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Abstract 31 

Optical aberrations hinder fluorescence microscopy of thick samples, reducing image signal, contrast, 32 

and resolution. Here we introduce a deep learning-based strategy for aberration compensation, 33 

improving image quality without slowing image acquisition, applying additional dose, or introducing 34 

more optics into the imaging path. Our method (i) introduces synthetic aberrations to images acquired 35 

on the shallow side of image stacks, making them resemble those acquired deeper into the volume and 36 

(ii) trains neural networks to reverse the effect of these aberrations. We use simulations and 37 

experiments to show that applying the trained ‘de-aberration’ networks outperforms alternative 38 

methods, providing restoration on par with adaptive optics techniques; and subsequently apply the 39 

networks to diverse datasets captured with confocal, light-sheet, multi-photon, and super-resolution 40 

microscopy. In all cases, the improved quality of the restored data facilitates qualitative image 41 
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inspection and improves downstream image quantitation, including orientational analysis of blood 42 

vessels in mouse tissue and improved membrane and nuclear segmentation in C. elegans embryos. 43 

 44 

Introduction 45 

Fluorescence microscopes offer diffraction-limited imaging only when optical aberrations are 46 

absent. Such aberrations can arise due to optical path length differences introduced anywhere in the 47 

imaging path, including from instrument misalignment, optical imperfections, or differences in refractive 48 

index between the heterogenous and refractile sample, immersion media, or objective immersion oil. 49 

Sample-induced optical aberrations usually dominate and are often the reason that three-dimensional 50 

(3D) fluorescence image volumes show obvious deterioration in image signal-to-noise ratio (SNR), 51 

contrast, and resolution deeper into the image volume.       52 

One method of compensating for these aberrations is via adaptive optics (AO1,2), a broad class of 53 

techniques that measure the aberrated wavefront and subsequently apply an equal and opposite 54 

‘corrective’ wavefront, restoring diffraction-limited3 or even super-resolution4 imaging throughout the 55 

image volume. Once the aberrated wavefront is determined, an adaptive element such as a deformable 56 

mirror or spatial light modulator is used to apply the correction. Although these methods are effective, 57 

the process of determining the wavefront typically slows acquisition and/or applies more illumination 58 

dose than imaging without AO. From a practical perspective, implementing AO is nontrivial and adds 59 

considerable expense to the underlying microscope. Thus, AO remains the province of relatively few 60 

labs, and there is a need for new methods that can reverse the effects of optical aberrations without 61 

sacrificing temporal resolution, imparting more dose to the sample, or adding additional hardware to 62 

the microscope.          63 

Deep learning approaches can computationally reverse image degradation, and have been used 64 

successfully in denoising5,6, deconvolution7,8, and super-resolution applications9,10. By incorporating 65 

information about the underlying object, such methods can also learn to predict the wavefront 66 

associated with aberrated images11-13. With sufficient training data (matched pairs of diffraction-limited 67 

and aberrated data), we reasoned that a neural network ought to be able to directly predict the 68 

diffraction-limited image from the aberrated image. The challenge then becomes accumulating 69 

appropriate training data, which would ideally be obtained without relying on AO. 70 

Here we address this problem by (i) introducing synthetic aberrations to easily obtained near-71 

diffraction limited data so that they resemble aberrated data and (ii) training neural networks to reverse 72 

the effect of these aberrations. We use simulations to show that application of our ‘content-aware’ 73 

approach outperforms other image restoration methods, including deconvolution with the known 74 

aberrated point spread function (PSF). We also show that our method provides performance on par with 75 

direct wavefront sensing-based AO3, by comparing its output to experimental ground truth. We then 76 

apply our techniques to diverse volumetric data captured with confocal, light-sheet, multi-photon, and 77 

super-resolution microscopes, finding that in all cases, resolution and contrast are substantially 78 

improved over the raw data. In addition to facilitating biological inspection, the restored data also 79 

enhanced quantitative investigation, including orientational analysis of blood vessels in mouse tissue 80 

and improved accuracy of membrane and nuclear segmentation in C. elegans embryos. 81 

 82 

Results 83 

 84 
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Compensating for aberrations with deep learning 85 

  86 

First, we intentionally synthetically aberrate the images acquired by fluorescence microscopes 87 

given knowledge of the physics of image formation14,15 (Fig. 1, Methods, Supplementary Note 1). 88 

Aberrations are chosen so that the aberrated images resemble those acquired deeper into the sample, 89 

where aberrations are more pronounced. The key insight of our approach is that the ‘shallow’ images on 90 

the ‘near side’ of the three-dimensional fluorescence volume are usually near-diffraction-limited and 91 

thus provide ground truth data that can be used to train a network to reverse the effect of the 92 

synthetically introduced aberrations. The trained neural network model (termed ‘DeAbe’) can then be 93 

used to reverse depth-dependent blurring on data unseen by the network, effectively mitigating the 94 

effect of aberrations without recourse to AO.   95 

To benchmark our method, we began by simulating 3D phantoms consisting of randomly 96 

oriented and positioned dots, lines, spheres, circles, and spherical shells.  We then degraded these 97 

structures by adding random aberrations and noise and evaluated the extent to which DeAbe could 98 

reverse the degradation (Fig. 1b, Supplementary Figs. 1-7). Visual assessments in lateral (Fig. 1c, d, 99 

Supplementary Video 1) and axial (Fig. 1e, Supplementary Video 2) views, as well as quantitative 100 

comparisons (Fig. 1f) demonstrated that the DeAbe model outperformed blind deconvolution16, 101 

Richardson-Lucy deconvolution with an ideal point spread function (PSF), Richardson-Lucy 102 

deconvolution with the aberrated PSF (known in these simulations, but unknown in general), and 103 

denoising methods (Supplementary Figs. 6, 7). We attribute the superior performance of DeAbe to its 104 

ability to learn a sample-specific prior, thereby better conditioning its solution relative to Richardson-105 

Lucy deconvolution.  106 

Importantly, simulations allowed us to further characterize DeAbe, offering insight into the 107 

regimes in which the method excels and where performance suffers. First, we found optimal 108 

performance when aberration magnitudes in the training data match the aberration magnitude in the 109 

test data (Supplementary Fig. 1). Over the conditions we tested, the model improved images 110 

contaminated with root mean square (RMS) wavefront distortion exceeding four radians (the highest 111 

value we tested), although performance degrades as wavefront distortion increases. Second, although 112 

we performed tests with training data containing up to the 7th Zernike order, the improvement offered 113 

past order four (the value used in this work) is negligible (Supplementary Fig. 2). Third, DeAbe trained 114 

on a mixture of Zernike basis functions also provides notable improvement on images corrupted solely 115 

by individual Zernike functions (Supplementary Fig. 3), although dedicated models trained to correct 116 

specific Zernike modes are better if these modes are known in advance (Supplementary Fig. 4). Fourth, 117 

although DeAbe’s performance suffers in the presence of noise, it still offers noticeable visual and 118 

quantitative improvements in image quality for SNR above ~5 (Supplementary Fig. 5). Finally, we 119 

explored different networks for implementing DeAbe, finding that our previous 3D RCAN9 offered better 120 

performance than CARE5, RLN7, or BasicVSR++17 architectures (Supplementary Figs. 8, 9).  121 

 122 

 123 

Comparing DeAbe predictions to experimental ground truth 124 

 125 

 We next benchmarked DeAbe against experimental datasets acquired with a lattice light sheet 126 

microscope18 equipped with adaptive optics for inducing and correcting aberrations (AO-LLSM19, Fig. 2, 127 

Supplementary Table 1). When imaging phalloidin-stained PtK2 cells (Fig. 2a-f), we induced aberrations 128 
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that obscured the fine actin mesh at the cell periphery, filamentous actin, and stress fibers (Fig. 2b-d). 129 

Training a DeAbe model with a mixture of random aberrations restored these structures, improving 130 

contrast and resolution to a level approaching the aberration-free ground truth (Fig. 2e, f) or AO result 131 

(Supplementary Fig. 10). As for the simulations (Supplementary Fig. 4, 6, 7), we confirmed that training 132 

DeAbe with Zernike modes matching the underlying aberration enhanced performance compared to a 133 

random mixture of modes (Supplementary Fig. 11) and that DeAbe outperformed deconvolution 134 

(Supplementary Fig. 12) and denoising (Supplementary Fig. 13).  135 

 We compared the performance of DeAbe to AO on a more challenging sample, fixed 5dpf 136 

zebrafish embryos expressing a GFP membrane marker labeling glutamatergic neurons (Fig. 2g-m), 137 

When acquiring image volumes 40-140 m from the surface of the fish, AO correction and the DeAbe 138 

prediction improved lateral (Fig. 2i-k) and axial (Fig. 2l) views of the raw data, enhancing spatial 139 

resolution (Fig. 2m). Intriguingly, we also found examples in which the visual clarity of the DeAbe 140 

prediction appeared better than the AO correction (Supplementary Fig. 14), perhaps reflecting 141 

imperfect AO correction. The cell and fish samples also allowed us to investigate whether models 142 

trained on one sample type generalized to the other. As we20 and others21 have reported, we obtained 143 

superior results when training models specific to each sample type (Supplementary Fig. 15). 144 

 145 

Computational aberration compensation improves image quality on diverse volumetric data 146 

 147 

 We subsequently applied DeAbe to diverse datasets acquired with different microscope 148 

modalities, in each case training models on images derived from the shallow side of image volumes (Fig. 149 

3, Supplementary Fig. 16-17, Supplementary Table 1). First, we imaged live C. elegans embryos 150 

expressing a pan-nuclear GFP-histone marker with inverted selective plane illumination microscopy 151 

(iSPIM)22,23, finding that the raw image data displayed progressive loss of contrast and resolution as a 152 

function of increasing depth, making it difficult or impossible to discern subnuclear structure (or even 153 

individual nuclei) at deeper imaging planes (Fig. 3a, i, Supplementary Video 3). By contrast, the DeAbe 154 

prediction restored these structures, also improving axial views (Fig. 3a, iii). Richardson-Lucy 155 

deconvolution also offered some improvement in image quality, albeit not to the extent of the DeAbe 156 

prediction, while also undesirably amplifying noise (Fig. 3a, ii). Second, we used spinning-disk confocal 157 

microscopy to image thicker adult C. elegans expressing the multicolor NeuroPAL transgene24, used for 158 

resolving neuronal identities. Depth-dependent image degradation produced raw images with dim or 159 

diffuse nuclear signal in each color channel. The DeAbe prediction improved SNR dramatically 160 

(Supplementary Fig. 18, Supplementary Video 4), which we suspect may prove useful in improving the 161 

accuracy of neuronal identification. Third, we applied DeAbe to images of NK-92 cells stained with Alexa 162 

Fluor 555 wheat germ agglutinin and embedded in collagen matrices, acquired with instant SIM25, a 163 

super-resolution imaging technique (Fig. 3b-d, Supplementary Fig. 19, Supplementary Video 5). Post 164 

deconvolution, the DeAbe prediction better resolved clusters of membrane-bound glycoproteins, 165 

intracellular vesicles, and membranes (‘DeAbe+’, Fig. 3c, d) than the raw (or deconvolved raw, 166 

Supplementary Fig. 19) data, especially near the limits of the 45 m thick imaging volume. Fifth, we 167 

verified that the DeAbe prediction restored the shapes of neuronal nuclei located on the ‘far side’ of 168 

anesthetized adult C. elegans imaged with instant SIM, matching ground truth experiments in which we 169 

flipped the worm over (Supplementary Fig. 20). Sixth, we used two-photon microscopy to image live 170 

murine cardiac tissue expressing Tomm20-GFP, marking the outer mitochondrial membrane (Fig. 3e). 171 

Although mitochondrial boundaries were evident in the raw data 20 m into the volume, aberrations 172 
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caused a progressive loss in resolution that hindered visualization of subcellular structure at greater 173 

depths (Fig. 3e, f). The DeAbe prediction restored resolution throughout the 150 m thick volume (Fig. 174 

3f, Supplementary Fig. 21, Supplementary Video 6), unlike Richardson-Lucy deconvolution (Fig. 3f) 175 

which amplified noise without restoring the mitochondria. The DeAbe prediction similarly improved 176 

contrast and resolution when applied to volumes of fixed mouse liver stained with membrane labeled 177 

tdTomato, imaged with two-photon microscopy (Supplementary Video 7). Quantitative contrast metrics 178 

(Methods, Supplementary Fig. 22) confirmed our visual impressions of contrast improvement provided 179 

by DeAbe.  180 

 Next, we applied DeAbe to samples ~10,000-fold larger in volumetric extent (Fig. 4a, 181 

