1	Tick extracellular vesicles undermine epidermal wound healing during hematophagy
2 3 4 5 6 7 8	Liron Marnin ^{1£} , Luisa M. Valencia ^{1£} , Haikel N. Bogale ^{2†} , Hanna J. Laukaitis-Yousey ¹ , Agustin Rolandelli ^{1¥} , Camila Rodrigues Ferraz ¹ , Anya J. O'Neal ^{1‡} , Axel D. Schmitter-Sánchez ^{3,4,5} , Emily Bencosme Cuevas ⁶ , Thu-Thuy Nguyen ⁶ , Brenda Leal-Galvan ⁷ , David M. Rickert ¹ , M. Tays Mendes ^{1§#} , Sourabh Samaddar ¹ , L. Rainer Butler ^{1α} , Nisha Singh ^{1β} , Francy E. Cabrera Paz ¹ , Jonathan D. Oliver ⁸ , Julie M Jameson ⁹ , Ulrike G. Munderloh ¹⁰ , Adela S. Oliva Chávez ^{7€} , Albert Mulenga ⁶ , Sangbum Park ^{3,4,5} , David Serre ^{1,2} , and Joao H.F. Pedra ^{1*} .
10	Affiliations:
11 12	¹ Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
13 14	² Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
15 16	³ Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State
17 18	⁴ Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State
19 20	⁵ Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MLUSA
20 21 22	⁶ Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
23	⁷ Department of Entomology, Texas A&M University, College Station, TX, USA.
24	⁸ Division of Environmental Health Sciences, School of Public Health, University of Minnesota,
25	Minneapolis, MN, USA.
26 27 20	⁹ Department of Biology, California State University San Marcos, San Marcos, CA, USA. ¹⁰ Department of Entomology, University of Minnesota, Minneapolis, MN, USA.
28 29	[†] Present address: Rancho BioSciences, San Diego, CA, USA
30 31	[*] Present address: University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019- UMR9017-CIII -Center for Infection and Immunity of Lille, Lille, France
32 33	[‡] Present address: Immunology Program, Memorial Sloan Kettering Cancer Center, New York,
34 35	[§] Present address: Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
36	[#] Present address: Fiocruz-Bi-Institutional Translational Medicine Project, Ribeirão Preto, Brazil.
37 38	^a Present address: Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
39	^β Present address: Department of Biotechnology, School of Energy Technology, Pandit
40	Deendayal Energy University; Knowledge Corridor, Gandhinagar, Gujarat, India
41 42	[•] Present address: Department of Entomology, University of Wisconsin, Madison, WI, USA
42 43	[£] Equal contribution
44	
45	*Corresponding author: jpedra@som.umaryland.edu
46	Konnegador Arthuened Mesterer Tieles Tiele Demos Discores Olim Mesmedule - "
4/	keywords: Arthropod vectors; Hicks; Hick-Borne Diseases; Skin; Wound Healing

48

Abstract

49	Wound healing has been extensively studied through the lens of inflammatory disorders
50	and cancer, but limited attention has been given to hematophagy and arthropod-borne diseases.
51	Hematophagous ectoparasites, including ticks, subvert the wound healing response to maintain
52	prolonged attachment and facilitate blood-feeding. Here, we unveil a strategy by which
53	extracellular vesicles (EVs) ensure blood-feeding and arthropod survival in three medically
54	relevant tick species. We demonstrate through single cell RNA sequencing and murine genetics
55	that wildtype animals infested with EV-deficient Ixodes scapularis display a unique population of
56	keratinocytes with an overrepresentation of pathways connected to wound healing. Tick feeding
57	affected keratinocyte proliferation in a density-dependent manner, which relied on EVs and
58	dendritic epidermal T cells (DETCs). This occurrence was linked to phosphoinositide 3-kinase
59	activity, keratinocyte growth factor (KGF) and transforming growth factor β (TGF- β) levels.
60	Collectively, we uncovered a strategy employed by a blood-feeding arthropod that impairs the
61	integrity of the epithelial barrier, contributing to ectoparasite fitness.

