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Abstract: 

Motor adaptation in cortico-striato-thalamo-cortical loops has been studied mainly in 
animals using invasive electrophysiology. Here, we leverage functional neuroimaging in 
humans to study motor circuit plasticity in the human subcortex. We employed an 
experimental paradigm that combined two weeks of upper-extremity immobilization with 
daily resting-state and motor task fMRI before, during, and after the casting period. We 
previously showed that limb disuse leads to decreased functional connectivity (FC) of 
the contralateral somatomotor cortex (SM1) with the ipsilateral somatomotor cortex, 
increased FC with the cingulo-opercular network (CON) as well as the emergence of 
high amplitude, fMRI signal pulses localized in the contralateral SM1, supplementary 
motor area and the cerebellum. From our prior observations, it remains unclear whether 
the disuse plasticity affects the thalamus and striatum. We extended our analysis to 
include these subcortical regions and found that both exhibit strengthened cortical FC 
and spontaneous fMRI signal pulses induced by limb disuse. The dorsal posterior 
putamen and the central thalamus, mainly CM, VLP and VIM nuclei, showed disuse 
pulses and FC changes that lined up with fmri task activations from the Human 
connectome project motor system localizer, acquired before casting for each participant. 
Our findings provide a novel understanding of the role of the cortico-striato-thalamo-
cortical loops in human motor plasticity and a potential link with the physiology of sleep 
regulation. Additionally, similarities with FC observation from Parkinson Disease (PD) 
questions a pathophysiological link with limb disuse. 
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Introduction  
 
Brain networks must simultaneously exhibit stability, to preserve acquired skills, but also 
flexibility, to learn and adapt to environmental changes1. Motor behavior is generated by 
complex cortico-subcortical circuits including the thalamus, basal ganglia and 
cerebellum2–4. Cortico-striato-thalamo-cortical loops have been intensively studied to 
understand pathways involved in motor learning. Prior studies of plasticity in this circuit 
have been pursued largely by invasive electrophysiology in patients undergoing deep 
brain stimulation [DBS])5–7, and animal models8,9. Human neuroimaging studies of 
motor plasticity have focused on the cerebral cortex because of the low signal-to-noise 
ratio of blood oxygen dependent (BOLD) signals in subcortical structures 10,11 and the 
limited effect sizes typically seen in plasticity paradigms12–14.  
 
To study plasticity mechanisms in humans, we developed an experimental paradigm 
that induces disuse by restraining the upper-extremity using a full length cast 15–17. This 
approach is similar to classical animal plasticity studies, which impose motor or sensory 
restrictions (e.g., limb constraint, deafferentation, monocular deprivation) in a small 
number of intensively studied individuals 18,19. We casted the dominant (right) upper 
extremity of three participants (Nico, Ashley and Omar) for two weeks and collected 
around-the-clock actigraphy and daily task and resting state functional MRI (fMRI) over 
a 6-week experimental protocol (2 weeks pre-cast, 2 weeks casting, 2 weeks post-cast). 
Limb disuse was documented by the actigraphy data and showed 15 to 24% increased 
use of non-dominant hand use. The participants only exhibited a reduced grip strength 
of the casted extremity measured at cast removal and recovered within days with no 
persistent deficits.   
 
Dense longitudinal fMRI sampling enabled us to perform within participant analyses 
using our individual-specific Precision Functional Mapping (PFM) methodology 20. 
Resting state functional connectivity (FC) noninvasively maps functional networks within 
the brain and how they change in response to disuse. Previous analyses of the fMRI 
data acquired in the casting experiment focused on the cerebral cortex 16,17. FMRI 
signals in the left and right upper extremity primary somatomotor cortex (SM1ue) are 
strongly correlated at baseline. Casting induced a marked decrease in FC (-0.23 to -
0.86 change in correlation from around 0.8 before casting) restricted to the upper 
extremity specific parts of SM1ue. We also detected increased FC between left SM1ue 
and the cingulo-opercular network (CON)16, an executive control system responsible for 
initiating and maintaining actions 21,22. Unexpectedly, high amplitude fMRI signal pulses 
arising in left SM1ue emerged during the casting period and were detected in 
supplementary motor area and cerebellum 17.  
 
Recently, we also described the previously unrecognized Somato-Cognitive Action 
network (SCAN), which is interleaved with effector-specific motor regions along the 
central sulcus 23. The SCAN is strongly functionally connected to the CON, and seems 
to serve as its downstream actuator, turning abstract plans into integrated whole-body 
actions. Becoming aware of the sharp divisions between SCAN and effector-specific 
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motor regions also provided motivation to re-evaluate our prior interpretations of some 
of the upper-extremity disuse-driven plasticity effects.  
 