Supplementary Video 8).  We fixed and iDISCO26-cleared E11.5 mouse embryos immunostained for 182 

neurons (Alexa Fluor TuJ1) and blood vessels (Alexa Fluor 594) and imaged them with low magnification 183 

confocal microscopy. Although tissue clearing nominally produces a sample with the same refractive 184 

index everywhere, we still observed pronounced depth-dependent degradation from the ‘near’ to ‘far’ 185 

side of the embryo, including in intensity (likely due to photobleaching during the acquisition) and 186 

resolution. We were able to largely reverse this deterioration by digitally compensating for 187 

photobleaching27 (Methods), applying DeAbe, and finally deconvolving the data (Fig. 4b, Supplementary 188 

Fig. 23). While the improvement in image quality was particularly striking in axial views (Fig. 4b), 189 

restorations also improved the appearance of fibrillar structures in lateral views, in both channels, 190 

throughout the volume (e.g., the vicinity of the vagus nerve and its associated nerve roots, Fig. 4c, d).  191 

 We further investigated this qualitative impression by using automated tools28,29 to 192 

quantitatively assess the mean 3D orientation and directional variance (a measure of the spread in 193 

angular orientation) at each voxel in the blood vessel channel (Fig. 4e-g, Supplementary Figs. 24, 25, 194 

Supplementary Video 9). The DeAbe restoration resulted in cleaner separation between vessels, which 195 

aided voxel-wise quantification of these metrics even in dense regions containing many crisscrossing 196 

vessels (Fig. 4e, Supplementary Video 9). In deeper regions of the volume (Fig. 4f), the DeAbe results 197 

produced narrower angular histogram distributions of vessels than the noisy raw data (Fig. 4f). The 198 

improvement in quantification was also reflected in directional variance analysis. For example, when 199 

visually inspecting different regions of interest (ROI) with differential vessel alignment (Fig. 4g, 200 

comparing vicinity of aortic arches, (ROI 1), to diencephalon, (ROI 2)) we observed a greater difference 201 

in mean directional variance when using the DeAbe reconstruction vs. the raw data (Supplementary Fig. 202 

25). 203 

 204 

Incorporating DeAbe in multi-step restoration further enhances resolution and contrast in 4D imaging 205 

applications 206 

 207 

 Given the performance of DeAbe thus far, we wondered if we could further boost image quality 208 

by combining DeAbe with additional networks designed to enhance spatial resolution. To test this 209 

possibility, we acquired dual-view light sheet microscopy (diSPIM30,31) volumetric time-lapse (‘4D’) 210 

recordings of C. elegans embryos expressing labels marking cell membranes and nuclei, and then passed 211 

the raw single-view data through three networks designed to sequentially compensate for aberrations 212 

(i.e., DeAbe), deconvolve the resulting predictions (‘DL Decon’), and improve resolution isotropy5 (‘DL 213 

Iso’, Fig. 5a-d, Supplementary Figs. 26-29). As expected, (Fig. 5a), the raw data showed increasing 214 

depth-dependent degradation in resolution and contrast, which confounded our ability to discern 215 

distinct nuclei or cell boundaries on the ‘far’ side of the volume. In comparison, the multi-step 216 
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procedure offered striking improvements in resolution and contrast in both nuclear and membrane 217 

channels, largely alleviating the degradation (Fig. 5a, b, Supplementary Figs. 27, 28, Supplementary 218 

Video 10). Ablation experiments in which one or more of the networks were removed produced inferior 219 

results, further substantiating our hypothesis that the gains in image quality benefited from applying 220 

DeAbe (Supplementary Fig. 30). In the membrane channel, the multi-step restoration enabled us to 221 

automatically segment cell boundaries more accurately than in the raw data and further refine the 222 

segmentations manually up to 421 cells (Fig. 5c, Supplementary Fig. 29, Supplementary Video 11), 223 

exceeding previous efforts limited to the 350-cell stage32. Automated segmentation by successively 224 

applying DeAbe and DL Decon additionally provided a cell count closer to manual ground truth33 than 225 

the raw data (Fig. 5d) or DL Decon alone, with DL Iso providing no benefit to automated segmentation 226 

(Supplementary Fig. 31).  227 

Next, we explored replacing the final network (DL Iso) with a network designed to further 228 

enhance resolution based on ground truth acquired with expansion microscopy9,34 (‘DL Expan’, 229 

Supplementary Fig. 26b). After verifying that DL Expan improved resolution more than 2-fold on data 230 

unseen by the model (Supplementary Fig. 32), we applied the new multi-step restoration method to C. 231 

elegans embryos expressing a GFP-membrane marker labeling head neurons and gut cells (Fig. 5e). 232 

Compared to the raw data, the enhanced resolution offered by the deep learning prediction better 233 

resolved closely spaced membranes within and between cells (Fig 5f-h, Supplementary Figs. 33, 34). 234 

This capability proved especially useful when tracking the development of neurites projecting in the 235 

nerve ring, a neuropil that constitutes the brain of the animal, and which is composed of hundreds of 236 

tightly packed interwoven neurites. While the position of the neurites within the neuropil determines 237 

circuit identity and connectivity, the sequence of events leading to its innervation has not been 238 

described because of limitations in resolving these structures. We focused our analyses on the closely 239 

positioned neurons AIY and SMDD, which we identified based on morphology by comparison to labeled 240 

images in ref.35 and ref.36.  SMDD is a central pioneering neuron in the nematode brain36-38, while its 241 

sister cell AIY35 is a first layer interneuron39 involved in thermotaxis and locomotion40. Observing both 242 

neurons over our 120-minute recording, we found that SMDD’s neurites grew out first, followed by AIY’s 243 

neurite. AIY’s neurite entered the nerve ring after SMDD, consistent with the SMDD’s role as a pioneer 244 

neuron (Fig 5i, Supplementary Video 12). Such developmental dynamics were difficult or impossible to 245 

observe in the raw data (Supplementary Fig. 35), or joint deconvolutions of the dual-view data due to 246 

artifacts resulting from motion between the two views (Supplementary Fig. 36). To illustrate that these 247 

gains in image quality can be extended to a different label imaged in a different microscope, we also 248 

restored images of nuclei labeled with a GFP histone marker and acquired with high NA diSPIM23, finding 249 

similarly dramatic improvements in contrast and resolution (Supplementary Fig. 37, Supplementary 250 

Videos 13, 14).  251 

In these neuronal (Fig. 5e-i, Supplementary Videos 12) and nuclear (Supplementary Fig. 37, 252 

Supplementary Videos 13, 14) recordings, although the inter-volume recording time spanned several 253 

minutes, the volume acquisition time was 1 s and 1.2 s (10 ms and 20 ms per plane, respectively), 254 

necessary to ameliorate motion blur in these rapidly repositioning30 embryo samples. As DeAbe is 255 

applied after data acquisition, there is no loss in temporal resolution relative to raw image capture. This 256 

capability is advantageous over AO, which always entails additional temporal cost due to the need for 257 

wavefront sensing and correction (e.g., several seconds for a single loop of correcting aberrations in the 258 

AO-LLSM experiments presented in Fig. 2). While this cost may be acceptable for correcting aberrations 259 

in static or slowly moving samples prior to image acquisition (by far the most common use case in AO 260 
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enabled microscopy), it is too slow for the highly dynamic embryos imaged here, which would ideally 261 

benefit from rapid AO correction at each plane, at each time point. 262 

To further underscore this point, we used the iSIM to image adult worms with a GCaMP6 marker 263 

targeted to neurons. On anesthetized (Supplementary Fig. 38) or partially immobilized (Supplementary 264 

Fig. 39) worms, DeAbe restored fine structure otherwise masked by aberrations. When performing 265 

continuous volumetric recordings at 1.5 Hz, necessary to follow calcium transients in the moving worm 266 

head and pharynx, DeAbe improved quality sufficiently that we could resolve structural details in the 267 

nerve ring that was obscured in the raw data (Supplementary Videos 15-17, Supplementary Fig. 39). As 268 

for the embryos, such restoration is currently infeasible with AO, due to its slow speed. 269 

 270 

Discussion 271 

As we show on diverse microscopes and samples spanning multiple spatial and temporal scales, 272 

DeAbe can compensate for optical aberrations without recourse to AO: improving SNR, contrast, and 273 

resolution in fluorescence microscopy volumes without compromising the temporal resolution of data 274 

acquisition. We anticipate this capability will be useful for most labs, which lack access to sophisticated 275 

AO setups but still need to improve the quality of imaging volumes acquired using existing hardware. 276 

Besides improving the qualitative appearance of images (Fig. 1-5), which facilitates inspection of 277 

biological features deep within imaging volumes, DeAbe also quantitatively improves downstream 278 

image analysis. We highlight this capability by refining vessel segmentation in large, cleared tissue 279 

samples (Fig. 4e-g) and in enhancing the segmentation of densely packed nuclei and membranes in C. 280 

elegans embryos (Fig. 5). The latter capability may prove particularly useful in the creation or extension 281 

of 4D morphological atlases32, which depend on high quality image data.  282 

Several caveats are worth noting in the context of current limitations and with an eye towards 283 

future applications. First, as for any deep learning method, DeAbe provides a prediction at best and 284 

cannot fully recover lost information that is not present in the raw data. Second, the performance of 285 

DeAbe depends critically on the quality of the training data, and specifically on the assumption that 286 

fluorescently labeled structures are similar throughout the image volume. While this assumption was 287 

met for the samples in this work, we encourage caution when applying DeAbe on highly heterogenous 288 

specimens (or when applying DeAbe trained on one sample type to another, Supplementary Fig. 15), 289 

lest hallucinations arise. Third, although here we mainly trained on semi-synthetic data (Fig. 2-5), it 290 

would also be worth investigating how well the training derived from fully synthetic data7 (Fig. 1) 291 

generalizes to experimental data. Such an approach might prove useful in ameliorating system 292 

aberrations introduced by microscope hardware. Fourth, we focused here on correcting depth-293 

dependent aberrations, in which the training data was corrupted by a constant aberration in each image 294 

plane. A useful future direction would be to extend our approach to explicitly account for laterally 295 

varying aberrations, as such aberrations are problematic particularly for large specimens. Finally, 296 

although we used a mixture of random low-order aberrations to train our model, enhanced 297 

performance is likely if aberrations specific to the sample (or instrument) can be inferred and used in the 298 

training procedure (Supplementary Fig. 4, 11, 15).  299 

 300 

Author Contributions 301 

 302 

Conceived project and directed research: H.S. Implemented DeAbe framework: M.G. Designed 303 

simulations: M.G., Y.W., H.S. Wrote software: M.G., Y.W., J.L., X.Han, S.Q., Z.L. Designed experiments: 304 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2024. ; https://doi.org/10.1101/2023.10.15.562439doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.15.562439
http://creativecommons.org/licenses/by/4.0/


8 
 

M.G., C.M.H., Y.S., R.C., X.M, A.Z., C.C., M.M., E.Y., A.B., D.C-R., H.S. Prepared samples: M.G., C.M.H., 305 

Y.S., E.K., R.C., G.K., J.B., M.C., L.Z., Z.Lu, X.M., A.Z., C.C., M.M., E.Y., A.B. Performed experiments: M.G., 306 

C.M.H., Y.S., E.K., R.C., G.K., J.B., M.C., X.Han, X.M., A.Z., C.C., M.M., E.Y., A.B. Designed and performed 307 

segmentation analysis: M.G., Y.S., J.L., X. Hou, S.Q., Z.Liu. All authors examined and analyzed data. 308 

Wrote manuscript: M.G. and H.S., with advice from all authors. Provided biological insight and advice: 309 

R.C., X.M., A.Z., C.C., M.M., E.Y., A.B., D.C-R. Supervised research: E.Y., H.L, Z.Liu, A.B., P.L-R., D.C-R., H.S.  310 
 311 

Acknowledgments  312 

We thank Oliver Hobert for supporting the NeuroPAL work in his lab and allowing us to use the data 313 

generated therein for this paper; Robert Weigert for the gift of the fixed mouse liver sample; Manuel 314 

Zimmer for providing strain ZIM1997; Daniela Malide for helping to prepare and image the cleared 315 

mouse tissue datasets; Leanna Eisenman for the PtK2 cell sample preparation; Emmanuel Marquez-316 

Legorreta for helping us to prepare the zebrafish samples; Teng-Leong Chew,  the Advanced Imaging 317 

Center, and the Light Microscopy facility at HHMI Janelia Research Campus for supporting experiments 318 

with the AO-LLSM system; Steve Coleman for assisting us with the Visitech iSIM; Dan Milkie for his 319 

assistance with generating and interpreting wavefront images from the modified AO-LLSM system; 320 

Nikolaj Reiser for helpful discussions; and Courtney Johnson and Xuesong Li for their comments on the 321 

manuscript. This research was supported by the intramural research programs of the National Institute 322 

of Biomedical Imaging and Bioengineering and the National Heart, Lung, and Blood Institute within the 323 

National Institutes of Health (NIH). This work was supported by the Howard Hughes Medical Institute 324 

