The equations of motion for the cargo352

and motor are constructed by discretizing a set of stochastic ordinary differential equations derived from force353

balance.354

ADP Release Model Description355

This model is three-dimensional and mesoscale. A set of stochastic ordinary differential equations is used to356

describe the location of the cargo sphere and the motor that is attached to it. The motor transitions stochastically357

between discrete states (Fig. 2), and these transitions occur as Poisson processes. The force that the motor358

exerts on the cargo is modeled as a one-way spring:359

F⃗m
(
a⃗, h⃗

)
=

−κm
(∣∣∣⃗h− a⃗

∣∣∣− Lm

)(
h⃗−a⃗

|⃗h−a⃗|

)
+ F⃗w

∣∣∣⃗h− a⃗
∣∣∣ > Lm

0
∣∣∣⃗h− a⃗

∣∣∣ ≤ Lm

, (1)

where a⃗ and h⃗ are the motor anchor and head locations, respectively, κm is the motor stiffness constant, Lm is360

the motor rest length,361

F⃗w =

{
κw

(
a⃗MT − h⃗

)
motor is weakly bound to the microtubule

0 motor is unbound from the microtubule
, (2)

κw is the weak spring between the motor head and the microtubule, and a⃗MT is where the motor head is weakly362

bound on the microtubule. There is a torque that is exerted on the cargo:363

τ⃗m
(
a⃗, h⃗, c⃗

)
=

{
(⃗a− c⃗)× F⃗m

(
a⃗, h⃗

)
motor is weakly bound to the microtubule

0 otherwise
, (3)

where c⃗ is the cargo center location. Thus, we have ordinary differential equations (modeled after the Langevin364

equation):365

dc̃ (t)

dt
=

1

6πηR
F⃗m

(
a⃗ (t) , h⃗ (t)

)
+

1

6πηR
F⃗ b (t) , (4)

and366

dθ̃ (t)

dt
=

1

8πηR3
τ⃗m

(
a⃗ (t) , h⃗ (t) , c⃗ (t)

)
+

1

8πηR3
τ⃗ b (t) , (5)
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where η is the water viscosity, R is the cargo sphere radius, θ is the cargo orientation, and F⃗ b and τ⃗ b are the367

Brownian force and torque, respectively, which are random variables with mean 0 and variance 2kBTξc, and ξc368

is the drag coefficient of the cargo. According to the Euler-Maruyama method, a discrete formulation of Eqs. (4)369

and (5) will be:370

c⃗ (tn+1) = c⃗ (tn) +
1

6πηR
F⃗m

(
a⃗ (tn) , h⃗ (tn)

)
△t+

√
2
kBT

6πηR
△tG⃗c (tn) (6)

and371

θ⃗ (tn+1) = θ⃗ (tn) +
1

8πηR3
τ⃗m

(
a⃗ (tn) , h⃗ (tn) , c⃗ (tn)

)
△t+

√
2

kBT

8πηR3
△tG⃗θ (tn) , (7)

where n is the current time step, and G⃗c and G⃗θ are mutually uncorretated vectors of independent and identically372

distributed (i.i.d.) Gaussian random variables with mean 0 and variance 1. The cargo cannot phase through the373

microtubule. Since we are simulating optical trap experiments, we add a force from the trap on the cargo:374

c⃗ (tn+1) = c⃗ (tn) + κt (c⃗ (1)− c⃗ (tn)) +
1

6πηR
F⃗m

(
a⃗ (tn) , h⃗ (tn)

)
△t+

√
2
kBT

6πηR
△tG⃗c (tn) , (8)

where κt is the trap stiffness. We can now determine the motor anchor location by inputting the cargo axis of375

rotation θ⃗ (tn+1) − θ⃗ (tn) and this axis’ length as the magnitude of rotation (in radians) into a rotation matrix376

M (tn):377

a⃗ (tn+1) = M (tn) (⃗a (tn)− c⃗ (tn)) + c⃗ (tn) + (c⃗ (tn+1)− c⃗ (tn)) . (9)

Similarly to Eqs. (4) and (5), we discretize ordinary differential equations for the motor head position:378

h⃗ (tn+1) = h⃗ (tn) +
1

ξm
F⃗m△t+

√
2DmG⃗m, (10)

where ξm = kBT/Dm is the motor drag coefficient, Dm is the motor head diffusion constant, and G⃗m is the379

uncorrelated i.i.d. Gaussian random variable of mean 0 and variance 1. The motor head cannot phase through380

the microtubule and the cargo. Since in experiments, the microtubule lies on the coverslip surface, the motor381

head cannot diffuse under the microtubule.382

Transitions between each motor state (Fig. 2) are modeled as Poisson processes, with rates as follows:383