62

Introduction

63	Ectoparasitic arthropods obtain their nourishment by feeding on a vertebrate host,
64	providing an avenue for microbial transmission during hematophagy (Sonenshine & Roe, 2014).
65	In North America, tick encounters account for approximately 77% of all arthropod-borne
66	diseases, with most interactions attributed to Ixodes, Amblyomma and Dermacentor species
67	(Eisen, 2022; Rosenberg et al., 2018). Notably, Ixodes scapularis is an arthropod vector of
68	several human illnesses, including Lyme disease (Eisen, 2022). The Lone star tick Amblyomma
69	americanum transmits bacteria that cause ehrlichiosis, while the American dog tick Dermacentor
70	variabilis and Dermacentor andersoni carry pathogens associated with Rocky Mountain spotted
71	fever and tularemia (Eisen, 2022; Rosenberg et al., 2018).
72	The unique microenvironment generated at the skin interface during a tick bite is
73	conducive to arthropod hematophagy and pathogen transmission (Wikel, 2013). Unlike other
74	blood-feeding arthropods, the development of hard ticks incorporates a series of events which
75	necessitate long-term attachment to the skin (Sonenshine & Roe, 2014). This prolonged
76	disruption of the host physical barrier poses a new challenge for tick survival as defense
77	mechanisms are engaged. Tick saliva has been shown to be critical to subvert inflammation,
78	blood coagulation, and nociception and antagonizes host immunity to enable attachment to the
79	skin (Esteves et al., 2017; Francischetti et al., 2009; Kazimirova & Stibraniova, 2013; Kotal et
80	al., 2015; Kotsyfakis et al., 2007; Kramer et al., 2011; Poole et al., 2013; Ribeiro et al., 1992;
81	Ribeiro et al., 1985; Ribeiro et al., 1988; Simo et al., 2017; Valenzuela et al., 2002).
82	Observations across various species further demonstrate a conserved ability whereby tick
83	effectors perturb pro-inflammatory mediators responding to ectoparasite feeding (Bakshi et al.,
84	2019; Dickinson et al., 1976; Esteves et al., 2017; Karim & Ribeiro, 2015). Such antagonism of
85	host responses has been implicated in the dissemination and persistence of vector-borne
86	pathogens (Chen et al., 2014; Kotsyfakis et al., 2010; Oliva Chávez et al., 2021).

87 As the largest organ in the body, the skin serves as the first line of defense against 88 arthropod infestation and pathogen transmission (Eyerich et al., 2018; Glatz et al., 2017; Kabashima et al., 2019). The skin is comprised of three primary layers: the outermost 89 90 epidermis, the underlying dermis, and the hypodermis or subcutaneous fat (Everich et al., 91 2018). The complex architecture and specialized cell populations comprising the skin affords the 92 mammalian host a protective barrier against environmental and microbial threats, in addition to 93 aiding in thermoregulation and prevention of trans-epidermal water loss (Kabashima et al., 2019; Proksch et al., 2008). During injury, such as laceration of the skin by a tick hypostome, 94 95 various immune and sentinel cells are activated and release soluble factors that prompts the 96 highly complex and intricate process of wound healing (Singer & Clark, 1999). Proper wound 97 healing requires a high degree of coordination to orchestrate a response to an insult, which is broadly comprised of four overlapping stages: hemostasis, inflammation, proliferation, and 98 99 tissue remodeling (Peña & Martin, 2024).

100 Little attention has been paid to the latter phases of skin healing during tick 101 hematophagy, including proliferation, which drives the process of re-epithelialization. Reepithelialization, which is largely dependent on the proliferation of keratinocytes, culminates in 102 103 the regeneration of the epidermal-dermal junction and restoration of barrier integrity (Pastar et al., 2014; Rousselle et al., 2019). Keratinocytes function as structural cells which serve as the 104 105 outermost layer in mammals (Pastar et al., 2014; Rousselle et al., 2019). Keratinocytes have 106 also been recognized as sentinels, facilitating crosstalk with immune cells, and partaking in the 107 initiation of the wound healing response upon injury (Piipponen et al., 2020). Dysfunction in 108 keratinocyte-mediated closure has been reported in chronic wounds indicating their crucial role 109 in skin homeostasis (Pastar et al., 2014; Wikramanayake et al., 2014).