(HHMI). This article is subject to HHMI’s Open Access to Publications policy. HHMI laboratory heads have 325 

previously granted a non-exclusive CC BY 4.0 license to the public and a sub-licensable license to HHMI 326 

in their research articles. Pursuant to those licenses, the author-accepted manuscript of this article can 327 

be made freely available under a CC BY 4.0 license immediately upon publication. This research is 328 

funded in part by the Gordon and Betty Moore Foundation. We thank the Office of Data Science 329 

Strategy, NIH, for providing a seed grant enabling us to test and validate the initial deep learning 330 

frameworks using cloud-based computational resources. H.S., P.L.R. and D.C.-R. acknowledge the 331 

Whitman and Fellows program at MBL for providing funding and space for discussions valuable to this 332 

work. M.G. acknowledges the funding support from the Hundred Talents Program of Zhejiang 333 

University. We thank the Janelia Visiting Scientist program for supporting M.G. and A.B. Z.L. 334 

acknowledges the funding support from Natural Science Foundation of Zhejiang Province 335 

(LR20F050001). H.L. acknowledges the funding support from the National Key Research and 336 

Development Program of China (2020AAA0109502), the National Natural Science Foundation of China 337 

(U1809204) and the Talent Program of Zhejiang Province (2021R51004). E.Y. acknowledges support 338 

from the Esther A. and Joseph Klingenstein Fund, the Simons Foundation, and the Hypothesis Fund. X.M. 339 

and A.Z. were supported by Intramural FDA funding. A.B. acknowledges UKRI BBSRC (project grant 340 

BB/S017127/1). 341 

 342 

 343 

Methods 344 

 345 

Deep learning-based de-aberration model 346 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2024. ; https://doi.org/10.1101/2023.10.15.562439doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.15.562439
http://creativecommons.org/licenses/by/4.0/


9 
 

Building a de-aberration model (DeAbe) requires appropriate training data and the use of a 347 

neural network. First, based on the physics of image formation, we derived forward imaging models that 348 

allowed us to synthetically aberrate the data produced for multiple systems, including wide field, light 349 

sheet, confocal, two photon, and super-resolution structured illumination microscopes (Supplementary 350 

Note 1). Second, we extracted subvolumes from the shallow side of the experimentally acquired image 351 

stacks, using these data as ground truth; alternatively, when we could obtain whole aberration-free 352 

volumes, we used them as ground truth (e.g., aberration-free images of synthetic phantoms in Fig. 1b, 353 

Supplementary Figs. 1-9, and stacks of cells in Fig. 2a and Supplementary Figs. 10-13, where the 354 

aberrations are negligible due to the thickness of the sample). Third, based on the forward imaging 355 

models, we synthetically added aberrations to the ground truth images so that they resembled 356 

aberrated data present deeper within the image stacks. Together, the paired ground truth data and 357 

associated synthetically degraded data constitute training pairs. Fourth, we used these training pairs in 358 

conjunction with our 3D RCAN network9 to train a DeAbe model to reverse the effect of synthetic 359 

aberration. Finally, we applied the trained network to reduce the effects of aberrations in 360 

experimentally acquired image volumes unseen by the network.  361 

We define the ‘shallow side’ of an image stack by the planes nearest to the detection objective, 362 

which are typically contaminated with least aberration and thus offer the best image quality. We then 363 

selected subvolumes on the shallow side (‘shallow subvolumes’) by visually inspecting image quality in 364 

real and Fourier space. We also examined quantitative metrics for this choice, finding that our visual 365 

impression usually coincided with a resolution degradation of ~20% (Supplementary Fig. 16, 17, 366 

Supplementary Table 1). We extracted shallow subvolumes from image stacks by manually cropping 367 

with ImageJ when image size and content differed substantially across a given specimen type, or 368 

automatically with customized ImageJ macros when considering specimens with more stereotyped 369 

image size and content (e.g., as for time-lapse image volumes). For the cleared mouse embryo images 370 

(Fig. 4), the shallow subvolumes were further divided into smaller subvolumes (~80 MB/volume) due to 371 

their large volume size in raw data (Supplementary Table 1). 372 

 As described in Supplementary Note 1, we expressed the aberrated wavefront 𝜙(𝑟, 𝜃) at the 373 

back focal plane of the objective using Zernike basis functions 𝜙𝑚(𝑟, 𝜃) and associated Zernike 374 

coefficients 𝑐𝑚   375 

𝜙(𝑟, 𝜃) = ∑ 𝑐𝑚𝜙𝑚(𝑟, 𝜃)

𝑀

𝑚=0

, (1) 376 

with 𝑀 the maximum Zernike index chosen in our aberration.  377 

We generated synthetic aberrations by using semi-randomly generated Zernike coefficients (Fig. 378 

1a). We used the ANSI convention41 when indexing the Zernike coefficients, customizing aberrations by 379 

using different Zernike coefficients for different datasets acquired from different microscopes. For all 380 

experimental datasets, we added aberrations up to the 4th Zernike order (i.e., M = 14), except for piston 381 

and tilt components (Z = 0, 1, 2). The amplitudes of the Zernike coefficients were randomly generated, 382 

but subject to pre-defined bounds. We initially set an upper bound of 0.5 rad for all Zernike coefficients, 383 

then added an additional 1 rad for defocus (Z = 4) and spherical (Z = 12) components to mimic the more 384 

severe contamination caused by defocus and spherical aberrations commonly encountered in 385 

experimental datasets, i.e:  386 
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{

𝑐𝑧 = 0, 𝑓𝑜𝑟 𝑍 = 0, 1,2                            
|𝑐𝑧| ≤ 1.5, 𝑓𝑜𝑟 𝑍 = 4,12                          
|𝑐𝑧| ≤ 0.5, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑓𝑜𝑟 𝑍 ≤ 𝑀,        

(2) 387 

 388 

with 𝑀 = 14 for all experimental datasets. 389 

For each shallow side subvolume, 10 independent sets of aberrations were generated and used 390 

for synthetic degradation, thereby augmenting the data 10-fold.  Processing was performed with custom 391 

MATLAB code (MathWorks, R2022b), with further details provided in the Code availability section.  392 

 We employed 3D RCAN (https://github.com/AiviaCommunity/3D-RCAN), appropriate for 3D 393 

image volumes, for generating the DeAbe model based on the training data pairs. We trained individual 394 

DeAbe models for each microscope and each sample type.  For training, we set the number of epochs to 395 

200; the number of steps per epoch to 400; the training patch size to 64 × 64 × 64; the number of 396 

residual blocks to 5; the number of residual groups to 5; and the number of channels to 32. When 397 

applying the model, the patch size was set to 256 × 256 × 256. Image volumes larger than this patch size 398 

were divided into patches, the network applied to each patch, and the patches stitched together via 399 

linear blinding to minimize boundary artifacts8 (unless specified otherwise, we used this setting for 400 

applications of 3D RCAN). Training and model application was performed within Python 3.7.0 on a 401 

Windows 10 workstation (CPU: Intel Xeon, Platinum 8369B, two processors; RAM: 256 GB; GPU: NVIDIA 402 

GeForce RTX 3090 with 24 GB memory). More details on datasets and training parameters are listed in 403 

Supplementary Table 1. 404 

 405 

Multi-step image restoration with deep learning 406 

The multi-step image restoration pipeline combines the DeAbe model with two additional 407 

networks to progressively improve image resolution and contrast: (1) the DeAbe model to reverse 408 

degradation from aberrations (“DL DeAbe”); (2) a deconvolution network designed to mimic  the image 409 

quality improvement afforded by multiview imaging (“DL Decon”, see the section Deep learning-based 410 

deconvolution); (3) an axial resolution enhancement network to improve resolution isotropy (“DL Iso”, 411 

see the section Deep learning-based axial resolution enhancement); or a network designed to predict 412 

the improved resolution provided by expanded samples (“DL Expan”, see the section Deep learning-413 

based expansion).  414 

 415 

Deep learning-based deconvolution 416 

As for our previous attempts at deep-learning based multiview deconvolution8, we used a 417 

single-view image volume as input, and attempted to restore image resolution and contrast that 418 

approximated the result from multiview joint deconvolution. The training data were acquired by dual-419 

view light sheet microscopy30, either a ‘symmetric’ diSPIM equipped with 0.8/0.8 NA objectives31 (Fig 5e-420 

i, Supplementary Figs. 30, 32-36) or a higher NA ‘asymmetric’ diSPIM equipped with 1.1 / 0.67 NA 421 

objectives23 (Fig 5a-d, Supplementary Figs. 27-29, 37). First, raw images were de-aberrated with the 422 

DeAbe model. Then de-aberrated images from the two views were jointly deconvolved to achieve 423 

reconstructions with near isotropic spatial resolution and good image quality throughout the 424 

reconstruction. With training data consisting of the single-view de-aberrated images as input and the 425 

jointly deconvolved images as ground truth, we then used another 3D RCAN for the deconvolution 426 

model (DL Decon). For all datasets, the number of epochs for training was 200; the number of steps per 427 

epoch was 400; the training patch size was 64 × 64 × 64; the number of residual blocks was 5; the 428 
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number of residual groups was 5; and the number of channels was 32. Training and model application 429 

was performed within Python 3.7.0 on a Windows 10 workstation (CPU: Intel Xeon, Platinum 8168, two 430 

processors; RAM: 512 GB; GPU: Nvidia Quadro RTX6000 with 24 GB memory). We note that although 431 

training DL Decon required dual-view image volumes, applying DL Decon needs only single-view image 432 

volumes acquired from single-view light sheet microscopy (iSPIM)22. 433 

 434 

Deep learning-based axial resolution enhancement 435 

The images predicted by the DL Decon model were not perfectly isotropic, i.e., the axial 436 

resolution (although improved over the raw input images) is worse than the lateral resolution. Thus, for 437 

some experiments we used an additional network to enhance axial resolution (DL Iso, Fig. 5a, b, 438 

Supplementary Figs. 27-30, Supplementary Videos 10, 11). CARE5 software 439 

(https://github.com/CSBDeep/CSBDeep) was employed to train the a ‘DL Iso’ model based on the 440 

predictions derived from serially applying the DeAbe and Decon models to raw input images. We used 441 

100 3D volumes, each spanning 360 × 480 × 310 voxels, for training data. Training was performed on the 442 

xy planes (lateral views), using a 2D PSF (consisting of a point blurred with a 1D Gaussian function, sigma 443 

= 2.5 pixels along the y dimension) an axial downsampling factor of 6, and a patch size of 64 × 64 to 444 

create training pairs. The training was performed within Python 3.7.0 on a Windows 10 workstation 445 

(CPU: Intel Xeon, Platinum 8168, two processors; RAM: 512 GB; GPU: Nvidia Quadro RTX6000 with 24 446 

GB memory). 447 

 448 

Deep learning-based expansion 449 

As an alternative to DL Iso, we also trained a model to improve the resolution based on data 450 

acquired with expansion microscopy (DL Expan). First, physically expanded samples (Supplementary Fig. 451 

32) were imaged on the symmetric 0.8 NA diSPIM. Second, dual-view raw images were jointly 452 

deconvolved and used as ground truth images. Third, the ground truth images were synthetically 453 

degraded to resemble low-resolution conventional images acquired on the diSPIM, following our 454 

previous procedure9. Last, the 3D RCAN network was employed to train the DL Expan model based on 455 

the training data (i.e., synthetically degraded and ground truth pairs).  456 

For the worm embryo data with DAPI labeled nuclei (Supplementary Fig. 37), dual-view raw 457 

image volumes from 15 expanded worm embryos were acquired and jointly deconvolved to produce 15 458 

high-resolution image volumes. These 15 volumes were then synthetically degraded to generate low-459 

resolution images. For the worm embryo data with TTX3B neurites labeled (Fig 5e-i, Supplementary 460 

Figs. 32-35), dual view image volumes from 71 expanded worm embryos were acquired and manually 461 

cropped to select regions containing TTX3B neurites (this was necessary given the sparsely labeled 462 

neurites present in the raw images). Cropped images were jointly deconvolved to produce 71 high-463 

resolution image volumes. These 71 volumes were then synthetically degraded to generate synthetic 464 

low-resolution image data. For each dataset, the low-resolution and high-resolution paired volumes 465 

were then used to train the 3D RCAN based DL Expan model. The number of epochs for training was set 466 

to 300; the number of steps per epoch to 400; the training patch size to 64 × 64 × 64; the number of 467 

residual blocks to 5; the number of residual groups to 5; and the number of channels to 32. The training 468 

was performed within Python 3.7.0 on a Windows 10 workstation (CPU: Intel Xeon, Platinum 8369B, two 469 

processors; RAM: 256 GB; GPU: NVIDIA GeForce RTX 3090 with 24 GB memory). 470 

 471 

Simulations on phantom objects 472 
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To evaluate the quality and performance of our DeAbe model, we generated 3D phantom 473 

objects consisting of five types of structures in MATLAB (Mathworks, R2022b, with the Image Processing 474 