Motor and action control cannot be understood without subcortical nodes. Basal ganglia 
(putamen, caudate, globus pallidus, etc.) and thalamic nodes are intricately networked 
to facilitate the selection of intended actions while simultaneously suppressing or 
inhibiting potentially conflicting or undesirable ones 24. The posterior putamen 
specifically has been shown to be important for slow but long-term establishment of 
habits 25,26. 
 
The central thalamus also plays a significant role in motor adaptation and control by 
serving as a relay and integration center between various brain regions involved in 
motor functions 27. The thalamus comprises a multitude of distinct nuclei, including the 
ventralis intermedius (VIM), the centromedian (CM), and the ventroposterior lateral 
(VPL) 28,29. The VPL receives sensory information and relay information for fine tuning 
of movement29. The VIM, in comparison, is primarily involved in motor control functions 
such as planning, initiation, and execution of voluntary movements30. The VIM is the 
deep brain stimulation (DBS) target in Essential Tremor and tremor-predominant 
Parkinson's Disease (PD) 31–35. A case report from a patient with longstanding bilateral 
upper extremity loss undergoing DBS suggested plasticity of VIM neurons, leading to an 
over-representation of shoulder movements36. 
 
The centromedian nucleus (CM) of the thalamus has been classified as part of the ‘non-
specific’ nuclei of the thalamus and shows specific projections to the sensorimotor 
regions and anterior cingulate 8. The CM plays an important role in the regulation of the 
cortical parvalbumin neurons that promote Hebbian plasticity 37–40, and the overall level 
of cortical activity and arousal 41. CM has mainly been targeted with DBS in refractory 
generalized epilepsy 42–44 due to its role in sleep-wake regulation and arousal. The 
central thalamus plays an important role in regulating sleep stages and generates sleep 
spindles important for memory consolidation 45–47, including procedural memory.  
 
Given the importance of subcortical structures for motor control and skill learning, we 
expanded our prior analyses to investigate disuse-driven plasticity in human subcortical 
circuits for the first time.  
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Results 

Disuse strengthens motor cortex functional connectivity with central 
thalamus and posterior putamen 

 
 

 
Figure 1: Disuse-driven changes in functional connectivity (FC) of the left 
effector-specific primary somatomotor cortex (L-SM1ue) in subcortex. Individual-
specific plasticity effect size (Cohen’s d) maps showing changes in FC during right arm 
casting (Cast − Pre) for the L-SM1ue for each participant (left to right columns: Nico, 
Ashley, Omar). For reference, a Cohen’s d of 0.8 is generally considered a large effect 
size. Only significant effects after cluster correction at p < 0.05 (see Methods) are 
displayed. Please note, Nico’s data were collected using an earlier pulse sequence with 
a TR that was twice as long (2.2 s) compared to Ashley and Omar (1.1s). Nico’s effect 
sizes are about half the size of the other participants. The FreeSurfer based anatomical 
borders of the putamen and thalamus are shown as white outlines (bottom row).  
 
Measures of FC in the subcortex are smaller than in the cerebral cortex. This 
observation is, at least partly because fMRI signal-to-noise ratio drops off towards the 
center of the brain as distance from the MRI coil elements increases. Consequently, the 
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magnitude of FC changes between different conditions (e.g., Cast - Pre) are greater in 
the cortex than in the subcortex. Therefore, to measure FC changes in the subcortex, 
we used standardized effect size (Cohen’s d) to account for the signal-to-noise 
differences. The present effects, expressed in terms of Cohen’s d, match our previously 
reported parcel-based FC findings16. Use-driven FC changes (Cohen’s d) of the left 
SM1ue increases with the CON regions (purple border, figure S1) for all three 
participants in cortex and with hand motor regions in the cerebellum (Figure S1, S3). 
We note that disuse-driven FC changes spared the Somato-Cognitive Action Network 
(SCAN; Figure S1, maroon outlines), a set of effector-general action control regions in 
motor cortex23 strongly functionally connected with the CON (see also Figure S2). Thus, 
the two SCAN regions around the upper-extremity specific primary motor region (black 
seed region, left SM1ue) did not show significant FC changes due to casting. 
 

In the subcortex, all three participants showed statistically significant increases in FC 
between disused left SM1ue and the central thalamus, as well as the posterior putamen 
(Figure 1, bottom row; cluster-based thresholding; see Methods). The subcortical effects 
(Cohen’s d) were comparable in magnitude to effects observed in SM1ue (Table 1). 

 
Other FC changes were significant in some but not all participants. In particular, in 
Ashley and Omar, a small area of significant FC increase was observed in the left 
posterior globus pallidus bilaterally. Ashley and Omar’s effect sizes were roughly twice 
those observed in Nico. These differences could be attributable to inter-individiual 
differences, or due to differences in the fMRI pulse sequence (TR 1.1s Ashley, Omar vs. 
2.2s Nico), or fMRI signal signal-to-noise ratios 48. 
 