110 The current paradigm at the tick-skin interface is that salivary molecules are deposited 111 within the dermis during feeding, where they actively regulate the cutaneous response to an 112 insult (Bernard et al., 2020; Wikel, 2013). The impact of tick feeding on the epidermis, which

113 interfaces with the external environment, has been mostly neglected. The significance of the 114 epidermis in countering tick infestation was documented in the late 1970s wherein Langerhans 115 cells were shown to respond to salivary antigens (Allen et al., 1979). We also implicated 116 extracellular vesicles (EVs) originating from the tick *I. scapularis* in promoting tick fitness and 117 generating distinct outcomes of pathogen transmission in mammals. This mechanism was 118 accomplished through the tick SNARE protein Vamp33 and epidermal $\gamma\delta$ T cells (Oliva Chávez 119 et al., 2021).

120 In this article, we combined single cell RNA sequencing (scRNA-seq), murine genetics, 121 intravital microscopy and flow cytometry to reveal that tick EVs disrupt intraepithelial homeostasis. We discovered a unique population of keratinocytes in wildtype animals with an 122 123 overrepresentation of pathways connected to wound healing during a bite from EV-deficient 124 ticks. We further underpinned this biological network by demonstrating that tick EVs impacted 125 epithelial proliferation through the disruption of phosphoinositide 3-kinase (PI3K) activity, keratinocyte growth factor (KGF) and transforming growth factor β (TGF- β). Collectively, we 126 127 illustrate a tick-induced interference of wound healing via the skin epidermis, contributing to the process of arthropod hematophagy. 128

129

Results

130 Tick extracellular vesicles enable arthropod fitness. We previously observed that EVs derived from *I. scapularis* enabled hematophagy (Oliva Chávez et al., 2021). We sought to 131 corroborate our findings in other tick species of public health importance and assess the impact 132 133 of EVs on arthropod fitness. Total genetic ablation in ticks remains beyond current technical capabilities because editing through clustered regularly interspaced short palindromic repeats 134 (CRISPR) has only been applied to score morphological phenotypes, but not signaling 135 136 pathways (Sharma et al., 2022). Thus, we silenced the expression of the vesicle associated 137 membrane protein 33 (vamp33) through RNA interference (RNAi) to study the effect of tick EVs. 138 We designated arthropods that had reduced *vamp33* gene expression as siV33, EVdeficient ticks, and the scramble control treatment as scV33, EV-sufficient ticks. SiV33 and 139 140 scV33 microinjected nymphs were placed on C57BL/6 mice and allowed to feed for 3 days (Fig. 141 1A). On day 3. *I. scapularis* were assessed for efficiency of *vamp33* silencing, attachment, and collected for weight and post-feeding survival (Fig. 1B-E). We observed a statistically significant 142 difference in attachment between siV33 and scV33 nymphs (Fig. 1C) compared to our previous 143 evaluation (Oliva Chávez et al., 2021). Diminished feeding was also measured for EV-deficient 144 145 ticks as demonstrated by a 53% reduction in tick weight (Fig. 1D). Interrupted feeding in I. scapularis led to reduced survival post-detachment (Fig. 1E). An EV-associated fitness cost 146 upon vamp33 silencing was observed in all three clinically relevant tick species (Fig. 1B-M). A 147 148 notable exception was the lack of phenotypic differences in attachment for A. americanum 149 compared to I. scapularis and D. variabilis (Fig. 1C, G, and K). Collectively, these findings offer 150 the prospect of a cross-species integrated management for mammalian infestation despite the 151 distinct tick phylogeny.

152

153 **Tick EVs alter epidermal immune surveillance.** Recently, we reported that tick EVs 154 within saliva affect the frequency of dendritic epidermal T cells (DETC) and alter the cytokine

155 and chemokine milieu of the skin (Oliva Chávez et al., 2021). DETC surveillance of 156 keratinocytes via various cell surface receptors is critical in a wounding response, leading to the 157 activation and recruitment of immune cells, stimulation of keratinocytes for proliferation and survival, and anti-microbial responses (Jameson et al., 2002; Jameson et al., 2004; Keyes et al., 158 159 2016; Macleod & Havran, 2011; Sharp et al., 2005) (Fig. 2A). This crosstalk and surveillance 160 between DETC and keratinocytes led us to reason that tick EVs might not solely impact DETCs. but also likely influence the most abundant epidermal cell, the keratinocyte. Hence, we allowed 161 162 EV-deficient (siV33) and EV-sufficient (scV33) *I. scapularis* nymphs to feed on mice for 3 days 163 and collected the skin biopsy for flow cytometry evaluation (Supplementary Fig. 1). We 164 observed a decrease in DETC frequency during scV33 tick feeding on mice compared to naïve skin (Fig. 2B). Conversely, DETC frequency remained at homeostatic levels after impairment of 165 166 tick EVs (siV33) and ectoparasite feeding on murine animals (Fig. 2B).