Toolbox): dots, lines, circles, spheres, and spherical shells27. Phantoms were randomly oriented and 475 

located in a volume of 256 × 256 × 256 voxels, with voxel size 0.13 × 0.13 × 0.13 m3. We simulated the 476 

blurring introduced by light sheet microscopy (Supplementary Note 1) by convolving the phantom with 477 

an ideal, noise-free PSF resembling that of our light sheet system (with 1.1 NA water dipping objective, 478 

detection wavelength of 0.532 m and an illumination light sheet thickness of 2 m). Aberrated data 479 

was generated by altering the ideal PSF according to the synthetic aberration procedure described 480 

above.  481 

To create synthetic aberrations, we adopted Equation (1) and generated Zernike coefficients 482 

semi-randomly in MATLAB, with each Zernike coefficient 𝑐𝑚 subject to a pre-defined upper bound 𝑇𝑚: 483 
|𝑐𝑚| ≤ 𝑇𝑚,   𝑓𝑜𝑟 𝑚 ≤ 𝑀, (3) 484 

with 𝑚 the Zernike index following the ANSI convention and 𝑀 the maximum Zernike index.  485 

We omitted piston and tilt components (𝑚 = 0, 1, 2) and weighted lower order Zernike components 486 

(Defocus 𝑚 =4, astigmatism 𝑚=3,5, and spherical 𝑚=12) more as these aberrations are commonly 487 

observed in real samples: 488 

𝑇𝑚 = {

0, 𝑓𝑜𝑟 𝑚 = 0, 1,2                           
1.5, 𝑓𝑜𝑟 𝑚 = 3,4,5,12                   
0.5, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑓𝑜𝑟 𝑚 ≤ 𝑀,        

(4) 489 

with 𝑀 defined based on the desired Zernike order: 490 

𝑀 =

{
 
 

 
 
   9, 𝑓𝑜𝑟 𝑍𝑒𝑟𝑛𝑖𝑘𝑒 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 3     
14, 𝑓𝑜𝑟 𝑍𝑒𝑟𝑛𝑖𝑘𝑒 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 4     
20, 𝑓𝑜𝑟 𝑍𝑒𝑟𝑛𝑖𝑘𝑒 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 5    
27, 𝑓𝑜𝑟 𝑍𝑒𝑟𝑛𝑖𝑘𝑒 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 6    
35, 𝑓𝑜𝑟 𝑍𝑒𝑟𝑛𝑖𝑘𝑒 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 7    .

(5) 491 

For Supplementary Fig. 2, we varied 𝑀 to explore the effect of different Zernike orders on de-aberration 492 

performance by setting 𝑀 = 9, 14, 20, 27, and 35 corresponding to Zernike orders 3-7. For all other 493 

simulations, we set 𝑀 = 14. 494 

The Root Mean Square (RMS) wavefront distortion of an aberration with Zernike coefficients 𝑐𝑚 (𝑚 =495 

3, 4,5,… ,𝑀) is: 496 

𝑅𝑀𝑆𝑐 = √∑ 𝑐𝑚
2

𝑀

𝑚=3

. (6) 497 

The RMS wavefront distortion for aberrations defined by upper bounds 𝑇𝑚 (𝑚 = 3, 4,5, … ,𝑀) is: 498 

𝑅𝑀𝑆𝑇 = √∑ 𝑇𝑚
2

𝑀

𝑚=3

. (7) 499 

To create training data, we synthetically aberrated phantoms with two types of aberrations:  500 

1) a random mixture of aberrations containing different Zernike components, with the 501 

amplitude of the aberrations subject to upper bounds. This type of aberrations was first generated with 502 

a set of initial Zernike coefficients 𝑐𝑚 based on Equations (3-5), and then rescaled to a maximum RMS of 503 

Ω wavefront distortion (e.g., Ω = 1,2, or 4 rad) to obtain the final Zernike coefficients  𝑐𝑚−𝑓𝑖𝑛𝑎𝑙: 504 
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𝑐𝑚−𝑓𝑖𝑛𝑎𝑙 =
Ω

𝑅𝑀𝑆𝑇
𝑐𝑚,   𝑓𝑜𝑟 𝑚 ≤ 𝑀. (8) 505 

These aberrated training data were used to train the general DeAbe models (i.e., all but the model 506 

trained to counter the defocus mode specifically) used in all figures and videos showing simulated 507 

phantoms.  508 

2) a single aberration mode of defocus with amplitude subject to upper bounds, i.e., the upper 509 

bounds of each Zernike coefficient were zeros except for the defocus mode (𝑚 =4):  510 

𝑇𝑚 = {

  
1.5, 𝑓𝑜𝑟 𝑚 = 4                           
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑓𝑜𝑟 𝑚 ≤ 𝑀.        

(9) 511 

By replacing Equation (4) with Equation (9), we could generate the defocus aberration the same way as 512 

for the first aberration type (1). These training data were only used to train the specific defocus DeAbe 513 

model used in Supplementary Fig. 4. 514 

For each training session, we created 50 phantoms, each consisting of different random objects. 515 

For each phantom, we generated 10 independent aberrated images with each image containing random 516 

mixtures of aberrations (Fig 1, Supplementary Figs. 1-9, Supplementary Videos 1-2) or only defocus 517 

aberrations (Supplementary Fig. 4), for a total of 500 training data pairs per session. We also added 518 

Poisson noise to the aberrated images by defining the SNR as 519 

𝑆𝑁𝑅 = √𝑆, (10) 520 

where S is the signal defined by the average of all pixels with intensity above a threshold (here set as 1% 521 

of the maximum intensity of the blurred objects in the noise-free image). 522 

 We employed 3D RCAN to train the DeAbe model based on simulated training data. We set the 523 

number of epochs to 200; the number of steps per epoch to 400; the training patch size to 64 × 64 × 64; 524 

the number of residual blocks to 5; the number of residual groups to 5; and the number of channels to 525 

32. Training was performed with Python 3.7.0 on a Windows 10 workstation (CPU: Intel Xeon, Platinum 526 

8369B, two processors; RAM: 256 GB; GPU: NVIDIA GeForce RTX 3090 with 24 GB memory). 527 

 To benchmark the performance of the DeAbe model, we created synthetic phantoms with three 528 

types of aberrations:  529 

1) a random mixture of aberrations containing different Zernike components, with the 530 

amplitude of the aberrations subject to upper bounds. This type of aberration is the same used for 531 

training the general DeAbe models and was generated following Equations (3-5) and (8). This aberration 532 

mixture was used in Supplementary Fig 2. 533 

2) a random mixture of aberrations containing different Zernike components, with the 534 

amplitude of the aberrations fixed at a certain RMS value. This aberration mixture was first generated 535 

with a set of initial Zernike coefficients 𝑐𝑧 based on Equations (3-5), and then rescaled to a fixed 536 

amplitude with RMS  Υ (e.g., Υ = 1,2, or 4 rad) wavefront distortion to obtain the final Zernike 537 

coefficients  𝑐𝑚−𝑓𝑖𝑛𝑎𝑙: 538 

𝑐𝑚−𝑓𝑖𝑛𝑎𝑙 =
Υ

𝑅𝑀𝑆𝑐
𝑐𝑚,   𝑓𝑜𝑟 𝑚 ≤ 𝑀. (11) 539 

This aberration mixture was used for Fig 1, Supplementary Figs 1,3,5, and Supplementary Videos 1-2. 540 

3) single aberration modes with a fixed RMS value, i.e., Zernike coefficients were set to zero 541 

except for the desired aberration mode. The single aberration modes tested in the paper include 542 

defocus (𝑚=4), astigmatism (𝑚=3,5), coma (𝑚=7,8), trefoil (𝑚=6,9), and spherical (𝑚=12). If the RMS 543 

wavefront distortion is defined as Υ (e.g., Υ = 1,2, or 4 rad), each single aberration mode’s Zernike 544 

coefficients are:  545 
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Defocus: 𝑐4 = Υ, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑐𝑚 = 0 𝑓𝑜𝑟 𝑚 ≤ 𝑀 546 

Astigmatism: √𝑐3
2 + 𝑐5

2 = Υ, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑐𝑚 = 0 𝑓𝑜𝑟 𝑚 ≤ 𝑀 547 

Coma: √𝑐7
2 + 𝑐8

2 = Υ, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑐𝑚 = 0 𝑓𝑜𝑟 𝑚 ≤ 𝑀 548 

Trefoil: √𝑐6
2 + 𝑐9

2 = Υ, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑐𝑚 = 0 𝑓𝑜𝑟 𝑚 ≤ 𝑀 549 

Spherical: 𝑐12 = Υ, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑐𝑚 = 0 𝑓𝑜𝑟 𝑚 ≤ 𝑀 550 

These aberrations were used to test the DeAbe performance on single aberration modes 551 

(Supplementary Figs. 3,4). 552 

 553 

For quantitative analysis, we used structural similarity index (SSIM) and peak signal-to-noise 554 

ratio (PSNR) to evaluate the restored images provided by deep learning as well as by traditional 555 

deconvolution. The SSIM and PSNR were calculated based on image volumes with MATLAB (Mathworks, 556 

R2022b). Their mean value and standard deviation were computed from 100 simulations, each with 557 

random object structures and input aberrations. 558 

To benchmark the performance of DeAbe using different neuronal networks, we compared our 559 

default 3D-RCAN choice with three other state-of-the-art 3D networks including CARE, RLN, and 560 

BasicVSR++. For a fair comparison, the training data pairs of phantom objects for Fig. 1 (generated with 561 

random mixtures of aberrations) were used to train the CARE, RLN, and BasicVSR++ in addition to 3D-562 

RCAN. Then models trained using different networks were applied to aberrated images and the 563 

prediction results compared in Supplementary Figs. 8, 9. 1) The CARE package was downloaded from 564 

https://github.com/CSBDeep/CSBDeep. The patch size was set to a 3D shape of 64 × 64 × 64 and the 565 

patch number was set to 32; the training epoch was 50 and the training steps per epoch was 30; and all 566 

other parameters were set to default values. 2) The RLN package was downloaded from 567 

https://github.com/MeatyPlus/Richardson-Lucy-Net. The training files and folders were reorganized to 568 

fit the input format as required by RLN. All training parameters were set to default values. 3) The 569 

BasicVSR++ package was downloaded from https://github.com/XPixelGroup/BasicSR. The batch size was 570 

set as 2 and the patch size of the 3D shape was 10 × 256 × 256; the learning rate for all modules was set 571 

to 1×10−4; and all other parameters were set at default values. 572 

To distinguish de-aberration from denoising (Supplementary Figs. 6, 7, 13), we compared 573 

DeAbe performance with nonlocal means (NLM) and an unsupervised deep learning network, 574 

Noise2Void (N2V). The NLM denoising algorithm was implemented using the OpenCV library 575 

(https://docs.opencv.org/3.4/d5/d69/tutorial_py_non_local_means.html). We used the function 576 

fastNlMeansDenoising with the parameters h as 5, templateWindowSize as 7, and searchWindowSize as 577 

21. The N2V package was downloaded from https://github.com/hanyoseob/pytorch-noise2void. The 578 

training files and folders were reorganized to fit the input format as required by N2V. The training epoch 579 

was 5000 and the batch size was 4; and all other parameters were set to default values. 580 

 581 

 582 

 583 

Preprocessing, attenuation correction, traditional deconvolution, and multiview fusion 584 

Raw images acquired with iSIM and light sheet imaging were preprocessed by subtracting a 585 

uniform background with intensity equivalent to the average of 100 dark (no excitation light) 586 

background images. When diSPIM was operated in stage scan mode, the images were also deskewed to 587 

correct the distortion induced by stage-scan acquisition before further processing.  588 
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For the cleared mouse embryos imaged with confocal microscopy (Fig 4, Supplementary Fig. 23, 589 

Supplementary Video 8) and nematodes imaged with iSIM (Supplementary Fig. 20), raw data was 590 

additionally preprocessed with intensity attenuation correction. The attenuation correction was 591 

performed by multiplying the raw intensity values with an exponential compensation factor: 592 

𝐼(𝑧) = 𝐼0(𝑧)𝑒
𝛼𝑧 (11) 593 

with 𝐼0(𝑧) the raw intensity, 𝑧 the depth and 𝛼 the attenuation factor. We set  𝛼 = 0.01 for all datasets. 594 

For the comparison of DeAbe with traditional deconvolution, we implemented both Richardson-595 

Lucy (RL) deconvolution42,43 (Fig. 1c-f, Fig. 3, Supplementary Figs. 12, 19, 21, 23) and blind 596 

deconvolution16 (Fig. 1c-f, Supplementary Fig. 12) on the raw aberrated images. For blind 597 

deconvolution, we used the MATLAB function deconvblind with default settings 598 

(https://www.mathworks.com/help/images/ref/deconvblind.html). For RL deconvolution, we adopted 599 

our previously developed deconvolution package8 (https://github.com/eguom/regDeconProject). In one 600 

synthetic dataset (‘RL Decon 2’, Fig. 1c-f), we used an aberrated PSF that was generated as described in 601 

