Metabolism of Tritiated Gibberellin A₂₀ in Maize¹

Received for publication December 10, 1981 and in revised form July 14, 1982

STEWART B. ROOD², MASAJI KOSHIOKA, TREVOR J. DOUGLAS³, AND RICHARD P. PHARIS⁴ Department of Biology, University of Calgary, Calgary, Alberta T2N 1N4 Canada

ABSTRACT

After the application of 2.36 Curies per millimole [2,3-3H]gibberellin A20 (GA20) to 21-day-old maize (Zea mays L., hybrid CM7 × CM49) plants, etiolated maize seedlings, or maturing maize cobs, a number of ³H-metabolites were observed. The principal acidic (pH 3.0), ethyl acetate-soluble metabolite was identified as [³H]GA₁ on the basis of co-chromatography with standard [³H]GA1 on SiO2 partition, high resolution isocratic elution reverse phase C₁₈ high performance liquid chromatography and gas-liquid chromatography radiocounting. Two other acidic metabolites were identified similarly as [³H|GA₈ and C/D ring-rearranged [³H|GA₂₀, although gas-liquid chromatography radiocounting was not performed on these metabolites. Numerous acidic, butanol-soluble (e.g. ethyl acetate-insoluble) metabolites were observed with retention times on C₁₈ high performance liquid chromatography radiocounting similar to those of authentic glucosyl conjugates of GA1 and GA8, or with retention times where conjugates of GA₂₀ would be expected to elute. Conversion to [³H|GA₁ was greatest (23% of methanol extractable radioactivity) in 21-day-old maize plants. In etiolated maize seedlings, the C/D ring-rearranged [³H]GA₂₀-like metabolite was the major acidic product, while conversion to [³H]GA₁ was low.

Hedden et al. (10) have recently characterized GA₅₃,⁵ GA₄₄, GA17, GA19, and GA20 from immature maize tassels by GLC-MS. Further, data from selected ion current monitoring GLC-MS indicate that GA1, GA29, and GA8 are probably also native in maize (10). These GAs are members of the probable early 13hydroxylation pathway, a pathway which begins with GA12-aldehyde. The 13-hydroxylation pathway also exists in Phaseolus vulgaris (9) where GA_{20} is apparently a precursor of either GA_1 or GA29 (19). In other plant systems, two principal metabolites have been tentatively identified following the application of [³H]GA₂₀: [³H]GA₁ and/or [³H]GA₂₉ (6-8, 13, 16). Since both GA₁ and GA₂₉ appear to be native in maize (10), a branch point in the metabolic pathway in maize may exist after GA₂₀. The biologically active GA₁ (1) may be produced through C-3 hydroxylation, or alternatively, C-2 hydroxylation may yield the biologically inactive GA29. Given the different biological activities of these potential metabolites, a branch point following GA₂₀ may be a site of regulation of levels of the biologically active GA(s), and hence should be considered a potential control point. In the present report, the metabolism of $[^{3}H]GA_{20}$ at several stages of maize plant development is described.

MATERIALS AND METHODS

The metabolism of $[{}^{3}H]GA_{20}$ was investigated in maturing maize cobs, husks, and kernels, in etiolated maize seedlings, and in 21-d-old maize plants. The $[2,3-{}^{3}H]GA_{20}$ was prepared by hydrogenation of GA₅ methyl ester-16,17-epoxide with tritium gas (14). Immediately prior to applications, $[{}^{3}H]GA_{20}$ underwent final purification on a gradient-eluted SiO₂ partition column (5).

Plant Material.

21-d-Old Maize Plants. Three kernels of the early maturing maize (Zea mays L.) hybrid CM7 × CM49 (17) were planted in each of 12 plastic pots (13 × 20 cm) filled with a mixture of peat moss and sand. Pots were placed in a growth room at 25/15°C (day/night), 14-h photoperiod (300 μ E m⁻² s⁻¹). After emergence, plants were thinned to one per pot. Twenty-one days after planting (at which time the plants were still in the vegetative growth phase), 0.22 μ Ci [2,3-³H]GA₂₀ (2.36 Ci/mmol) in 0.4 ml 60% aqueous ethanol was pipetted into the leaf whorl. Twenty-four, 48, 96, and 144 h after the addition of [³H]GA₂₀, three plant shoots were excised at the soil surface and 4 cm above the surface, yielding shoot cylinders which contained the apical meristems. These were rinsed with H₂O and then homogenized separately at -40°C in MeOH:H₂O (80:20, v/v).