167 DETCs exhibit a dendritic shape that allows for continuous surveillance of neighboring 168 keratinocytes through various receptor-ligand interactions (Jameson et al., 2002; Witherden et 169 al., 2012) (Fig. 2A). Upon tissue damage, stressed keratinocytes upregulate ligands and antigens that stimulate DETCs in a non-major histocompatibility complex (MHC)-restricted 170 171 manner (Havran et al., 1991). Activated DETCs will then alter their morphology by retracting dendrites and assuming a rounded configuration to facilitate migration to the site of injury 172 (Jameson et al., 2002; Nielsen et al., 2017). To determine the possible role of keratinocytes 173 174 during tick feeding, we assessed the DETC co-stimulatory markers that facilitate immune 175 surveillance. We observed an elevated co-receptor frequency among DETCs found at the skin 176 interface where EV-sufficient ticks fed on mice, including the junctional adhesion molecule-like 177 (JAML) and the C-type lectin-receptor NKG2D (also known as KLRK1) (Girardi et al., 2001; Whang et al., 2009) (Fig. 2C-D). Similar findings were also observed for the activation markers 178 179 CD69 and CD25 (Fig. 2E-F). Conversely, JAML, NKG2D, CD69 and CD25 were not upregulated in the bite of EV-deficient ticks during murine feeding (Fig. 2C-F). 180

181 Morphologically, the hallmark of DETC activation is the conversion of a dendritic to a 182 rounded morphology that facilitates intraepidermal migration, a phenomenon that is partially regulated by CD100 signaling (Thelen & Witherden, 2020; Witherden et al., 2012). To capture 183 morphological changes in DETCs, we employed intravital microscopy of EV injection into the 184 185 ear of a triple-reporter mouse model. Intravital microscopy of EV injection into the ear of this 186 mouse model revealed that tick EVs did not promote rounding of DETCs, as compared to the positive control cytochalasin D (Fig. 2G). Supporting epidermal intravital imaging findings, 187 188 expression of CD100 was not altered during a tick bite regardless of the EV status (Fig. 2H). 189 Altogether, these findings provided evidence that tick EVs functionally alter immune surveillance of the epidermal niche by DETCs. 190 191 192 ScRNA-seq characterization of epidermal cells during tick feeding. Given the 193 functional perturbations in DETCs during tick feeding, and the well documented importance of the DETC-keratinocyte crosstalk during wounding, we hypothesized that the epidermal healing 194 circuitry is likely being altered during tick feeding. To evaluate this hypothesis, we utilized 195 scRNA-seq to analyze the impact of tick EVs on the epidermal immune environment in both 196 197 DETC-deficient (FVB-Tac) and DETC-sufficient (FVB-Jax) mice three days after tick feeding. FVB-Tac mice are depleted of functional DETCs due to a failure of thymic selection because of 198 199 a natural mutation of the *skint1* gene (Barbee et al., 2011; Boyden et al., 2008; Lewis et al., 200 2006). Skin punch biopsies were obtained from the bite site, and the epidermis was 201 enzymatically separated from the dermis. Live cells were sorted by fluorescence activation and 202 libraries were generated for Illumina sequencing (Fig. 3A). 203 Our analysis encompassed approximately 20,640 cells, with an average of 88,027 reads. Our initial investigation resulted in 23 clusters (Supplementary Dataset 1). Next, we 204 205 applied a fixed threshold to retain cells with more than 2500 UMIs (Supplementary Fig. 2A-B) and applied the DoubletFinder R package to predict doublets (Supplementary Fig. 2C-D). We 206

207 identified 10 distinct groups of cells through an analysis of marker genes within each cluster 208 relative to the entire dataset (Supplementary Dataset 2). Keratinocytes, T cells, fibroblasts and 209 endothelial cells were observed in our scRNA-seg results (Supplementary Fig. 2D). The 210 presence of dermal clusters in our study was likely due to an incomplete epidermal-dermal 211 border separation during the enzymatic dissociation of skin biopsies. Thus, we subjected 212 keratinocytes, T cells, and antigen-presenting cells (APCs) to a second round of clustering (Supplementary Dataset 3). This dataset revealed a total of 8 clusters visualized in t-distributed 213 214 stochastic neighbor embedding (t-SNE) (Fig. 3B) for a total of 5,172 total cells with a median 215 UMI count of 13,910 per cell.