Supplementary Note 1 and matched the aberrations in the synthetic dataset; otherwise, we used an 602 

aberration-free ideal PSF for all other datasets (Fig. 1c-f, Fig. 3 and Supplementary Figs. 19, 21, 23). 603 

Additionally, we also performed RL deconvolution on several datasets after DeAbe processing (Fig. 3b-d, 604 

Supplementary Fig. 19, 23), setting the number of iterations to 20 unless specified otherwise. All 605 

deconvolution was performed in MATLAB (MathWorks, R2022b) on a Windows 10 workstation (CPU: 606 

Intel Xeon, Platinum 8369B, two processors; RAM: 256 GB; GPU: NVIDIA GeForce RTX 3090 with 24 GB 607 

memory). 608 

 For data acquired by diSPIM, we performed multiview fusion on several datasets either for 609 

generating DL training data (Fig. 5, Supplementary Figs. 27, 28, 33-35, 37) or for comparisons to the DL 610 

Decon model (Supplementary Figs. 30, 36). The diSPIM data typically contain two view volumes, 611 

referred to as View A and View B volumes. The multiview fusion process involves registration and joint 612 

deconvolution to combine two views into a single volumetric image stack with improved resolution. The 613 

registration first rotates View B by 90 degrees along the Y-axis to align View B’s orientation with View A 614 

and then maximizes the cross-correlation function between View A and View B with affine 615 

transformations. After registration, View A and registered View B were deconvolved jointly using a 616 

modified Richardson–Lucy deconvolution algorithm as previously described30. Multiview fusion was 617 

achieved using custom software (https://github.com/eguom/diSPIMFusion) on a Windows 10 618 

workstation (CPU: Intel Xeon, Platinum 8369B, two processors; RAM: 256 GB; GPU: NVIDIA GeForce RTX 619 

3090 with 24 GB memory). 620 

 621 

Sample preparation and imaging 622 

Live nematode embryos imaged with light sheet microscopy 623 

Nematode strains were kept at 20°C, and grown on NGM media plates seeded with E. coli OP50. 624 

Strains used in this paper included BV514 (ujIS113 [pie-1p::mCherry::H2B + unc-119(+); Pnhr-625 

82::mCherry::histone + unc-119(+)]), OD58 (ltIs38 [pie1p::GFP::PH(PLC1delta1) + unc-119(+)]), DCR6268 626 

(olaEx3632 [pttx-3b::SL2::PHD::GFP:: unc-54 3’ UTR + pelt-7::mCh::NLS::unc-54 3’ UTR]), and SLS164 627 

( ltIS138[pie-1p::GFP::PH(PLC1delta1) + unc-119(+)]; ujIS113 [pie-1p::mCherry::H2B + unc-119(+); Pnhr-628 

82::mCherry::histone + unc-119(+)]). SLS164 was made by crossing together strains BV514 and OD58 and 629 

may have unc-119(ed3) III in the background. Strains BV514 and OD58 were gifts from Dr. Zhirong Bao.    630 

Nematode samples were prepared for diSPIM imaging as previously described22,31,44: gravid adult 631 

hermaphrodites were picked into a watch glass with M9 buffer, adults were cut in half to liberate 632 
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embryos, and embryos were transferred onto a poly-L-lysine coated coverslip in a diSPIM imaging 633 

chamber. For strain DCR6268 ((olaEx3632 [pttx-3b::SL2::PHD::GFP:: unc-54 3’ UTR + pelt-634 

7::mCh::NLS::unc-54 3’ UTR]), labeling neuron and gut cells), embryos were imaged once they reached 635 

the bean stage of development using a fiber-coupled symmetric diSPIM (with 0.8NA/0.8NA 636 

objectives)31. Volumes were captured once per minute over two hours in light sheet scan mode.  Each 637 

volume comprised 50 slices, with a 1 m step size and a total acquisition time per volume of ~1 second. 638 

For strain SLS164 (labeling cell membrane and nuclei), embryos were imaged from the 2- or 4-cell stage 639 

using a fiber-coupled asymmetric diSPIM (with 1.1NA/0.67NA objectives)23. Volumes were captured 640 

once every 3 minutes over 450-minute duration in stage scan mode. Each volume comprised 70 slices, 641 

with a 1.1 m stage step size and a total acquisition time of ~1.4 s per volume. For strain BV514 (labeling 642 

cell nuclei), embryos were imaged from the bean stage to hatching using the asymmetric diSPIM. 643 

Volumes were captured every 5 minutes in stage scan mode. Each volume comprised 60 slices, with a 644 

1.4 m stage step size and a total acquisition time per volume of ~1.2 seconds. For strain OD58 (labeling 645 

cell membranes), embryos were imaged from the 4- or 8-cell stage using a symmetric diSPIM. Volumes 646 

were captured once every 3 minutes over a 450-minute period in light sheet scan mode. Each volume 647 

comprised 45 slices, with a 1 m step size and a total acquisition time per volume of ~0.9 seconds. For 648 

all imaging, images were acquired using 488 nm excitation (for GFP labels) or 561 nm excitation (for 649 

mCherry labels).  650 

 651 

Expanded nematode embryos 652 

C. elegans embryos from strain DCR6268 (labeling neurites and gut cells) were immobilized on 653 

Poly-L-Lysine (PLL) coated glass bottom dishes, bleached, digested by yatalase, fixed, and expanded. The 654 

procedure takes approximately 2 days, and is adapted from our published method27. 655 

First, glass bottom dishes were coated with PLL. PLL (Sigma, Cat# P5899) powder was 656 

reconstituted in distilled water to 1mg/mL, aliquoted, and stored at -20°C. Prior to experiments, 30-50 657 

L of PLL was placed on the glass bottom dish (MatTek, Cat# P35G-1.5-14-C) and air dried at room 658 

temperature (RT). Coated coverslips were usually prepared up to 1 day before pre-treatment of C. 659 

elegans for expansion microscopy.  660 

Second, embryos were digested, fixed, and stained with DAPI. Gravid adult C. elegans worms 661 

were deposited in a petri dish in PBS buffer and cut with a surgical blade to release eggs. Eggs were 662 

immobilized on a PLL coated glass bottom dish in PBS and could be processed immediately or stored at 663 

25°C in M9 buffer until the embryos developed to the desired stage. Embryos were treated with a 664 

bleaching mixture containing 1% sodium hypochlorite (Sigma, Cat# 425044) in 0.1M NaOH/water for 2-3 665 

minutes, rinsed 3 times in PBS, digested in 50 mg/mL Yatalase in PBS (Takara Bio, Cat# T017) for 40 666 

minutes at RT and rinsed 3 times with PBS. It was important to treat eggs with bleach only after 667 

immobilization on the PLL surface, otherwise embryos tended to detach from the glass at later steps. 668 

Digested embryos were fixed in 4% paraformaldehyde/PBS (Electron Microscopy Sciences, Cat# 669 

RT15710) for 1 hour, then rinsed 3 times with PBS to remove fixative. Fixed embryos were 670 

permeabilized in 0.1% Triton X-100/PBS (Sigma, Cat# 93443) for 1 hour at RT with 1 L/mL of DAPI 671 

(Thermo Fisher Scientific, Cat# D1306). 672 

Optionally, GFP signal can be boosted by immunolabeling. Yatalase digested embryos were 673 

permeabilized with staining buffer (0.1% Triton X-100/PBS) for 1 hour before immunolabeling. Embryos 674 

were stained by an anti-GFP primary antibody (Abcam, Cat# ab290) in the staining buffer at 4°C 675 

overnight at 1 μg/mL. After primary antibody labeling, embryos were washed 3 times (30 min intervals 676 
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between washes) in the staining buffer and labeled using donkey-anti-rabbit-biotin secondary antibody 677 

(Jackson ImmunoResearch, Cat# 711-067-003) in the staining buffer at 4°C overnight at 1 μg/mL. After 678 

secondary antibody labeling, the embryos were washed 3 times in the staining buffer (30 mins intervals 679 

between washes) and labeled with Alexa Fluor 488 Streptavidin in the staining buffer at 4°C overnight at 680 

2 μg/mL (Jackson ImmunoResearch, Cat# 016-540-084). Labeled embryos were washed 3 times in the 681 

staining buffer (30 minutes between washes) before being processed for expansion microscopy. 682 

Immunolabeling was only performed on the data shown in Supplementary Fig 32a. 683 

Finally, embryos were expanded. Embryos were treated with 1 mM MA-NHS (Sigma, Cat# 684 

730300) in PBS for 1 hour at RT. Samples were rinsed 3 times in PBS, and treated with monomer 685 

solution, which was made up of acrylamide (Sigma, Cat# A9099), sodium acrylate (Santa Cruz 686 

Biotechnology, Cat# 7446-81-3), N, N’-methylenebis(acrylamide) (Sigma, Cat# 146072) and 4-Hydroxy-687 

TEMPO (Sigma, Cat# 176141), diluted with PBS, with a final concentration of 10%, 19%, 0.1%, and 0.01%, 688 

respectively. After the treatment for 1 hour at RT, the monomer solution was replaced by gelation 689 

solution. The gelation solution shared the same reagents and concentrations as monomer solution, with 690 

the addition of tetramethylethylenediamine (TEMED, Thermo Fisher Scientific, Cat# 17919, reaching a 691 

final concentration of 0.2%) and ammonium persulfate (APS, Thermo Fisher Scientific, Cat# 17874, 692 

reaching a final concentration of 0.2%). APS was added at last, and the fresh gelation solution was 693 

immediately applied to the embryos sandwiched between the glass bottom dish and another coverslip 694 

surface for 2 hours at RT. It was important to control the gelation speed with 4-hydroxy-TEMPO as 695 

premature gelation can distort embryos and result in poor expansion quality. The polymerized embryo-696 

hydrogel hybrid was cut out by a razor blade and digested with 0.2 mg/mL Proteinase K (Thermo Fisher 697 

Scientific, Cat# AM2548) in digestion buffer (0.5 M sodium chloride (Quality Biological, Cat # 351-036-698 

101); 0.8 M guanidine hydrochloride (Sigma, Cat# G9284); and 0.5% Triton X-100) at 45°C overnight. 699 

Digested embryos were expanded ~3.3-3.7 fold in distilled water, exchanging the water every 30 min 700 

until expansion was complete. Expanded samples were flipped over so that embryos were ‘on top’ 701 

(suitable for diSPIM imaging), mounted on PLL coated #1.5 coverslips (VWR, Cat# 48393-241) and 702 

secured in an imaging chamber filled with distilled water. Finally, samples were imaged using the 703 

symmetric 0.8/0.8 NA diSPIM in stage scan mode. Depending on the orientation of embryos, ~200-300 704 

planes were acquired for each embryo, with 1.414 m stage step size and 20 ms per-plane exposure 705 

time. 706 

 707 

PtK2 cells imaged with adaptive optical lattice light-sheet microscopy (AO-LLSM) 708 

PtK2 cell samples were prepared by placing one 25 mm round coverslip (Warner Instruments, 709 

CS-25R17) into a 35 mm culture dish (Corning, 430165) and seeding cells at 100k cells per dish the day 710 

before fixation. Cells were washed quickly 3 times with pre-warmed PBS before fixing in 4% 711 

formaldehyde for 5 minutes at room temperature. 3 additional PBS washes were performed, and cells 712 

were permeabilized in 0.1% IGEPAL (Sigma-Aldrich, I8896) for 5 minutes at room temperature. Cells 713 

were washed with PBS 3 times, after which 250 µl of a primary antibody solution of 0.1% iGf-free BSA 714 

(Jackson ImmunoResearch, 001-000-162) and 1:400 Phalloidin Alexa Fluor 488 (ThermoFisher Scientific, 715 

A12379) in PBS was added to each coverslip. Cells were incubated at 37C for 1 hour, and a final wash of 716 

PBS with 0.05% Tween-20 (Sigma-Aldrich, P1379) and 2 additional PBS washes were performed. 717 

Cells were imaged in PBS on a modified adaptive optical lattice light-sheet microscope18,19. First, 718 

a system correction was performed as previously described19. Lattice light sheet excitation was 719 

performed using a 488 nm laser line, a Thorlabs TL20x-MPS 0.6 NA objective lens, and a square lattice 720 
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pattern (Outer NA: 0.4, Inner NA: 0.3, Cropping: 10, Envelope: 5). Image stacks (256x1500 pixel field of 721 

view (FOV) with 401 z steps) were acquired by scanning the sample stage horizontally at an angle of 722 

32.45⁰ relative to the optical axis of the detection objective (Zeiss Plan-Apo 20x, NA 1.0 DIC M27 75 mm) 723 

with a step size of 0.4 µm and an exposure time of 20 ms. Emission light was filtered through a Semrock 724 