Maturing Maize Cobs and Husks. Plants were raised under field conditions as previously described (17). On August 28, 1981, at which time kernels contained milky endosperm, about 1 μ l [³H] GA₂₀ in 0.3 ml 50:50 EtOH:H₂O (v/v) was injected 0.5 cm into the shank of each ear directly below the cob. After black-layer maturity was reached (4), cobs were harvested and air-dried. Husks and kernels were removed and the cobs or husks were frozen, lyophilized, and then homogenized as above (50 ml 80% MeOH/g dry weight tissue). Three cobs were bulked for analysis of metabolites.

Maturing Maize Kernels and Etiolated Maize Seedlings. Mature kernels of the hybrid DK 23 were placed pericarp-side-down in Petri dishes containing two filter paper discs and 5 ml H₂O. Dishes were wrapped in aluminum foil and stored at 22°C for 72 h. Under a green safelight, 1 μ Ci [³H]GA₂₀ in 30 μ l 50% aqueous ethanol was pipetted onto the germinated embryo after the seed-ling had been turned over (pericarp up). After 16 h incubation in the dark, the seedling was excised from the kernal remnant and homogenized in 5 ml 80% aqueous MeOH at -40°C.

Extraction, purification, and chromatography of [³H]GA metabolites were performed as previously described (5, 18). Briefly, after 12 h shaking at 4°C, extracts were filtered, 0.25 M pH 8.0 phosphate buffer was added (2 ml for each 10 ml 80% MeOH), and the MeOH was removed *in vacuo* at 35°C. Partitioning against diethyl ether (18) was performed only on extracts from the 21-dold seedlings and husks as these samples contained moderate amounts of Chl. The aqueous phase was acidified to pH 3.0 with

¹ This work was supported by Natural Sciences and Engineering Research Council Grant A-2585 to R. P. P.

² Present address: Faculty of Forestry, University of Toronto, Toronto, Ontario M5S 1A1.

³ Present address: C. S. I. R. O. Division of Horticulture, Merbein, Victoria, Australia.

⁴ To whom requests for reprints should be sent.

⁵ Abbreviations: GA, gibberellin; BuOH, butanol; C/D R GA₂₀, C/D ring-rearranged GA₂₀; EtOAc, ethyl acetate; GLC-RC, GLC-radiocounting; MeOH, methanol; MeTMSi, trimethylsilyl ether of the methyl ester; Rt, retention time.

1 N HCl and partitioned four times into EtOAc. The acidic, EtOAc phase was taken to dryness in vacuo, solubilized in 0.1 M pH 8.0 phosphate buffer, and purified on polyvinylpolypyrrolidone (Polyclar AT) (as per Ref. 18) and the eluant from this column was adjusted to pH 3.0 with 1 N HCl prior to partitioning four times with equal volumes of ethyl acetate. The acidic, EtOAc phase was dried and chromatography was accomplished on gradient-eluted Woelm SiO₂ for partition (5, 15, 19). Forty 10-ml fractions were collected rather than larger fractions previously used. Gradient elution reverse phase C₁₈ HPLC was carried out using a Waters Associates ALC/GPC R-401 liquid chromatograph with two model 6000 pumps, a model 660 solvent flow programmer, and a model U6K injector. A Berthold LB 503 radioactivity monitor was used on-line with a heterogeneous counting cell. The MeOH and H₂O for HPLC were purified by fractional distillation, followed by filtration through Millipore HATF or FHUP filters, respectively. Solvent A consisted of 89:10:1 (v:v:v)H₂O:MeOH: acetic acid and solvent B was 100% MeOH. Following sample injection, there was a 10-min flush of 0% B, then a 30-min gradient from 0 to 70% B, both at 1.8 ml min⁻¹. The isocratic elution C₁₈ reverse phase HPLC-RC was carried out using a Whatman M9 Partisil 10 ODS 2 column (9.4 mm \times 50 cm). Eluant was 62.3:37:0.7 H₂O:MeOH:acetic acid (v:v:v) at 1.8 ml min⁻¹. After HPLC-RC, samples were converted to the MeTMSi derivatives prior to injection on GLC-RC on a Packard model 430 GLC coupled to a Packard model 884 gas proportional counter. Glass columns were packed with 2% SE30 ($2 \text{ mm} \times 2 \text{ m}$) or 3% OV 101 (2 mm \times 2 m). Column, detector, and injector temperatures were 230, 210, and 250°C, respectively, and 50 ml min⁻¹ carrier He was used.