λADP
off =


kADP
off motor is ADP-bound and unbound from the microtubule

kADP,Fast
off motor is ADP-bound and weakly bound to the microtubule

0 motor is ADP-unbound
(11)

λADP
on =

{
kADP
on motor is ADP-unbound

0 motor is ADP-bound
(12)

λMT
on =


kMT
on motor is unbound from microtubule and within dMT

kADP,Fast
off motor is weakly bound to microtubule

0 motor is not within dMT

, (13)

where dMT is the binding distance between the motor head and the microtubule, and384

λMT
off =

{
kMT
off · expFw/F d motor is weakly bound to the microtubule

0 motor is MT-unbound
, (14)

where F d is the motor’s critical detachment force. Parameter values are listed in Tables 1 and 2.385

386
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Parameter Description Value
κm Motor stiffness constant (pN/nm) [12] 0.3200
κt Trap Stiffness (pN/nm)† [0.045 0.045 0.03]
Lm Motor length (nm)† Varies
η Viscosity of experimental fluid (pN · s/nm2) 1e-05
R Radius of experimental cargo bead (nm) 280
kbT Boltmann constant (pN · nm) 4.114
dMT Binding range between MT and motor head (nm)∗ 5
F d Motor critical detachment force (pN) [19] 4

Table 2: Measured parameters. ∗Unmeasured estimate. †Measured estimate. The motor length includes the
antibody that binds the motor to the cargo (about 10 nm).

Initial Conditions387

The simulation begins with the cargo d nm away from the microtubule, the latter of which does not move during388

the entire simulation (Fig. S.1a). The motor is anchored at the bottom of the cargo and is vertically straight,389

based on the fast reset back to the trap center. If there is not enough space (d < Lm), then the motor head and390

cargo are initialized to the top of the microtubule.391

Numerical Simulation392

The model is simulated forward in time. Time steps are either equal to dtmax, the maximum time step the393

system can undergo, or they are determined through the Gillespie-style algorithm if the next motor state-change394

event (i.e., bound or unbound to microtubule, ADP released or unreleased), also determined by the Gillespie-style395

algorithm, occurs before tn+dtmax. An appropriate dtmax (0.004) was chosen with a convergence test (Fig. S.8).396

To implement the Gillespie-style algorithm, exponential random variables from distributions with means set by397

each Poisson (Eqs. (11) to (14)) were generated at each time step. After the Gillespie-style algorithm determines398

the next event and when it occurs, the time step is used to determine the locations of the cargo center and the399

motor’s head and anchor (Eqs. (8) to (10)).400

To mimic experimental practices, simulations are allowed to simulate 100 seconds. If the motor does not401

strongly bind to the microtubule during this time, the simulation starts over. This method is similar to the experi-402

ment, where the assay is run for 100 seconds screening for a binding event to occur before trapping a different403

cargo. The simulation is written in MATLAB, and takes approximately 0.1 seconds to simulate 1 second of the404

system. Example snapshots of the simulation are shown in Fig. S.1.405

Model Fitting, Cross-Validation406

The model is fit through two distinct approximate inference procedures, the reconciliation of which serves as a407

validation for the approximations. The first procedure is a Bayesian optimization procedure [27] to obtain a single408

point estimate for the parameter values. The loss function is the squared distance over the mean binding times409

(and therefore neglects the full distributional information) and the estimated mean binding time over S = 1000410

simulations, and these estimates are used in Fig. 3 and Table 1.411

To obtain uncertainty quantification seen in Fig. 4, we also employ a sequential Monte Carlo approximate412

Bayesian computation approach [28]. These techniques are far slower than the optimization procedure and413

require the specification of a prior distribution for each parameter, but provide some notion of uncertainty quan-414

tification, and were used to generate Fig. 4 with some data withheld. That is, because of the heavy computation415

expense, only the shortest motor at 0 nm average distance between the cargo and microtubule, the mid-length416

motor at 40 nm average distance, and the longest motor at 80 nm average distance were used in the fitting.417