BrightLine 523/40-25 emission filter and reflected onto a Hamamatsu Orca Flash 4.0 sCMOS camera via 725 

a Semrock Di03-R561-t3-32x40 dichroic. After data collection, images were deskewed using a custom 726 

analysis pipeline (https://github.com/aicjanelia/LLSM). The final voxel size after deskewing was 0.108 x 727 

0.108 x 0.215 nm. 728 

For training data, 40 random FOVs were selected and imaged as described above. For aberration 729 

experiments (Fig. 2a-f, Supplementary Figs. 10-12), a random FOV was selected and a ground truth data 730 

set was acquired. Next, an aberration was applied to the deformable mirror (DM; ALPAO DM69). These 731 

aberrations were either random, wherein each actuator on the mirror was pushed or pulled by a 732 

random amount with a fixed maximum amplitude, or a predefined Zernike mode (astigmatism, coma, or 733 

spherical). For each type of aberration, 3 different magnitudes were used, and for each magnitude 3 734 

different FOVs were selected, yielding a total of 36 experiments. After the aberration was applied to the 735 

DM, a stack was collected. The microscope configuration was then changed to the adaptive optics (AO) 736 

configuration.  737 

The methods for AO correction have been described previously19. A focused two photon 738 

(Coherent 1335240 Chameleon) spot was directed through the detection objective and scanned through 739 

the same FOV to be imaged. The collected emission was passed through a microlens array and imaged 740 

to the same camera used for image collection to function as a Shack-Hartmann (SH) wavefront sensor. 741 

The distance each spot in the SH image moves is calculated relative to a reference image, after which 742 

the DM is updated to correct the measured aberration. This process is repeated 2 additional times as 743 

the AO correction will iteratively improve until it converges. The microscope is then switched back to 744 

LLSM mode, and a final stack is acquired. 745 

For comparative denoising experiments (Supplementary Fig. 13), a random FOV was selected 746 

and a ground truth stack was acquired. Then, aberrations (random, astigmatism, and coma) were 747 

applied to the DM at a single magnitude; 3 separate FOVs were examined per aberration. Once the 748 

aberration was applied to the DM, stacks were acquired with the original laser power (high SNR, 749 

Supplementary Fig. 13c) as well as 1/5 laser power (low SNR, Supplementary Fig. 13b). 750 

 751 

Zebrafish embryos imaged with adaptive optical lattice light-sheet microscopy 752 

Transgenic Zebrafish Tg(vGlut2a:Gal4); (UAS:CoChR-eGFP), featuring eGFP localized in the 753 

membrane of glutamatergic neurons, were fixed overnight at 5 dpf in 4% PFA at 4C and subsequently 754 

washed with and stored in PBS. A total of n=6 fish were used for experiments. To mount the fish onto 25 755 

mm round coverslips, the coverslips were first treated with Poly-l-lysine, after which a thin layer of 1.5% 756 

agarose (ThermoFisher Scientific, 16520050) was cured onto the coverslip. A small channel was carved 757 

into the center of the agarose, and the fish was placed ventral side down into the channel. Finally, a 758 

small drop of 1.5% agarose was placed on top of the fish. 759 

Fish were imaged in milliQ water on the modified AO-LLSM described above. In this case, a 760 

square lattice pattern (Outer NA: 0.4, Inner NA: 0.34, Cropping: 10, Envelope: 10) was used for 761 

excitation. Image stacks (256x512 pixel FOV with 101 z steps) were acquired by scanning the sample 762 

stages horizontally and vertically simultaneously such that the sample moved directly along the optical 763 

axis of the detection objective with a step size of 0.2 µm and an exposure time of 100 ms. Emission light 764 
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was captured as described above. In this instance, deskewing of the data was not necessary and the final 765 

voxel size was 108 x 108 x 200 nm. 766 

For training data, 42 FOVs were selected near the surface (~0-20 µm) of the fish and imaged as 767 

described above. Next, 15 FOVs deeper within the fish (~40 – 120 µm) were imaged first without AO 768 

correction, and next with an identical AO correction procedure as described above (Fig. 2g-m, 769 

Supplementary Fig. 14). 770 

 771 

Live nematode adults imaged with spinning disk confocal microscopy 772 

C. elegans strain OH15500 (otIs669[NeuroPAL]; otIs672[panneuronal::GCaMP6s]) were raised at 773 

20°C and grown on NGM media plates seeded with OP50 E. coli . Young adult worms (with 2 or less 774 

visible eggs in their uterus) were picked and immobilized inside a microfluidic chip as previously 775 

described24. Worms were imaged by a spinning disk confocal microscope (Nikon, Ti-e) equipped with a 776 

60×/1.2 NA water objective (Nikon, CFI Plan Apochromat VC 60XC WI), a confocal scan unit (Yokagawa, 777 

CSU-X1) and an electron multiplying CCD (EM-CCD, Andor, iXon Ultra 897). Four excitation lasers (405 778 

nm, 488 nm, 561 nm, and 640 nm) were used for illumination, in conjunction with emission filters 779 

spanning 420-470 nm, 500-545 nm, 570-650 nm, and 660-800 nm bandwidths, respectively. The pixel 780 

size was 0.27 m in the XY dimension and each Z-stack volume comprised 21 slices for each color, with 781 

1.5 m step size. Each multicolor Z-stack volume was captured at a rate of just over 1 minute. 782 

 783 

Fixed WGA-labeled NK-92 samples imaged with instant structured illumination microscopy 784 

NK-92 cells (ATCC®, CRL-2407™) were rinsed with 1× PBS, and fixed with 1 ml of 4% 785 

paraformaldehyde in 1× PBS for 30 min at room temperature, rinsed in 1 ml of 1x PBS, and 786 

permeabilized in 0.1% Triton X-100 in 1× PBS for 15 min. Next, samples were rinsed with 1× PBS, and 787 

blocked with buffer containing 1% BSA (Fisher, Cat# BP9700100) in 1× PBS for 1 hour. Blocking buffer 788 

was removed, and the samples were stained with 500 μl of 1x PBS with a 1:100 dilution of Alexa Fluor 789 

555 labelled WGA (Invitrogen, Cat# W32464), 10 U/mL phalloidin-ATTO 647N conjugate (Millipore-790 

Sigma, Cat #65906), and 1:1000 dilution of Hoechst solution (Tocris, Cat#5117) for 1 h. Cells were 791 

washed in 1× PBS three times. We mounted samples using 90% Glycerol (Sigma, Cat# G5516) in 1x PBS. 792 

In preparation for imaging, cells were cultured in collagen-I gels in the ImmunoCult-XF T Cell 793 

Expansion Medium (STEMCELL Technologies, Cat# 10981) with the addition of Human Recombinant 794 

Interleukin 2 (STEMCELL Technologies, Cat# 78036.3). To prepare 3 mg/ml collagen-I gel, we assembled 795 

a gel premix on ice in a prechilled Eppendorf tube. Briefly, to 1 volume of CellAdhere™ type I bovine 796 

(STEMCELL Technologies, Cat# 07001) we added 8/10 volume of DMEM, 1/10 volume of 10x PBS, 1/20 797 

volume of 1M HEPES, and 1/20 volume of 1M (in DMSO) Alexa Fluor 488 ester (Molecular Probes, Cat# 798 

A20000). A drop of premixed gel (∼50 µL) was spread immediately on a glass surface of a plasma-799 

treated glass-bottom 35 mm Petri dish (MatTek Corp., Cat# P35G-1.5-14-C) with a pipette tip. During 800 

polymerization (room temperature, for overnight), gels were covered with 1 mL of mineral oil (Sigma-801 

Aldrich, Cat# M8410) to prevent evaporation of water. Before adding NK-92 cells, polymerized gels were 802 

rinsed with PBS to remove the unpolymerized gel components. 803 

Instant structured illumination microscopy (iSIM) was performed using the commercial instant 804 

structured illumination microscope system (VisiTech Intl, Sunderland, UK) equipped with an Olympus 805 

UPlanSAapo 60×/1.3NA Sil objective, two Flash-4 scientific CMOS cameras (Hamamatsu, Corp., Tokyo, 806 

Japan), an iSIM scan head (VisiTech Intl, Sunderland, UK), and a Nano-Drive piezo Z stage (Mad City 807 

Laboratories, Madison, WI). The iSIM scan head included the VT-Ingwaz optical destriping unit. The 808 
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exposure time was set to 250 ms per image frame. The voxel size was 64 x 64 x 250 nm, in x, y, and z, 809 

respectively. 810 

 811 

Nerve ring calcium imaging of trapped C. elegans with instant structured illumination microscopy 812 

Strain ABA0001 ((lite-1(xu7); goeIs247 [ceh-24p::GCaMP6s::mKate2::unc-54 3’UTR + unc-119(+)]) was 813 

generated by crossing TQ110145 and HBR107746. Adult day 1 (24 hours after late L4 stage) ABA0001 814 

worms were raised at 20 C on standard 6 cm-diameter NGM plates seeded with E. coli OP50 bacteria47. 815 

Individual worms were picked for imaging using BIO-133 (MY Polymers) as sticky glue (in lieu of bacterial 816 

paste) into another drop of BIO-13348 set on a high-precision 50 x 24 mm2 #1.5 glass coverslip (Thorlabs, 817 

CG15KH1) between two 18 x 18 mm2 #1 glass coverslips (Brand, 470045) used as spacers. Another high 818 

precision 50x24 mm2 #1.5 glass coverslip was carefully laid on top and gently pressed downwards. The 819 

assembly was cooled on ice to ensure minimal worm movement, then flood-exposed on an aluminum 820 

sheet to 365 nm light dispensed by a LED array for 1-2 min until BIO-133 had cured48. The “coverslip-821 

sandwiched” worms were then imaged with a qCMOS Orca Quest (Hamamatsu, C15550-22UP) through 822 

a 40x/1.15NA water objective (Olympus, UAPON-340) on a VisiTech iSIM imaging platform driven by 823 

Micro-Manager 2.049, equipped with a 300 m-range Z-piezo (ASI, PZ-2300FT) and 405 nm, 488 nm, and 824 

561 nm lasers.  825 

Image volumes of Pceh-24::GCaMP6s expression in the worm head were then acquired using 826 

the single-channel fast-sequence mode, with 1.2 m axial spacing, yielding a volume acquisition rate of 827 

~1.5 Hz (voxel dimensions: 0.115 x 0.115 x 1.2 m3). The exposure time was 14 ms. GCaMP6s 828 

fluorescence was filtered through a ET525/50m emission filter (Chroma). 829 

 830 

Imaging anesthetized adult C. elegans with instant structured illumination microscopy  831 

Adult day 1 ZIM1997 (mzmIs52; lite-1(ce314);otIs670)50 or ABA001 worms were raised at 20 C 832 

on standard 6 cm-diameter NGM plates seeded with E. coli OP50 bacteria47 and subsequently exposed 833 

to unseeded NMG plates containing 0.02% levamisole prepared in M9 buffer for 10 min. Worms were 834 

next mounted in BIO-133 as previously described, and imaged with the aforementioned VisiTech iSIM 835 

imaging platform. 3D volumes were acquired with 300 nm Z-steps at full XY-resolution (voxel 836 

dimensions: 0.115 x 0.115 x 0.300 m3) sequentially (XY-Z-C) for each channel (starting with the longest 837 

excitation wavelength). 838 

For ZIM1997, imaging was performed twice per worm (before and after flipping) so that both 839 

sides of the worm were imaged with the more favorable ‘near-side’ configuration (Supplementary Fig. 840 

20). The imaging parameters for each label were as follows: 1) mTagBFP2 with 405 nm excitation, 40 ms 841 

exposure time, and an ET460/50m emission filter; 2) GCaMP6f with 488 nm excitation, 20 ms exposure 842 

time, and an emission filter of ET525/50m; 3) CYO1FP with 488 nm excitation, 30 ms exposure time, and 843 

an emission filter of ET600/50m; 4) TagRFP-T with 561 nm excitation, 40 ms exposure time, and an 844 

emission filter of ET600/50m; 5) mNeptune2.5 with 561 nm excitation, 60 ms exposure time, and an 845 

emission filter of ET690/50m. All emission filters were purchased from Chroma. 846 

For ABA001, imaging parameters were: 1) GCaMP6s with 488 nm excitation, 30 ms exposure 847 

time, and an emission filter of ET525/50m; 2) mKate2 with 561 nm excitation, 30 ms exposure time, and 848 

an emission filter of ET600/50m. All emission filters were purchased from Chroma. 849 

 850 

Two-photon microscopy on live and fixed mouse tissue 851 
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Fixed mouse liver samples and fresh ex-vivo mouse heart muscle strips were imaged with two-852 

photon microscopy using a Leica SP8 two photon DIVE upright microscope (Mannheim, Germany), a 853 

pulsed dual beam Insight X3 Ti-Sapphire laser (MKS Spectra-Physics, Milpitas CA), a Leica 25x 1.0 NA (HC 854 