The acidic, aqueous phase after partitioning with EtOAc was extracted three times with BuOH, and then the aqueous phase was adjusted to pH 7.0 with $1 \times KOH$, and again extracted three times with BuOH. A MeOH wash of the SiO₂ partition column after the hexane:EtOAc gradient was completed was used to remove very polar radioactivity (GA glucoside and GA glucosyl ester, which are sparingly soluble in EtOAc will elute in the MeOH wash). This MeOH wash was added to the acidic, and neutral, BuOHsoluble fractions to produce a final 'BuOH-soluble' fraction which was then subjected to gradient elution reverse phase C₁₈ HPLC. This final BuOH-soluble fraction will contain GA glucosyl conjugates and contained virtually all of the highly H₂O-soluble radioactivity.

RESULTS AND DISCUSSION

Following the $[{}^{3}H]GA_{20}$ feed to the 21-d-old maize plants, three regions of acidic, EtOAc-soluble radioactivity were eluted from SiO₂ partition columns (Fig. 1). In extracts of the 24-h feed, most of the radioactivity co-chromatographed with authentic $[{}^{3}H]GA_{20}$, while a second peak eluted in the more polar region coincidental with $[{}^{3}H]GA_{1}$ (Fig. 1). A less polar shoulder on the $[{}^{3}H]GA_{20}$ peak (where C/D R GA₂₀ elutes) was not observed in these samples.

While there was a rapid initial metabolism of $[{}^{3}H]GA_{20}$ (Fig. 2), it leveled off by 48 h. Due to the anatomical organization of the leaf whorl surrounding the apical meristem, it probably was not possible to rinse off all of the applied $[{}^{3}H]GA_{20}$ that had not been absorbed by the plant. Thus, at least a part of the ${}^{3}HGA_{20}$ peak at all harvests may not have been absorbed by the tissue.

Our SiO₂ partition column does not separate GA₁ from GA₂₉, the two likely principal products from GA₂₀ feeds. Since both GAs are probably native in maize, and GA₂₀ is native, it was of particular interest to characterize further the polar peak which cochromatographed on SiO₂ with [³H]GA₁.

Jones *et al.* (11) reported that GA_1 and GA_{29} are readily separated on gradient-eluted reverse phase C_{18} HPLC and Davies *et al.* (3) also noted their separation. Thus, the ³H peaks from SiO₂ partition chromatography were further analyzed on gradient-

FIG. 1. Profile of ³H elution from gradient-eluted SiO₂ partition columns loaded with extracts from maize plants 24 or 144 h after administering $[^{3}H]GA_{20}$ to the 21-d-old plants.

FIG. 2. Time course of changes in ³H-compounds following a $[{}^{3}H]GA_{20}$ feed to 21-d-old maize plants. The BuOH-soluble fraction includes the MeOH wash from SiO₂ columns and would include any GA glucosyl conjugates if present.

eluted C_{18} reverse phase HPLC. The Rt of [³H]GA₂₀ and standards of logical metabolites and some degradation products were determined by reverse phase HPLC-RC for comparison with actual metabolites (Fig. 3).

The $[{}^{3}H]GA_{1}$ -like peak from the SiO₂ partition columns for 21d-old plants (Fig. 1) eluted from the gradient-eluted C₁₈ HPLC column as a single peak coincident with the Rt of $[{}^{3}H]GA_{1}$. This peak was collected and subsequently developed isocratically on reverse phase C₁₈ HPLC-RC using a 50-cm Whatman Magnum 9 column capable of resolving authentic standards of $[{}^{3}H]GA_{1}$ from $[{}^{14}C]GA_{3}$ by almost 10 min (Fig. 4, upper half). When the $[{}^{3}H]$

ROOD ET AL.