The maximum a posteriori (MAP) estimates from this latter procedure closely agree those of the first procedure,418

supporting the validity of both. Furthermore, in Table S.1, we show the inference procedures successfully infer419

rates from synthetic data. Lognormal priors are chosen for all parameters, and hyperparameters are shown in420

Table 3. Initially, 100 simulations estimate the binding times in the model, and weights in the sequential Monte421
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Carlo algorithm are defined as wi =
π∑

wi−1Ki
, where Ki is the perturbation kernel for the ith sequence, i > 1.422

We use a Gaussian distribution for K. These new samples are then used to simulate more mean binding times,423

until 100 samples are generated that resulted in a relative error lower than 1.8. Eight more sequences follow in424

this same manner, each time the relative error threshold decreases by 0.2. A kernel density estimator was then425

applied to the resulting samples shown in Fig. 4.426

Parameter Mean Standard Deviation
kADP
off 10−2 0.001

kADP
on 103 100

kADP,Fast
off 100.3 1
kMT
on 101.7 100

kMT
off 10−1 0.01
Dm 103.3 100
κw 10−2.7 0.001

Table 3: Hyperparameters for priors used in estimated posterior densities, all taken to be lognormal distributions.

The cross-validation procedure in Fig. 3 was implemented by fitting the models using the aforementioned427

point estimate optimization scheme with data withheld, and then test error defined to be N−1
∑N

i=1(ti − t̂i)/ti,428

a percentage error over the test scenarios. This procedure is validated in Fig. S.9 that shows cross-validation429

successfully identifying the correct model when tested against synthetic data.430

Software Availability431

MATLAB code to reproduce our results (compatible with version R2020a) is available at https://github.com/432

trininguyen/MotorBinding/tree/master.433
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Supplementary Figures577

(a) (b)

(c)

Figure S.1: Simulation Snapshots. The simulation starts as in A, where the motor (red line) is anchored (blue
dot) to the bottom of the cargo (green sphere). The microtubule (turquoise cylinder) is centered at (0,0), and
the axes depict locations of other components with respect to the microtubule center, in nanometers. As the
simulation continues, the cargo and the motor diffuses with respect to force laws (b). The simulation ends when
the motor strongly binds to the microtubule (c). Time (seconds) at which each event occurs is shown above
figures.
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Figure S.2: Full distributions of binding times. Simulated data from ADP release model (red) is plotted over
experimental data (blue). Overlap between distributions is shown in grey.
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Figure S.3: Cumulative distributions of binding times. Simulated data from ADP release model (red) is
plotted over experimental data (blue). Same information as Fig. S.2 but CDF instead of PDF.
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Figure S.4: Influence of motor head diffusion on binding time. A parameter sweep of the diffusion constant
was conducted. Data are presented as mean ± SEM.

Parameter Simulated Value Estimated Value
kADP
off 0.8 0.78

kADP
on 1000 1021.3

kADP,Fast
off 6.3 6.22
kMT
on 10 9.83

kMT
off 1 0.89
Dm 1000 987.56
κw 0.005 0.0057

Table S.1: Posterior Density Method Validation. Fake data was simulated using the ADP release model and the
Simulated Values. A sequential Monte Carlo approximate Bayesian computational algorithm was performed on
the fake data and recovered the simulated values (Estimated Value).
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Figure S.5: Macroscopic rates of state transitions. Rates for each transition in the ADP+Diffusion model esti-
mated with respect to average distance between the microtubule and the cargo for each motor length. Parameters
from Table 1 were used.
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Figure S.6: Proportion of Transitions. Two transitions are possible for each state, and portion of each transition
are graphed. Parameters from Table 1 were used.
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Figure S.7: Other Parameter Sweeps on Binding Times. kADP,Fast
off (a-b) and cargo size (c-d) were varied in

the ADP release model. Data are presented as mean ± SEM.
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Figure S.8: Time step convergence study. Maximum time step was varied and converged to a common
binding time. 0.004 was the largest maximum time step that resulted in a binding time that is relatively similar to
the results from smaller maximum time step. n = 1000.
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(a) Synthetic data from ADP release model
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(b) Synthetic data from Simple Diffusion model

Figure S.9: Cross-Validation Test. Synthetic data was simulated using either the ADP release model A or
the Simple Diffusion model (b), and both the ADP release and the Simple Diffusion models’ performance were
evaluated using k-fold cross-validation.

26

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2023. ; https://doi.org/10.1101/2023.11.08.563482doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.08.563482
http://creativecommons.org/licenses/by-nc-nd/4.0/