PL IRAPO) water dipping lens, and emission bandwidth tunable Leica HyD detectors in the non-855 

descanned emission pathway. Liver samples were prepared from freshly excised liver from a 10 week-856 

old mouse expressing a membrane-targeted peptide fused with tdTomato51. After excision, the mouse 857 

liver was washed in cold saline three times, fixed with 4% formaldehyde in PBS for 2 hours, and stored in 858 

PBS.  Tissue harvesting procedures were approved by the NCI (for mouse liver) and NHLBI (for mouse 859 

heart) Animal Care User Committees (ACUC) respectively. Freshly excised heart muscle strips from 860 

transgenic mice expressing mitochondrial TOMM20-mNeonGreen were prepared for imaging as 861 

described52.  tdTomato and mNeonGreen were excited using 1045 nm and 960 nm excitation with 862 

emission bandwidths of 550-700 nm and 500-600 nm, respectively. Laser excitation (ramped as a 863 

function of depth in some experiments and optimized by adjusting the objective motorized correction 864 

collar) were in the range of 1% for tdTomato and less than 20% for mNeonGreen. HyD detector gains 865 

were kept at 100% for tdTomato and 150% for mNeonGreen. Tiled images volumes of liver membrane 866 

expressing tdTomato were collected with voxels sizes set to 400 nm in the XY dimension and 500 nm in 867 

the z dimension. Z-stack volumes of mNeonGreen expressing heart strip were collected with voxels sizes 868 

set to 120 nm in the XY dimension and 500 nm in the z dimension. All imaging was conducted at an 869 

imaging speed of 600 Hz with a pinhole size of 1 A.U. 870 

Cleared mouse embryos imaged with confocal microscopy 871 

E11.5-day mouse embryos were collected in phosphate-buffered saline (PBS) and directly 872 

immersed in 4% paraformaldehyde (PFA) in PBS (pH 7.4) at 4°C overnight. Following fixation, the 873 

samples were washed with PBS and stored in PBS at 4°C for further analyses. Wholemount 874 

immunofluorescence staining was performed at 4oC. The mouse embryos were permeabilized with 0.2% 875 

Triton/PBS overnight and blocked with 10% normal goat serum and 1% BSA in 0.2% Triton/PBS 876 

overnight.  The embryos were then stained with monoclonal antibody against PECAM1 (CD31, clone 877 

MEC 13.3, Cat# 553700, BD Pharmingen, 1:200 dilution) and monoclonal anti--tubulin III (TuJ1)) 878 

antibody (clone 2G10, Cat# T8578, Sigma-Aldrich, 1:500 dilution) in blocking buffer overnight. After 879 

washing with 0.2% Triton/PBS, the embryos were stained with secondary antibodies with Alexa 488 goat 880 

anti-rat IgG and Alexa 594 goat-anti-mouse IgG (1:250, Invitrogen, Carlsbad, CA) in blocking buffer 881 

overnight. The embryos were cleared with iDISCO26 and imaged using a Zeiss LSM 880 Confocal 882 

microscope with a 10X, 0.5NA air objective. To compensate for focal shift effects due to the refractive 883 

index difference between air and iDISCO we scaled the axial voxel size of images by 1.56 before 884 

processing for DeAbe. 885 

 886 

Quantitative image quality analysis 887 

 888 

Decorrelation resolution metric 889 

Decorrelation analysis53 was used to estimate image resolution (Fig. 2f, m, Supplementary Fig. 890 

13f, Supplementary Fig. 16). Code was downloaded from https://github.com/Ades91/ImDecorr, and the 891 

MATLAB version of the code was used. For statistical analysis, the resolution of each image was 892 

estimated first, then means and standard deviations were calculated from N=12 (Fig. 2f) or N= 15 (Fig. 893 

2m) images. 894 

 895 
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Normalized Discrete Cosine Transform Shannon Entropy.  896 

The Normalized Discrete Cosine Transform Shannon Entropy (DCTS) a helpful metric for 897 

quantifying image sharpness in the frequency domain. We used it to analyze image quality degradation 898 

vs. imaging depth (Supplementary Fig. 17). The definition of DCTS has been described in ref54, and we 899 

implemented it via customized MATLAB code. 900 

 901 

Image contrast metric  902 

We adopted a commonly used contrast metric – the root mean square (RMS) contrast (RMSC55) 903 

to quantify image contrast (Supplementary Fig. 22). The RMSC of an image is defined as:  904 

𝑅𝑀𝑆𝐶 = √
1

𝑁 − 1
∑(𝑥𝑖 − 𝑥̅)

2

𝑁

𝑖=1

 905 

Where 𝑥𝑖 is the intensity of each pixel 𝑖, 𝑥̅ is the mean intensity of the image, and 𝑁 is the total pixel 906 

number. To compare across different images, we first divide each image by its mean intensity and bin 3-907 

fold to reduce noise before computing the RMSC. 908 

Image intensity correction for time-lapse images  909 

When applying the DeAbe model to predict images, the 3D-RCAN network automatically 910 

normalizes the input raw images to an intensity range of 0-1 by default. For time lapse images, this 911 

normalization was performed independently at each time point, resulting in additional intensity 912 

fluctuations. To compensate for these fluctuations, we applied corrections to the DeAbe predictions for 913 

the GCaMP calcium signal in the live worm experiments (Supplementary Fig. 39, Supplementary Videos 914 

15-17). 915 

We first calculated the normalization ratio at each time point: 916 

𝑟𝑘 =
𝑅𝑎𝑤𝑘,𝑝𝑟𝑒−𝑛𝑜𝑟𝑚
𝑅𝑎𝑤𝑘,𝑝𝑜𝑠𝑡−𝑛𝑜𝑟𝑚

 917 

where 𝑟𝑘 is the normalization ratio of time point 𝑘; 𝑅𝑎𝑤𝑘,𝑝𝑟𝑒−𝑛𝑜𝑟𝑚 is the average intensity of the raw 918 

image volume before normalization and 𝑅𝑎𝑤𝑘,𝑝𝑜𝑠𝑡−𝑛𝑜𝑟𝑚 is the average intensity of the raw image 919 

volume after normalization. 920 

 Next, we rescaled the image intensity of the DeAbe images based on the normalization ratios by 921 

matching all time points to the first time point: 922 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑘,𝑓𝑖𝑛𝑎𝑙 =
𝑟𝑘
𝑟1
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑘 923 

where 𝑟1 is the normalization ratio of the first time point; 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑘 is the images predicted by DeAbe 924 

model;  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑘,𝑓𝑖𝑛𝑎𝑙 is the final images with intensity fluctuation compensation for quantitative 925 

analysis. 926 

 927 

Calculation of vessel orientation and alignment  928 

Orientations were estimated in 3D using a weighted vector summation algorithm28, adapting it 929 

for the volumetric images of fiber-like structures corresponding to the CD31 channel (i.e., blood vessel 930 

images) in iDISCO-cleared mouse embryos (Fig. 4).  931 
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For a given voxel within the 3D image, an n n n   voxel window was generated surrounding the 932 

voxel under assessment. To segment the effective voxels, six-level Otsu intensity thresholding was applied 933 

to the image, with five thresholds dividing the intensity into six levels. The lowest level was designated as 934 

background noise, and regions assigned to the upper five levels defined the vessel signals. The window 935 

size n  was typically set as two to three times the vessel thickness. All vectors passing through the center 936 

voxel were defined and weighted by their length and intensity variations, and the direction of the sum of 937 

all the weighted vectors was designated as the orientation of the center voxel28, with associated azimuthal 938 

angle   (ranging from 0° to 180°) and polar angle   (ranging from 0° to 180°). However, since the 939 

calculation of the polar angle   was not straightforward, we defined two additional azimuthal angles,   940 

and   (Supplementary Fig. 24a), which were symmetrical to the azimuthal angle  .   was defined as 941 

the angle between the projection of the vessel in the zx  plane and the x  axis, and   was the angle 942 

between the projection in the  yz  plane and the y−  axis. These two angles were related to the polar 943 

angle   via:  944 
2 2 2tan 1 / tan 1 / tan  = + . 945 

We also derived the 3D directional variance (DV) metric, quantifying the spread in orientations29,56. 946 

The value of DV ranges from 0 to 1, with 0 corresponding to perfectly parallel alignment, and 1 947 

corresponding to complete disorder (Supplementary Fig. 24b). The directional variance 3DD  was defined 948 

as: 949 

2 2 2 1/2

3 3 3 31 ( )D D D DD C S Z= − + + , 950 

where: 951 

2

3 1
(1 / ) ( / 1 )cos(2 )

k

D j j jj
C k f f 

=
= + , 952 

2

3 1
(1 / ) ( / 1 )sin(2 )

k

D j j jj
S k f f 

=
= + , 953 

2

3 1
(1 / ) ( / 1 )

k

D jj
Z k SI f

=
= + , 954 

with 2 21/ tan (2 ) 1 / tan (2 )j j jf  = + , and ( 1) ( 90) / 90SI  = −  − − , where   was acquired from the 955 

determination of   and   as described above, k  was the number of fiber voxels in the region, and  , 956 

  and   were calculated azimuthal angles as described above. 957 

Membrane segmentation 958 

For the images of live worm embryos dual-labeled with nuclear and membrane markers (Fig. 5c, 959 

d, Supplementary Fig. 29), raw data was restored using our multiple-step deep learning pipeline (Steps 1-960 

3 in Supplementary Fig. 26a) prior to cell membrane segmentation. We performed automatic membrane 961 

segmentation using segmented nuclei as seeds:   962 

First we used the Keras and Tensorflow-based implementations of Mask RCNN57 963 

(https://github.com/matterport/Mask_RCNN) to perform nuclear segmentation (Supplementary Fig. 964 
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29d). We then manually segmented 8 volumes (3 acquired with diSPIM, 3 with iSPIM, and 2 from 965 

multiview confocal microscopy27 for a total of 1963 nuclei) for training. Of these 8 volumes, 6 volumes 966 

with a total of 1688 nuclei were used for training a segmentation network and 2 volumes with a total of 967 

275 nuclei were used for validation. We used a ResNet-50 model as the backbone for our network, 968 

initialized the model using weights obtained from pretraining on the MS COCO dataset58, and proceeded 969 

to train all layers in three stages. Training took ~10 hours and applying the model took ~ 3 minutes per 970 

volume on a Windows workstation equipped with an Intel(R) Xeon(R) W-2145 CPU operating at 3.70 GHz, 971 

an Nvidia Quadro P6000 GPU, and 128 GB of RAM. After Mask RCNN segmentation, we applied a marker-972 

controlled watershed operation (https://www.mathworks.com/help/images/marker-controlled-973 

watershed-segmentation.html) to the nuclear segmentations to separate touching nuclei.  974 

Second, we applied the vascular structure enhancement filter59 975 

(https://github.com/timjerman/JermanEnhancementFilter) to the membrane data to enhance 976 

boundaries (Supplementary Fig. 29c). Scales were set to [2.0, 2.25, 2.5] and all other parameters were set 977 

to the default.  978 

Third, the centroids of segmented nuclei were used as seeds, and we used the seeded watershed 979 

algorithm (https://github.com/danielsnider/Simple-Matlab-Watershed-Cell-Segmentation) for 980 

membrane segmentation (Supplementary Fig. 29f).  981 

This workflow was applied both to the raw image data and restored images after each step in our 982 

multi-step pipeline to demonstrate the benefit of segmentation enhancement from DL processing.  983 

For selected volumes (Fig. 5c, Supplementary Video 11), we also performed manual editing on 984 

the automatic segmentations produced by the multi-step deep learning pipeline. Manual editing was 985 

performed within the ImageJ plugin Labkit (https://imagej.net/plugins/labkit/). After automatic 986 

segmentations were imported to Labkit, segmentation labels were manually edited interactively in lateral 987 

views (XY planes), and then were edited in axial views (YZ planes). Since the manual editing was conducted 988 

in 2D views and initial editing in either view was not sufficient to ensure smoothness in 3D, we iterated 989 

twice to further improve our results.   990 

 991 

Code availability 992 

Training and applying deep learning models were achieved using Python 3.7.0. Generation of synthetic 993 

aberrated data and quantitative image analysis was performed in MATLAB (Mathworks, R2022b). 994 

Customized code and software are available at https://github.com/eguomin/DeAbePlus/. RCAN and 995 

CARE software were installed from https://github.com/AiviaCommunity/3D-RCAN and 996 

https://github.com/CSBDeep/CSBDeep,  and code for RL deconvolution and multiview fusion is available 997 

at https://github.com/eguomin/diSPIMFusion/. 998 

Data availability 999 

The data that support the findings of this study are included in Figs. 1-5, Supplementary Figs. 1–39 and 1000 

Supplementary Videos 1–17. Some representative data from the figures (Fig. 2a, Supplementary Figs. 1001 