Table I. Distribution of ³H following $[^{3}H]GA_{20}$ Feeds to Maize

Qualitative analysis is based on SiO ₂ partition chromatography	followed by gradient-eluted HPLC-RC, and
in the case of GA ₁ , by isocratic HPLC and GLC-RC.	

Sample [³ H] GA ₂₀ Feeds	Acidic, EtOAc-Soluble Fraction				BuOH-Soluble (Conju- gate-like) Fraction			onju- on	BuOH-Insolu	Total EtOAc- Soluble (exclud-	Total EtOAc-In- soluble (includ-	
	C/D R GA ₂₀	GA ₂₀	GA1	GA	C/D R GA ₂₀	GA ₂₀	GA1	GA ₈	ble (very highly H ₂ O- soluble)	ing MeOH wash from SiO ₂ parti- tion columns)	ing MeOH ^a wash from SiO ₂ partition col- umns)	
		% total extractable dpm										
21-Day-old plants har- vest at									-			
24 h		41	23							64	36	
Harvest at												
144 h		32	14	2						48	52	
Etiolated												
seedlings	7	54	4	1						66	34	
Mature cobs		3	2			24	27	2	42	5	95	
Husks		4	13	5		22	15	3	12	22	78	
Kernels	4	18	3		52	12	1			25	75	

^a Represents the sum of the BuOH-soluble fraction, the BuOH-insoluble fraction (e.g. very highly H_2O -soluble), and the MeOH wash from the SiO₂ partition column after hexane:EtOAc gradient elution.

FIG. 3. Gradient elution C_{18} reverse phase HPLC-RC (on-line RC with flow-through cell) of [³H]GA₂₀, logical metabolites ([³H]GA₈ and [³H] GA₁), a reference standard (ABA) which was detected via UV A at 265 nm, and some degradation products. The chromatogram is a composite trace made by superimposing traces from HPLC runs with pairs of [³H] GA₂₀ and one other ³H-compound in each run. I, Unidentified ³H-degradation product of [³H]GA₂₀ which elutes with injection solvent; II, [³H] GA₈ (12.5 min); III, [³H]GA₁ (25.0 min); IV, unknown H-degradation product of acid-treated [³H]GA₂₀ (27.5 min); V, ABA (28.5 min); VI, [³H] GA₂₀ (32.0 min); VII, [³H]GA₂₀-Me (35.0); VIII, C/D R [³H]GA₂₀ (36.6 min).

 GA_1 -like peak from gradient-eluted HPLC was coinjected with a small spike of [¹⁴C]GA₃, it eluted at the same Rt as authentic [³H]GA₁ (Fig. 4, lower half). Thus, the [³H]GA₁-like peak in Figure 1 apparently consisted of only a single metabolite which was not [³H]GA₂₉ and probably was [³H]GA₁.

While attempts at subsequent GLC-RC of the [³H]GA₁-like peak from the [³H]GA₂₀ feed to 21-d-old maize plants failed, a feed of [³H]GA₂₀ to maturing maize cobs gave a chromatographically identical metabolite. After initial purification of SiO₂ partition chromatography, about 1.5×10^5 dpm of the [³H]GA₁-like metabolite was developed on gradient-eluted C₁₈ HPLC-RC; it

FIG. 4. Isocratic elution C_{18} reverse phase HPLC-RC with elution of [³H]GA₈, [¹⁴C]GA₃, [³H]GA₁ (upper trace), and of [¹⁴C]GA₃ coinjected with the acidic, polar ³H-metabolite of [³H]GA₂₀ from maize which had co-chromatographed previously with [³H]GA₁ on a gradient-eluted SiO₂ partition column (lower trace).

eluted coincidentally with the Rt of authentic $[{}^{3}H]GA_{1}$ (24.7 min). This metabolite was then analyzed by GLC-RC. The MeTMSi derivative of the $[{}^{3}H]GA_{1}$ -like metabolite eluted coincidentally with authentic standards of $[{}^{3}H]GA_{1}$ and GA₁ (Rt 22.5 min) from a 2% SE 30 column. This GLC column adequately separates GA₁ from 3-epi-GA₁, another possible metabolite of $[{}^{3}H]GA_{20}$ (6, 12). Thus, the principal acidic, EtOAc-soluble metabolite of $[{}^{3}H]GA_{20}$ in maize was identified as $[{}^{3}H]GA_{1}$.