 Nico Ashley Omar 

Left posterior 
Putamen 

-31 -6 0 

Nvox = 43 
Max = 1.17 

-25 -12 0 

Nvox = 76 

Max = 2.56 

 -31 -9 3 

Nvox = 71 

Max = 3.09 

Left Thalamus -16 -21 6 

Nvox = 68 
Max = 1.24 

-7 -21 0 

Nvox = 72 

Max = 2.83 

-13 -24 6 

Nvox = 219 

Max = 3.86 

Cerebellum Max = 2.22 Max = 2.68 Max = 4.79 

Cortex Max = 2.43 Max = 4.01 Max = 4.49 

Table 1: Disuse-driven functional connectivity changes in subcortex. Peak 
coordinate (x,y,z) in MNI space and cluster size (Nvox) for subcortical regions with 
disuse-driven increases in functional connectivity with L-SM1ue. as well as maximum 
Cohen’s d values (Max) of the left putamen, left thalamus, cortex and cerebellum  
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Disuse pulses in the central thalamus and motor cerebellum 

 
Figure 2: Disuse pulse distribution in cortex and subcortex. The timecourse of 
each disuse pulse observed during casting was modeled using a Hemodynamic 
Response Function (HRF) (see Methods). The left hemisphere cortical surface (left), 
and subcortical axial slices (center: thalamic and cerebellar view) show where pulses 
were detected in each of the participants (Nico, top; Ashley, middle; Omar, bottom). The 
color scale spans 2 seconds bracketing the average left SM1ue pulse peak. The maps 
display the top 20th percentile of highest pulse detectability. The participant-specific 
upper extremity somatomotor region is outlined in black (left). On the right the individual 
(thin lines) and average (thick line) pulse timecourses are shown (y-axes: percent signal 
change) for the left SM1ue, the left thalamus and right cerebellum.  
 
 
We previously reported the emergence of large fMRI signal pulses in the disused motor 
cortex after 12-48 hours of arm casting. To identify disuse pulses in the subcortex, we 
developed an HRF-based pulse detection method that accounts for spatial variability in 
HRF shape (see Methods). Using the HRF-based detection method, we were able to 
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detect the presence of disuse pulses in the subcortex on top of confirming their spatial 
distribution in the cortex (Figure 2; left) and cerebellum (Figure 2; third column) 17. 
Disuse pulses in the central thalamus were observed in all participants (Figure 2; 
second column). The peak pulse percent signal change in the thalamus was lower 
compared to cortex (Figure 2, right column). In the participant with the most disuse 
pulses (Ashley), we also detected them in the posterior putamen. The least number of 
pulses were detected in Nico, who also exhibited the smallest FC changes. 
 
Disuse pulses propagate through the brain in a specific temporal sequence. We 
previously reported that SMA regions peak earlier than left SM1ue, followed by the 
cerebellum. On average, the central thalamus pulses peaked later than in left SM1ue 
(Figure 2; first and second columns, Nico +0.75 seconds (sd 0.16); Ashley +1.07s (sd 
0.02); Omar +0.95s (sd 0.09)).  

FC changes and disuse pulses overlap in the central thalamus 

 
Figure 3: Spatial overlap of functional connectivity (FC) increases and disuse 
pulses. The strongest disuse-driven FC increases (orange, Cast > Pre, cluster 
corrected) and disuse pulses (purple, top 20% threshold), as well as their overlap 
(green) are shown on the cortical surface (left), in the thalamus and putamen (middle) 
and the cerebellum (right). Results are displayed on the lateral left hemisphere surface, 
medial left hemisphere surface, and two axial slices (MNI z = 5 and -21). White borders 
on axial slices defined individual specific FreeSurfer based anatomical structures (z = 5: 
putamen, globus pallidus, caudate, thalamus; z = -21: cerebellum, hippocampus). 
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Figure 3 illustrates the topography of pulses in relation to FC changes. All participants 
showed overlap (green) between disuse-driven FC changes and pulses in the dorsal 
medial cortex (SMA, pre-SMA, dACC), the central thalamus and the effector-specific 
motor regions of the cerebellum (Figure 3 and Figure S3). Ashley’s pulses in the 
posterior putamen also overlapped with FC increases.  