16, 30) are publicly available at https://doi.org/10.5281/zenodo.8424245. Other datasets (training data 1002 

and intermediate data for deep learning) are available from the corresponding author upon reasonable 1003 

request due to their large file size.  1004 
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 1005 

Fig. 1, Concept and simulations illustrating deep learning-based aberration compensation. a) 1006 

Schematic. Left: Fluorescence microscopy volumes are collected and near-diffraction-limited images 1007 

from the shallow side of each stack are synthetically degraded to resemble aberrated images deeper 1008 

into the stack. A neural network (e.g., a three-dimensional residual channel attention network, 3D 1009 

RCAN) is trained to reverse this degradation given the ground truth on the shallow side of the stack, and 1010 

the trained neural network (DeAbe model) subsequently applied to images throughout the stack, 1011 
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improving contrast and resolution. Right: More detailed view of synthetic degradation process. Zernike 1012 

basis functions and associated coefficients (coeffs) are used to add random aberrations by modifying the 1013 

ideal point spread function (iPSF) to generate an aberrated PSF (aPSF). Ground truth images (GT) are 1014 

Fourier transformed (FT) and multiplied by the ratio of the Fourier transformed aberrated and ideal PSFs 1015 

(essentially a modified optical transfer function, mOTF). Inverse Fourier transforming (IFT) the result and 1016 

adding noise generates the synthetically aberrated images. See Methods for further detail on this 1017 

procedure. OBJ: objective lens used to collect the stack. b) Simulated three-dimensional phantoms 1018 

consisting of randomly oriented and positioned dots, lines, spheres, spherical shells, and circles 1019 

comparing maximum intensity projections of aberrated input image (left, random aberration with root 1020 

mean square (RMS) wavefront distortion of 2 radians and Poisson noise added for an SNR of ~16, 1021 

corresponding PSF in inset), network prediction (DeAbe) given aberrated input (middle), and ground 1022 

truth (GT, right). Higher magnification views of dashed rectangular region are shown in c) (maximum 1023 

intensity projection) and d) (single plane), additionally showing restoration given blind deconvolution 1024 

(Blind Decon), Richardson-Lucy deconvolution with diffraction-limited PSF (RL Decon 1), Richardson-Lucy 1025 

deconvolution with aberrated PSF (RL Decon 2). Yellow arrows indicate a reference structure for visual 1026 

comparison. Twenty iterations were used for RL deconvolution and ten for blind deconvolution. e) As in 1027 

c, d) but showing axial plane along dashed blue line in b). f) Quantitative comparisons for the 1028 

restorations shown in b-e) using structural similarity index (SSIM, top) and peak signal-to-noise ratio 1029 

(PSNR, bottom) with ground truth reference. Means and standard deviations are shown for 100 1030 

simulations (10 independent phantom volumes, each aberrated with 10 randomly chosen aberrations). 1031 

Scale bars: 5 m b) and 2.5 m c-e). See also Supplementary Figs. 1-5. 1032 

  1033 
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 1034 

Fig. 2, Benchmarking DeAbe against experimental ground truth and adaptive optics (AO) correction. a) 1035 

Fixed Ptk2 cells were stained for actin using Phalloidin Alexa Fluor 488 and imaged with an AO- lattice 1036 

light sheet microscope. Aberrated (i), DeAbe prediction using a model trained on random aberrations 1037 

(ii), and ground truth (GT, iii) are shown. Inset in (i) shows applied aberration; right hand insets in i)-iii) 1038 

show Fourier transforms, blue ellipse with 1/500 nm-1 horizontal extent and 1/400 nm-1 vertical extent. 1039 

Note images have been rotated so viewing is normal to the coverslip surface, which results in 1040 
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anisotropic resolution in the lateral plane. b) Higher magnification insets of green rectangular region in 1041 

a). c) Higher magnification views of the yellow rectangular region in b). d) Higher magnification view of 1042 

blue rectangular region in a). e) Line profiles along red arrowheads in d) comparing aberrated image 1043 

(blue), DeAbe prediction (red), and ground truth (GT, black). f) Decorrelation resolution analysis of 1044 

images in a). Means, standard deviations and individual data points from 12 images are shown. Green 1045 

arrows in b) and blue arrows in d) highlight features improved in DeAbe or GT relative to aberrated 1046 

image. XY: lateral views of sample (single planes). See also Supplementary Figs. 10-13. 5 dpf zebrafish 1047 

embryos expressing a GFP membrane marker labeling glutamatergic neurons were fixed and imaged in 1048 

an AO-lattice light sheet microscope. Image volumes were collected 40-140 m from the surface of the 1049 

fish and passed through DeAbe or corrected via AO. g) Depth coded lateral (XY) maximum intensity 1050 

projection of volume after DeAbe compensation. Volume spans 20 m. h) Single lateral plane 13 m 1051 

into imaging volume. DeAbe prediction is shown. Note images are displayed in the native view so axial 1052 

direction is along optical axis of detection objective, resulting in isotropic resolution in the lateral plane.  1053 

i-k) Higher magnification views of green, orange, and blue rectangular regions in h), comparing raw (iv), 1054 

DeAbe prediction (v), or AO correction (vi). l) Axial cross section along dashed white line in g). Arrows in 1055 

i-l) highlight membrane regions for comparisons. m) Lateral resolution estimates from decorrelation 1056 

analysis. Means, standard deviations, and individual data points derived from 15 volumes are shown. 1057 

See also Supplementary Fig. 14. Scale bars: 10 μm and 0.4 μm-1 vertical/ 0.5 μm-1 horizontal (insets) a); 5 1058 

μm b, d, g, h); 2 μm c, i, j, k, l). Data shown are representative samples from N = 12 experiments for a-d) 1059 

and N=15 for g-l).  1060 

  1061 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2024. ; https://doi.org/10.1101/2023.10.15.562439doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.15.562439
http://creativecommons.org/licenses/by/4.0/


29 
 

 1062 

Fig. 3, Computational aberration compensation on variety of fluorescence microscopy image volumes. 1063 

a) Live C. elegans embryos expressing a pan-nuclear GFP histone marker were imaged with light sheet 1064 
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microscopy (i, left column) and the raw data processed with Richardson-Lucy deconvolution (ii, 10 1065 

iterations, middle column) or with a trained DeAbe model (iii, right column). First two rows show single 1066 

planes 20.0 and 27.7 m into the sample, third row shows axial view. Comparative line profiles through 1067 

blue, yellow, and green lines are shown in insets, comparing ability to discriminate nuclei. Red arrow 1068 

highlights nuclei for visual comparison. See also Supplementary Video 3. b) NK-92 cells stained with 1069 

Alexa Fluor 555 wheat germ agglutinin and embedded in collagen matrices were fixed and imaged with 1070 

instant SIM, a super-resolution imaging technique. Left: raw data, right: after application of DeAbe and 1071 

deconvolution (DeAbe+, 20 iterations Richardson-Lucy). Lateral maximum intensity projections (MIP, 1072 

top) or single axial planes (bottom) are shown in b), and c, d show higher magnification views 1073 

corresponding to green c) or blue d) dashed rectangular regions in b). Colored arrows in c, d highlight 1074 

fine features obscured in the raw data and better revealed in the DeAbe+ reconstructions. See also 1075 

Supplementary Video 5, Supplementary Fig. 19. e) Live cardiac tissue containing cardiomyocytes 1076 

expressing Tomm20-GFP was imaged with two photon microscopy. Raw data (left) are compared with 1077 

DeAbe prediction (right) at indicated depths, with insets showing corresponding Fourier transform 1078 

magnitudes. Blue circles in Fourier insets in e) indicate 1/300 nm-1 spatial frequency just beyond 1079 

resolution limit. See also Supplementary Video 6. f) Higher magnification views of white dashed 1080 

rectangular region in e), emphasizing recovery of mitochondrial boundaries by DeAbe model. See also 1081 

Supplementary Fig. 21, Supplementary Video 7. Scale bars: 10 m a, e); 5 m b, f); 2 m c, d); e) 1082 

diameter of Fourier circle: 300 nm-1. Data shown are representative samples from N = 3 experiments. 1083 
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 1087 

 1088 

Fig. 4, Computational aberration compensation on mm-scale cleared mouse embryo volumes. a) Fixed 1089 

and iDISCO-cleared E11.5-day mouse embryos were immunostained for neurons (TuJ1, cyan) and blood 1090 

vessels (CD31, magenta), imaged with confocal microscopy and processed with a trained DeAbe model. 1091 

See also Supplementary Video 8. b) Axial view corresponding to dotted rectangular region in a), 1092 

comparing raw data and depth-compensated, de-aberrated, and deconvolved data (DeAbe+). See also 1093 

Supplementary Fig. 23. c) Higher magnification lateral view at axial depth of 1689 m indicated by the 1094 

orange double headed arrowheads in b). d) Higher magnification views of white dotted region in c), 1095 

comparing raw (left) and DeAbe+ processing (right) for neuronal (top) and blood vessel (bottom) stains. 1096 

e) Orientation (, transverse angle) analysis on blood vessel channel of DeAbe+ data, here shown on 1097 

single lateral plane at indicated axial depth. See also Supplementary Fig. 24, Supplementary Video 9. f) 1098 

Higher magnification lateral view of white dotted region in e) (note that axial plane is different), 1099 

comparing intensity (left) and orientation (right) views between raw (top row) and DeAbe+ prediction 1100 

(middle row). Righthand insets show higher magnification views of vessel and surrounding region 1101 

highlighted by dotted lines. Bottom row indicates histogram of all orientations in the vessel highlighted 1102 
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with dotted ellipse, full-width-at-half maximum (FWHM) in peak region of histogram is also shown. g) 1103 

Directional variance of blood vessel stain within the indicated plane, with higher magnification region of 1104 

interest (ROI) views at right. Histogram of directional variance in both regions also shown. See also 1105 

Supplementary Fig. 25. Scale bars: 500 m a, b, c, e); 100 m d), 50 m inset; 300 m f), 50 m inset; 1106 

300 m g), 50 m inset. Data shown are representative samples from N = 3 experiments for a-d) and 1107 

N=1 for e-g). 1108 
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   1111 

Fig. 5, Incorporating aberration compensation into multi-step restoration dramatically improves 1112 

image quality in volumetric time-lapse imaging. a) C. elegans embryos expressing GFP-labeled 1113 

membrane marker (green) and mCherry-labeled nuclear marker (magenta) were imaged with dual-view 1114 
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light-sheet microscopy (diSPIM) and the raw data (left) from single-view recordings processed through 1115 

neural networks that progressively de-aberrated, deconvolved, and isotropized spatial resolution (3-step 1116 

DL, right). Single planes from lateral (top) and axial (bottom) perspectives are shown, with arrow in 1117 

lower panel indicating direction of increasing depth. See also Supplementary Video 10, Supplementary 1118 

Figs. 27, 28. b) Higher magnification axial views of membranes (top) and nuclei (bottom) deep into 1119 

embryo, corresponding to dashed rectangle in a). c) Examples of automatic segmentation on raw (left, 1120 

319 cells), 3-step DL prediction (middle, 421 cells), and manually corrected segmentation based on DL 1121 

prediction (right, 421 cells). Single planes corresponding to the upper planes in a) are shown. Red and 1122 

blue dashed ellipses highlight regions for visual comparison. See also Supplementary Video 11.  d) 1123 

Number of cells detected by automatic segmentation of membrane marker vs. time for raw data 1124 

(purple), and after successively applying the first two steps in the multistep restoration (Steps 1-2, blue 1125 

and green curves), with means and standard deviations statistically derived from 3 different embryos. 1126 

Ground truth from manual expert (black curve) is also shown for comparison. Inset (ellipse with dotted 1127 

blue lines) highlights number count at early timepoints. See also Supplementary Fig. 31. e) Maximum 1128 

intensity projection (MIP) images of C. elegans embryos expressing membrane-localized GFP under 1129 

control of the ttx3-3b promoter, imaged with diSPIM, comparing raw single-view recordings (left) and 1130 

multi-step restoration that progressively de-aberrated, deconvolved, and super-resolved the data (right, 1131 

3-step DL). Boundary of the embryo has been outlined in light blue for clarity. See also Supplementary 1132 

Figs. 33, 34, Supplementary Video 12. Higher magnification MIP (f) or single lateral (g) or axial (h) plane 1133 

comparisons corresponding to dashed lines or rectangle in e) are also shown. i) Time series based on 3-1134 

step DL MIP predictions highlight developmental progression of AIY (blue) and SMDD (magenta) neurites 1135 

as they enter the nerve ring region. Top and bottom parts of each panel at each time point show MIP 1136 

(neurites highlighted as dotted lines) vs. model of the neurites, respectively. See also Supplementary 1137 

Fig. 35. Scale bars: 5 m a, c, e, f, h); 2 m b, d, g). Data shown are representative samples from N = 3 1138 

experiments. 1139 
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