No detectable $[^{3}H]GA_{29}$ was produced following any of the $[^{3}H]GA_{20}$ feeds to maize. As GA_{20} is a precursor of GA_{29} (8, 16) and as both GA_{20} and GA_{29} are native in maize, the absence of $[^{3}H]$

GA₂₉ was surprising.

It must be noted that since the $[{}^{3}H]GA_{20}$ was labeled principally at the C-2 and C-3 positions, some ${}^{3}H$ loss would occur during C-2 or C-3 hydroxylation (6). Thus, the conversion of $[{}^{3}H]GA_{20}$ to $[{}^{3}H]GA_{1}$ was probably greater than that noted in Table I and detection of $[{}^{3}H]GA_{29}$ would also have been hindered. However, tritium loss by such conversions should have been equal in all experiments. Hence, comparisons of metabolic rates under different conditions or at different stages should still be valid.

While [3 H]GA₁ was the principal acidic, EtOAc-soluble metabolites olite in most experiments, other acidic, EtOAc-soluble metabolites were also observed. In the feed to etiolated maize seedlings, the principal acidic, EtOAc-soluble compound (other than [3 H]GA₂₀) co-chromatographed on a SiO₂ partition column and on C₁₈ HPLC-RC with C/D R [3 H]GA₂₀ (Fig. 5). The origin of C/D R [3 H]GA₂₀ is uncertain. However, it is known that C/D R [3 H]GA₂₀ can be produced simply by treating [3 H]GA₂₀ with acid (6). Extracts were repeatedly exposed to HCl, HCOOH, and CH₃COOH during experimental workup. Thus, it is possible that C/D R [3 H]GA₂₀ in the extracts may be an artifact.

In most samples of small ³H-labeled peak eluted at the Rt of $[{}^{3}H]GA_{8}$ on SiO₂ partition columns and on HPLC-RC. Davies and Rappaport (2) have previously shown that $[{}^{3}H]GA_{1}$ is probably converted to $[{}^{3}H]GA_{8}$ in maize, and GA₈ is probably native in maize (10). Thus, this very polar EtOAc-soluble metabolite (Figs. 1 and 5) is probably $[{}^{3}H]GA_{8}$. As noted above, the loss of at least some ³H at the C-2 and C-3 positions during hydroxylation would cause an underestimation of the GA₈ produced from GA₂₀.

Another minor metabolite was also observed in the $[{}^{3}H]GA_{20}$ feed to etiolated seedlings (Fig. 5). With a Rt on HPLC-RC of 16.4 min (Fig. 3), this ${}^{3}H$ peak did not correspond to any known metabolite or catabolite for which we have HPLC Rt data.

Following the $[{}^{3}H]GA_{20}$ feed to maturing maize cobs in field trials, the senesced husks contained more $[{}^{3}H]GA_{1}$ than $[{}^{3}]GA_{20}$ (Fig. 6). However, the relative abundance of acidic, BuOH-soluble metabolites (which are grouped into $[{}^{3}H]GA_{1}$ -like or $[{}^{3}H]GA_{20}$ like conjugates on the basis of their Rt) tended to be just the opposite, with a far greater abundance of $[{}^{3}H]GA_{20}$ -like conjugates than $[{}^{3}H]GA_{1}$ -like conjugates (Fig. 7). It must be noted here, however, that identification of these BuOH-soluble metabolites as GA conjugates is tentative, being based on known partitioning characteristics, Rt (relative to standard GA glucosyl conjugates) on gradient-eluted C₁₈ HPLC-RC, and the knowledge that $[{}^{3}H]$

FIG. 5. Profile of ³H elution from gradient elution C_{18} reverse phase HPLC of the acidic, EtOAc-soluble fraction from an extract of etiolated maize seedlings fed [³H]GA₂₀. Retention times included were determined by the integrator of the on-line HPLC-RC while plotted data points were calculated by liquid scintillation spectrometry of collected aliquots. In a subsequent HPLC analysis, authentic [³H]C/D R GA₂₀ eluted 4.6 min after authentic [³H]GA₂₀.