Subcortical disuse-driven plasticity overlaps with fMRI task 
activations 

 

 
Figure 4: Putamen representations of disuse-driven FC changes, pulses and hand 
movement task fMRI activations. (A) Map of disuse-driven increases in FC with the 
left SM1ue region of interest (top 30th percentile t statistics). (B) Map of disuse pulses 
(top 30th percentile t statistics). (C) Map of pre-casting task fMRI contrast: right hand 
movement vs baseline (top 30th percentile t statistics). For all three maps, color scales 
are represented at the bottom of the map with maximum value at 99.5th percentile. (D) 
Correlation between left putamen t statistic maps for disuse-driven FC increases, pulse 
and activation during hand movement (right hand vs baseline). Correlations between 
unthresholded t statistics maps were tested against individual-specific null distribution 
effects for each participant (top to bottom : Nico, Ashley, Omar). Reported significant p 
< 0.05 corrected for FDR (black *). 
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To determine whether FC changes and disuse pulses spatially coincided with regions 
active during upper extremity movement, we analyzed motor task fMRI data collected at 
baseline (Figures 4,5). The motor task includes simple hand, tongue, and foot 
movements in a block design (same as used in the Human Connectome Project). This 
paradigm elicited somatotopic specific responses in the primary motor cortex (see 
Figures S6-9). 
 

All three participants showed motor task fMRI activations in the posterior portion of the 
putamen during right hand movement (Figure 4). In each participant, task activations 
overlapped with the FC change and disuse pulses. This similarity was confirmed by the 
strength of correlation between t-statistic maps. All participants showed strong 
(significant for Ashley and Omar) topographic similarities between motor task 
responses, FC change, and pulse density maps. Statistical significance of map similarity 
(Figure 4D) was assessed using individual-specific null distributions (see Methods).  

 
Figure 5: Thalamus representations of disuse-driven FC changes, pulses and 
hand movement task fMRI activations. (A) Map of disuse-driven increases in FC with 
left SM1ue region of interest (top 30th percentile t statistics). (B) Map of disuse pulses 
(top 30th percentile t statistics). (C) Map of precasting task fMRI contrast : right hand 
movement vs baseline (top 30th percentile t statistics). For all three maps, color scales 
are represented at the bottom of the map with maximum value at 99.5th percentile. For 
all three maps, color scales are represented at the bottom of the map with maximum 
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value at 99.5th percentile. Nucleus borders from the THOMAS individual-based 
segmentation overlapping with the effects are visible in white. Four nuclei are displayed 
: CM: centro-median , VPL: ventro-posterior lateral , VIM(VLPv): ventral intermediate 
(ventro-lateral posterior ventral), MD-Pf: medio-dorsal. Average t-statistics values for all 
thalamic nuclei are represented in bar plots (see figure S4) (D) Correlation between left 
thalamic t statistic maps for disuse-driven FC increases, pulse and activation during 
hand movement (right hand vs baseline). Correlations between unthresholded t 
statistics maps were tested against individual-specific null distribution effects for each 
participant (top to bottom : Nico, Ashley, Omar). Reported significant p < 0.05 corrected 
for FDR (black *). 
 
 
 

All three participants showed task fMRI activations in central thalamus (Figure 5). Task 
activations overlapped with FC changes and disuse pulses in each participant. This 
similarity was confirmed by the strength of correlation between t-statistic maps, showing 
significant similarity in comparison to spatial null distributions (see Methods, Figure 5D). 
Individual differences in effect sizes were similar in all three measures (as in Table 1). 
Overall, thalamic FC changes and disuse pulses were similar to task fMRI activations 
when moving the right hand.  

 
To delineate the specific thalamic distribution of cast-induced plasticity effects in 
comparison to hand motor circuitry, we quantified the average t-statistic values within 
each thalamic nucleus from the THOMAS atlas (Figure 5, S4, individual THOMAS atlas 
segmentation, see Method). Thalamic nuclei showing the greatest average t-statistic for 
both plasticity effects were the centro-median (CM), the ventroposterior lateral (VPL) 
and ventral intermediate (VIM) (see Figure S6 for all participants). Right hand 
movement showed consistent activations of CM, VPL, VIM across all participants. This 
set of nuclei remained specific when quantifying t-statistic average values from right > 
left hand movement task contrast, thus confirming the specificity of the right-hand 
movement circuitry (Figures S7-9). CM, VPL and VIM showed disuse pulse and 
increased FC changes with left SM1ue.  
 

Discussion  
 
Disuse driven plasticity effects are not limited to cortex 
Using analyses optimized for characterizing fMRI signal differences across the cortex 
and subcortex, we observed significant subcortical FC changes and disuse pulses in the 
central thalamus (VIM, CM) and posterior putamen as a result of dominant upper 
extremity disuse, due to casting. These findings suggest that disuse can drive network 
changes at all levels of motor circuitry: cortex, cerebellum, thalamus and striatum. In the 
cortex, the SCAN regions do not show an increase in FC or pulse presence across 
participants, which highlights the functional differences between SCAN and effector 
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specific networks. Throughout motor and action control circuits, as verified by task fMRI 
activations, FC increases partially overlapped with the presence of disuse pulses, 
suggesting that they might represent a brain-wide disuse plasticity mechanism. We 
previously demonstrated that the presence of disuse pulse does not fully explain the 
changes in FC16. While the presence of disuse pulses in the thalamus suggests a more 
general phenomenon, other plasticity mechanisms for neuronal and synaptic adaptation 
likely act in parallel. 
 