FIG. 6. Profile of ³H elution from a gradient-eluted SiO₂ partition column loaded with the acidic, EtOAc-soluble fraction from maize husks following a $[^{3}H]GA_{20}$ feed to the cob.

FIG. 7. Profile of ³H elution from C_{18} reverse phase HPLC of the acidic, EtOAc-insoluble, BuOH-soluble fraction from maize husks following a [³H]GA₂₀ feed to the cob.

FIG. 8. Profile of ³H elution from C_{18} reverse phase HPLC of the acidic, EtOAc-insoluble, BuOH-soluble fraction from maize cobs following a [³H]GA₂₀ feed to the cob.

GA glucosyl conjugate-like metabolites from other radioactive feeds ([³H]GA₄ feed to anise and carrot somatic cell cultures; M. Koshioka, T. Douglas, D. Ernst, J. Huber, R. Pharis, and A. Jones, unpublished research), which had similar C₁₈ HPLC Rt to the peaks shown in Figures 6 and 7, yielded acidic, [³H]GA moieties upon hydrolysis.

There is apparent peak spreading in the HPLC chromatogram from the BuOH-soluble fraction of maize husks (Fig. 7), and this may have resulted from the large number of compounds which were not adequately resolved when large fractions were collected. However, for an acidic, BuOH-soluble fraction of an extract of maize cobs, a higher resolution reverse phase HPLC-RC analysis of the cobs was obtained by collecting 20-s fractions (Fig. 8) for liquid scintillation spectrometry. The cobs (which had been shelled and hence contained no kernels) contained at least 10 acidic, BuOH-soluble [³H]peaks (Fig. 8). Four of the first five peaks cochromatographed on reverse phase gradient-eluted C₁₈-HPLC with authentic conjugates of GA8 and GA1 (Fig. 8). We had no authentic conjugates of GA20; hence, no comparisons of metabolite peaks eluting in the less polar regions (Rt about 30 min) could be made. However, glucosyl conjugates elute prior to or almost coincident with the free acid GA in this HPLC system (M. Koshioka, S. Rood, R. Pharis, unpublished research) (Fig. 8). Thus, peaks VII, VIII, and IX may represent conjugate-like metabolites of [³H]GA₂₀. However, peak X was probably not a conjugate of [³H]GA₂₀ (Fig. 8). Since C/D R [³H]GA₂₀ elutes 9.1 min after [³H]GA₂₀ and also after peak X, it is possible that peak X represents a conjugate of C/D R [3 H]GA₂₀ (Fig. 8). It is noteworthy that the fate of [3 H]GA₂₀ was dependent not

only on the ontogenetic stage at GA application (Table I) and on incubation time (Figs. 1 and 2), but also appears to depend on the target tissue. For example, following [³H]GA₂₀ feeds to maturing maize cobs, very little of the radioactivity in the cobs partitioned into EtOAc at pH 3, while in the husks and kernels increasingly more radioactivity was EtOAc-soluble (Table I). The relative abundance of various acidic, BuOH-soluble metabolites also differed in the different tissues (Table I and Fig. 8). A more complete analysis of [3H]GA20 at varying stages of ontogeny is thus warranted.

In summary, following [³H]GA₂₀ feeds to maize at a number of developmental stages, the principal acidic, EtOAc-soluble metabolite was usually a compound which, when analyzed sequentially on a number of different systems, co-chromatographed with [³H] GA₁. [³H]GA₈- and C/D R [³H]GA₂₀-like metabolites were also

produced, although C/D R GA₂₀ may be an artifact. An appreciable portion of radioactivity was EtOAc-insoluble (e.g. BuOHsoluble) and appears to represent GA glucosyl conjugates.