Disuse strengthens FC in motor and action sub-circuitry  
Increased FC between subcortical and cortical motor regions, in the presence of pulses, 
is consistent with our previously reported finding of strengthened FC between motor 
cortex and the CON 16. However, these results cannot be fully accounted for by a simple 
Hebbian-like process 39,49,50, which one would predict should weaken FC in the setting 
of disuse (not firing together). Instead, we speculate that pulses, by creating co-
activation in the disused motor control circuit, could help within network synchronization 
and information transfer, therefore playing a role in plasticity in order to help maintain 
the integrity of disused subcircuits 17. Pulses in the disused subcircuits may enable the 
rapid recovery of both behavior (actigraphy) and functional connectivity (within days) 
after cast removal 17.  
 
Alternatively, the circuit can be going through integration of new motor programs related 
to disuse. Prior work in animal models suggests that neural plasticity in response to 
changes in auditory or visual stimuli starts with a reduction of inhibitory interneuron 
activity at the population level, increasing excitatory activity which facilitates Hebbian 
processes 37,51–53 . Therefore, the observed FC increase within the motor execution 
circuit could indicate an increased simultaneous firing, eliciting Hebbian plasticity and 
information retention. This rise in local activity could increase the likelihood of 
spontaneous activity pulses, whether they represent runaway activity or necessary 
homeostatic regulation processes or windows for cortico-thalamic information 
exchange. 
 
Disuse-driven plasticity affects posterior putamen involved in habit formation 
Rapid, goal-directed learning is thought to primarily involve the dorsomedial striatum, 
including the caudate, whereas the slower acquisition of habits, which are insensitive to 
changes in the reward value of the outcome, is thought to depend more on the 
dorsolateral striatum, including the posterior putamen 53–56. The increased FC with the 
posterior putamen suggests that it might specifically be related to protecting existing 
motor skills or acquiring new ones. Indeed, the first day removing the cast, our 
participants kept using their non casted arm more than their recently freed dominant 
arm, suggesting that participants learned to suppress movements of the casted arm. 
This trend disappeared on day 2 after cast removal and no fine motor or coordination 
motor impairment the day of cast removal.17 
 
Plasticity in thalamic nuclei for motor execution 
The central thalamus is important for motor and action execution and studies have tied 
movement performance to activity in VIM, VPL and CM thalamic nuclei 6,57, which is 
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consistent with our motor task fMRI activations (Figure S4, S6-8). The VIM is part of the 
thalamic ventro-lateral region (VL), primarily involved in motor control and relays 
information between the basal ganglia, cerebellum and motor cortex, whereas the VPL 
is part of the somatosensory system and relays sensory information related to touch, 
temperature, and pain from the body to the primary somatosensory cortex 58–60. VIM is a 
common and effective DBS target for tremor. In cases of neurological injury or disease, 
such as stroke or neurodegenerative disorders, the VIM can undergo plasticity as part 
of the brain's adaptation and recovery mechanisms 36,61. In rats, for example, VIM stroke 
results in specific skilled locomotor impairment (e.g., impaired ladder mobility, but not 
flat walk) 62. Reorganization of activity in VIM after the stroke correlates with restored 
mobility 63,64. In fact, successful movement performance, such as walking on a complex 
surface, after a VIM partial lesion are compensated within a few days, showing the 
highly effective plasticity of the thalamus 62. While the thalamus is essential to cortical 
organization and specialization during development65, plastic reorganization of specific 
motor programs can also occur in response to motor demands driving functional 
adaptation in adults. For example, in humans, in the context of amputation, one study 
observed changes in the representation of the affected body parts within the VIM. 
Electrophysiological recording in a patient with arm amputation and long-term use of a 
prosthetic has shown an enlargement of the shoulder representation in the VIM, which 
now is used for prosthetic grip control by the patient 36.  
 
Thalamic plasticity pulses could carry local sleep spindles 
In addition to the VIM and VPL, the CM also showed FC increases, pulses and task 
fMRI activation. The CM plays a special role in regulating arousal 66. While the VIM is 
the DBS target of choice for treatment of tremor, the CM is targeted in the treatment of 
Tourette syndrome and, with increasing frequency, also epilepsy and disorders of 
consciousness 67. 
 
Indeed, the thalamus has a specific role in sleep pressure and wakefulness regulation68. 
The thalamus regulates sleep stages and slow oscillations in deep sleep 45. Sleep 
events like thalamo-cortical spindles are thought to help memory and skill consolidation 
69–71. During deep sleep, slow waves of activity are observed across the cortex and 
relayed in the thalamus 72. These slow waves are thought to help with homeostasis of 
neural activity after a day of novel experiences 49,73,74 . The slow waves help networks to 
synchronize and increase phase locked communication between regions 75,76.  
 
The occurrence of disuse pulses in the central thalamus, most reliably in the CM, raises 
the question whether they might be related to thalamocortical sleep spindles. Could the 
disuse pulses represent a circuit-specific, sleep-like phenomenon happening during the 
awake resting-state? Indeed, local sleep can be observed during wakefulness 77. After a 
long period in an awake state, EEG recordings in awake rats can capture local ‘offline’ 
stages similar to sleep, together with slow waves 78,79. Consistent with this idea, the one 
participant who was always scanned in the morning (Nico) also had the lowest number 
of pulses. In contrast, Ashley and Omar were always scanned in the evening. Thus, 
hours spent active since awakening could have driven the frequency of circuit-specific 
spontaneous activity pulses at the time of scanning.  
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Cortico-striato-thalamic FC increase as a marker of disuse in Parkinson’s Disease 
In our arm immobilization paradigm, we observed increases in FC in the disused motor 
circuit, but after removing the cast, these FC changes reversed rapidly and motor 
behavior was unimpaired16. In Parkinson’s disease, action and motor impairments 
include tremor, rigidity and bradykinesia on top of a general paucity and slowness, and 
follow subcortical progressive loss of dopamine neurons projecting then affecting the 
caudate and putamen 5. Similarly to our cast experiment, patients with Parkinson’s 
disease show an increase in FC between putamen, central thalamus and cortical motor 
area, especially during akinesia 80–89. This suggests a potential pathophysiological link 
between limb disuse and Parkinson’s disease. If increased FC in the motor and action 
circuits is a marker of increased neuronal excitability when a brain circuit is idling 90–93.  
 
VIM is a target for DBS treatment of tremor. Electrophysiological studies in patients with 
Parkinson disease and parkinsonian mouse models have revealed increased beta 
power and prolongation of beta burst discharges propagating throughout cortico-basal 
basal ganglia circuits 94–97. These beta bursts disappear when moving or with L-dopa 
treatment 98–100. Further research is needed to determine whether beta bursts detected 
with electrophysiology are Parkinson’s specific or perhaps disuse-related. Through this 
parallel, a potential role of disuse pulses would be to behave like sleep thalamic spindle, 
that are characterized by high frequency such as beta101, and to open synchronization 
windows for information updating in the motor network.  
 
Plasticity and stability in subcortex 
Disuse-driven FC changes and spontaneous activity pulses are not confined to the 
cortex but extend into the putamen and central thalamus (VIM, CM, VPL). The 
anatomical pattern, especially the prominence of the CM evokes parallels to sleep-
related mechanisms of consolidation and plasticity, as well as to the beta bursts seen in 
Parkinson’s patients. These findings open up intriguing new avenues for studying 
disorders such as Parkinson's disease and sleep physiology. They also raise the 
interesting possibility that the mechanisms for changing the brain and for maintaining it 
are one and the same.  
 

Methods 
 

Human participants: We analyzed a previously published dataset that comprised three healthy 

adult volunteers. The first participant (Nico) was 35 years old at the time of scanning and is 

male. The second participant (Ashley) was 25 years old and female. The third participant 

(Omar) was 27 years old and male. All participants were right-handed, as assessed by the 

Edinburgh Handedness Inventory 102 (Nico: +100, right handed; Ashley: +91, right-handed; 

Omar: +60, right-handed). The Washington University School of Medicine Institutional Review 

Board approved the study protocol and provided experimental oversight. Participants provided 

informed consent for all aspects of the study and were paid for their participation. 
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Experimental setup: Arm immobilization was conducted by constraining the participant's 

dominant (right) arm for two weeks (cast period). The immobilization followed a two-week 

experimental baseline (pre-cast period) and was followed by a recovery period of two weeks 

(post-cast period). For one participant (Nico), the pre-cast period was acquired one month 

before the cast period and data was consistently acquired at 5 AM, while for the two other 

participants, fMRI was acquired at 9 PM. For one participant (Omar), the cast was removed and 

reapplied after one day of the cast period to adjust for finger comfort. Details of cast 

construction are described in Newbold et al. 17 

Imaging data: On each day of the experiment, a scan session was conducted to acquire 

structural and functional data. Structural MRI was consisted of four T1-weighted images (sagittal 

acquisition, 0.8 mm isotropic resolution, 3D MP-RAGE, Gradient echo) and four T2-weigthed 

images (sagittal acquisition, 0.8 mm isotropic resolution, 3D T2-SPC, Spin echo). A 30 minutes 

resting state fMRI (rs-fMRI) run was acquired during each session, and two runs of the HCP 

Motor strip mapping task 103,104 were acquired for each pre and post cast session. Ashley and 

Omar’s fMRI was acquired with an improved fMRI sequence (all 2D Gradient echo, echo planar, 

TR: 1.1 vs. 2.2 seconds in Nico, 2.6 vs. 4 mm isotropic resolution in Nico). All data were 

resampled at 3mm in atlas space. Acquisition parameters and procedures are detailed in 

Newbold et al. 17. 