LITERATURE CITED

- 1. CROZIER A, CC KUO, RC DURLEY, RP PHARIS 1970 The biological activities of 26 gibberellins in nine plant bioassays. Can J Bot 48: 867-87
- 2. DAVIES LJ, L RAPPAPORT 1975 Metabolism of tritiated gibberellins in d-5 dwarf maize. II. [3H]Gibberellin A1, [3H]gibberellin A3, and related compounds. Plant Physiol 56: 60-66
- 3. DAVIES PJ, E EMSHWILLER, TJ GIANFAGNA, WM PROEBSTING, M NOMA, RP PRIS 1982 The endogenous gibberellins of vegetative and reproductive tissue of G2 peas. Planta. 154: 266-272
- 4. DAYNARD TB, WG DUNCAN 1069 The black layer and grain maturity in corn. Crop Sci 9: 473-476
- 5. DURLEY RC, A CROZIER, RP PHARIS, GE MCLAUGHLIN 1972 Chromatography of 33 gibberellins on a gradient eluted silica gel partition column. Phytochemistry 11: 3029-3033
- 6. DURLEY RC, RP PHARIS, JAD ZEEVAART 1975 Metabolism of [3H]gibberellin A20 by plants of Bryophyllum daigremontianum under long- and short-day conditons. Planta (Berl) 126:139-149
- 7. DURLEY RC, T SASSA, RP PHARIS 1979 Metabolism of tritiated gibberellin A20 in immature seeds of dwarf pea, cv. Meteor. Plant Physiol 64: 214-219
- 8. FRYDMAN VM, J MACMILLAN 1975 The metabolism of gibberellins A₉, A₂₀ and A29 in immature seeds of Pisum sativum cv. Progress No. 9. Planta (Berl) 125: 181-195
- 9. HEDDEN P, J MACMILLAN, BO PHINNEY 1978 The metabolism of gibberellins. Annu Rev Plant Physiol 29: 149-192
- 10. HEDDEN P, BO PHINNEY, R HEUPEL, D FUJII, H COHEN, P GASKIN, J MAC-MILLAN, JE GRAEBE 1982 Hormones of young tassels of Zea mays. Phytochemistry 21: 391-393
- 11. JONES MG, JD METZGER, JAD ZEEVAART 1980 Fractionation of gibberellins in plant extracts of reverse phase high performance liquid chromatography. Plant Physiol 65: 218-221
- 12. JONES MG, JAD ZEEVAART 1981 Effect of photoperiod on metabolism of [3H] gibberellins A1, 3-epi A1, and A20 in Agrostemma githago L. Plant Physiol 69: 660-662
- 13. LANCE B, RC DURLEY, DM REID, TA THORPE, RP PHARIS 1976 Metabolism of ³H gibberellin A₂₀ in light- and dark-grown tobacco callus cultures. Plant Physiol 58: 387-392
- Physiol 36: 381-392
 MUROFUSHI N, RC DURLEY, RP PHARIS 1977 Preparation of radioactive gibber-ellins A₂₀, A₅, and A₈. Agric Biol Chem 41: 1075-1079
 POWELL LE, KJ TAUTVYDAS 1967 Chromatography of gibberellins on silica gel
- partition columns. Nature (Lond) 213: 292-293
- 16. RAILTON ID, N MUROFUSHI, RC DURLEY, RP PHARIS 1974 Interconversion of gibberellin A20 to gibberellin A29 by etiolated seedlings and germinating seeds of dwarf Pisum sativum. Phytochemistry: 793-796
- 17. ROOD SB, DJ MAJOR 1981 Diallel analysis of leaf number, leaf development rate and height of northerly adapted maize. Crop Sci 21: 867-873 18. ROOD SB, RP PHARIS, DJ MAJOR 1980 Changes in endogenous gibberellin-like
- substances with sex reversal of the apical inflorescence of corn (Zea mays L.). Plant Physiol 66: 793-796
- 19. YAMANE H, N MUROFUSHI, H OSADA, N TAKAHASHI 1977 Metabolism of gibberellins in early immature bean seeds. Phytochemistry 16: 831-835