Precision functional analysis: All following data processing and analysis is conducted at the 

participant level using individually defined functional and anatomical boundaries. All statistical 

testing was done against null distributions built for each participant. All major results were 

replicated across all participants. 

MR Image Processing. Preprocessing of structural and functional images, denoising of rs-fMRI 

data, and cortical surface projection were performed as previously described17. Functional 

image processing followed a previously published pipeline 105 and involved temporal 

interpolation to correct for differences in slice acquisition timing, rigid-body correction of head 

movements, correction for susceptibility inhomogeneity-related distortions, and alignment to 

atlas space. The present results are reported in MNI152 space. For cortical surface projection 

and creation of cifti images, individual-specific surfaces were created defining the cortical gray-

matter boundaries derived from T1-weighted images using FreeSurfer 106. Subcortical 

boundaries from the FreeSurfer segmentation were used to select voxels of interest for building 

the volume part of the cifti image. There were no systematic differences in head movement 

(mean FD or number of frames removed) between phases of the casting protocol. 

rs-fMRI data denoising involved replacement of high-motion frames (framewise displacement 

[FD] > 0.1 mm) by temporal linear interpolation, band-pass filtering (0.005 to 0.1 Hz), and 

regression of nuisance time series, including head movement parameters, the global signal 

averaged across all gray-matter voxels, and orthogonalized waveforms extracted from 

ventricles, white matter, and extracranial tissues. The rs-fMRI for functional connectivity is then 

projected to cortical surface as the last step and smoothed using a two-dimensional 6-mm full-

width half-maximum (FWHM) smoothing kernel and volume data were smoothed using a three-

dimensional 4.7-mm FWHM kernel. 

Hemodynamic response function modeling was used for the pulse spatio-temporal 

representation analyses using rs-fMRI and for the HCP task data. For these analyses, denoising 

of data involved high-pass filtering (0.1Hz) before surface projection and regression of 
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nuisances time series (head movements parameters, individual high-motion frames). Nuisance 

regression was done at the surface and subcortical volume level within a GLM design. Cortical 

surface data were smoothed at the last stage of each analysis using a two-dimensional 6-mm 

full-width half-maximum (FWHM) smoothing kernel and volume data were smoothed using a 

three-dimensional 4.7-mm FWHM kernel.  

Fully processed data are available in the Derivatives folder of the Cast-Induced Plasticity 

dataset in OpenNeuro (https://openneuro.org/datasets/ds002766). 

Primary somatomotor upper extremity region of interest: The upper extremity SM1 region 

was defined in individual using a task-based approach combined with automatic labeling by 

FreeSurfer. Details were previously described in Newbold et al. 17.  

Individual network representation: A set of 18 canonical functional networks was defined for 

each participant using a graph theory-based community detection algorithm with anatomical 

priors 20(see figure S1), Infomap algorithm 107(https://www.mapequation.org/) . This algorithm 

assigns grayordinates to communities. Subsequently, these communities are categorized based 

on their similarity to established group-average networks recently updated to include the SCAN 
20,23. Final cortical resting state networks were derived from the consensus network assignments 

obtained through aggregation across thresholds. 

Thalamic nuclei segmentation using THOMAS: The Thalamus-Optimized Multi-Atlas 

Segmentation (THOMAS v 2.1) method, a promising approach for identifying nuclei, was 

employed 28. The choice of THOMAS followed the latest consensus of nuclei naming and 

automatic segmentation algorithm improvement. We also aimed to interpret our results in 

relation to clinical application and needed a robust localization of VIM, which has been shown to 

co-localized with the segment labeled VLPv (Ventro-Lateral-Posterior ventral) using the 

THOMAS segmentation 31. For the thalamic nuclei segmentation in our precision mapping 

participant, the hips_thomas.csh function from version 2.1 was utilized. This version has been 

validated exclusively for T1 acquisition 108–110 and is accessible through Docker 

(https://github.com/thalamicseg/thomas_new). The average T1 acquisition, generated for the 

registration of all functional data, was employed for this purpose. Nuclei were mapped into cifti 

format and the resolution of functional image (3mm) to quantify overlap between brain maps 

and thalamic nuclei. 

rs-fMRI Functional connectivity (FC): Average BOLD time series were calculated for each 

individual specific vertices/voxels (i.e., cifti grayordinates) to construct a full brain FC for each 

rs-fMRI session. Seed FC was estimated as the average of FC maps for each voxel in the seed. 

Pre-cast FC maps were averaged over sessions to define the baseline FC. 

rs-fMRI FC change: For casting sessions comparison to baseline (pre-cast) sessions, Cohen’s 

d was calculated at each grayordinate. Cohen’s d indexes change in FC effect size as it 

accounts for standard deviation. This allows higher sensitivity to subcortical casting effects as 

the subcortical correlation values are lower in comparison to cerebral cortex but consistent 

across sessions. Cohen’s d is also more stable than the t-statistic to variation in the number of 

measurements between participants or between casting protocol phases. Due to repeated 

measure design, the sample size is small (only 14 sessions per phase). Thus, loss of a single 

session impacts the interpretation of t-statistic more than Cohen’s d. Statistical significance was 

assessed within participants using individually generated nulls. To define significant effect, we 

computed null distribution FC maps by randomizing session labels 1000 times and computing a 
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multi threshold cluster based correction. 10 thresholds were defined within the range of values 

of the original data, using values of every 10th percentile of the values distribution. Cluster of 

data passing cluster size correction at p<0.05 for at least two thresholds are displayed in figure 

1. Cluster size correction was estimated for each anatomical structure (cortical and subcortical) 

independently.  

Pulse detection and modeling: To detect large amplitude fluctuation in Left SM1ue regions 

characteristic to a “pulse”, we look for variation of fMRI activity in Left SM1ue above a standard 

activity and unilateral. To do so, the average BOLD time series for the Left and Right SM1ue 

were computed for each rs-fMRI run and normalized across all runs. The difference between 

Left and Right time series were computed and the 2.3 times the standard deviation of this 

difference was used as threshold for pulse detection. A Left SM1ue pulse was defined by two 

criteria. The first criterion was an increase of Left to Right time series difference (above 2.3 

times the Left to Right time series difference standard deviation). The second criterion was an 

increase in signal of Left SM1ue time series above 2.3 times its average time series standard 

deviation. To avoid movement related to false positives, Pulses with a high correlation (>0.8) 

with head movement (on a 18s-window centered on the pulse peak) were removed.  

In order to study the subcortical pattern of the disuse pulse described in Newbold et al. 17, we 

used a pulse detection analysis sensitive to potential differences in hemodynamic response 

function (HRF) shape 111 in subcortical regions. We modeled, at each grayordinate, a pulse 

waveform using the HRF shape at each pulse (double gamma HRF function available in nipy 

(SPM based hrf double gamma, nipy.modalities.fmri.hrf) and optimized using scipy 

(scipy.optimize.curve_fit)). For grayordinates that did not show a pulse activity, the model did 

not converge within the parameter range. Regions with the most frequent pulse activity (20% 

highest pulse detection) are displayed in figure 2. Pulse latency at each pulse locus was 

computed as the temporal difference between peaks relative to Left SM1ue. The displayed map 

was thresholded at 1.1 seconds (TR) after the Left SM1ue pulse peak. 

Motor Task analysis: Task block designs for each movement condition (Tongue, Left Hand, 

Right Hand, Left Foot, Right Foot) were modeled using a double gamma HRF in a GLM analysis 

from FSL feat103. Block onset and offset were modeled as independent events 112. Analysis was 

conducted independently on surface and subcortical grayordinates, following the HCP pipeline 

steps (release v4.3). Second level analysis across runs within participants was performed with 

FSl and the resulting t-scores were used to study thalamic responses. 

VIM localization: Voxels representing VIM were determined using the anterior commissure - 

posterior commissure (ACPC) formula 113 as follows. The T1 was aligned on the ACPC line 

using ACPC detect 114. We used the FreeSurfer segmentation of the third ventricle to estimate 

VIM coordinates. The coronal range was estimated as 1/4 of the third ventricle length from the 

posterior limit of the ventricle with 2 mm anterior range. The sagittal range was estimated 

between 14 mm from the center of the third ventricle and 11 mm from the border of the third 

ventricle. The voxels between the three axis range were brought to functional orientation and to 

the functional resolution of 3mm. 

Quantification and testing of effects against individual null distribution: To test the 

significance of results per anatomical region (e.g. subcortical structure or thalamic nuclei), given 

spatial autocorrelation in BOLD signal, we used null distribution testing. We generated 1000 
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random representations at the grayordinates level, using Moran spectral randomization, an 

algorithm that gets informed by spatial distances between vertices 115,116. We compute the 

values of interest, i.e. average values per nuclei or correlation across voxels of the thalamus 

and compare the true to the random null distribution data. Tests were corrected for multiple 

comparisons across participants using false discovery rate. 
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