Throughout the process of differentiation, keratinocytes express different types of 216 217 keratins, including keratins (Krt) 1, 5, 10, and 14 (Fuchs, 1993). Elevated levels of Krt5 and 218 *Krt14* expression enabled the recognition of undifferentiated cells residing within the basal layer 219 of the epidermis (Fig. 3C, Supplementary Dataset 4). Krt1, Krt10, and Involucrin were used to discern early and late-stage differentiation of keratinocytes (Fig. 3C, Supplementary Fig. 3, 220 221 Supplementary Dataset 4). APCs and T cells were identified by the T cell receptor alpha constant (Trac), the T cell receptor delta constant (Trdc), and the histocompatibility class II 222 223 antigen (H2-Aa) (Supplementary Dataset 3, Supplementary Table 2). The mouse epidermis harbors hair follicles with distinct physiological functions (Joost et al., 2018; Joost et al., 2016). 224 Our dataset only accounted for compartments in anatomical proximity to the epidermis 225 226 (Supplementary Fig. 4, Supplementary Table 2).

We then determined the percent distribution of interfollicular epidermal cells per treatment. In the skin biopsy where ticks fed on immune intact mice (FVB-Jax scV33 and FVB Jax siV33), we observed a decrease in keratinocytes and an overrepresentation of T cells and APCs compared to the naïve skin (Supplementary Fig. 5A-B, Supplementary Dataset 5). A similar effect was not observed when ticks fed on the skin of DETC-deficient mice, presumably due to the diminished wound healing capacity in FVB-Tac animals (Keyes et al., 2016). We

confirmed the depletion of DETCs in the epidermis of FVB-Tac mice. Gene expression of *Trdv4*in the T cell cluster, which encodes for the receptor Vδ1 in DETCs, was reduced in FVB-Tac
compared to the FVB-Jax mouse strain (Supplementary Fig. 5C). Notably, partitioning of
epidermal clusters by experimental conditions revealed an unidentified keratinocyte population
found solely when EV-deficient ticks fed on FVB-Jax mice (Fig. 3D-I, Supplementary Dataset 3).
The presence of this distinct cluster raised the hypothesis that EVs might exert an influence on
keratinocytes within the context of DETCs, given its absence in FVB-Tac mice.

240

241 Tick EVs impact a keratinocyte population with a prominent wound healing

signature. The emergence of this unique keratinocyte population responding to siV33 tick 242 243 feeding prompted us to further investigate their role by subjecting these cells to a subsequent 244 round of clustering. This examination revealed keratinocyte populations at various differentiated 245 states and highlighted the presence of an unidentified epidermal population (Fig. 4A, 246 Supplementary Dataset 6). Next, we relied on pseudotime to align keratinocytes along an 247 inferred developmental trajectory based on their expression profile (Fig. 4B). Gene expression signatures mirrored the sequence of differentiation, starting with markers associated with 248 249 undifferentiated basal states to terminally differentiated keratinocytes (Supplementary Fig. 6). 250 We identified a unique keratinocyte population present along the pseudotime axis of the 251 condition where EV deficient ticks fed on FVB-Jax mice (FVB-Jax siV33), setting it apart from 252 the other treatments (Fig. 4B).

The heterogeneity of keratinocytes is crucial for various functions, both during homeostasis and in response to external stimuli (Rice & Rompolas, 2020). Their transcriptional program has been recently explored to elucidate how different populations aid in the coordination of broader cellular circuits (Joost et al., 2020; Joost et al., 2018; Joost et al., 2016). Thus, we unraveled the transcriptional program employed by this unique keratinocyte population where EV deficient ticks fed on FVB-Jax mice. We computationally separated keratinocyte

populations according to their respective experimental conditions (Supplementary Fig. 7). Then,
we assessed marker genes in the keratinocyte population where EV deficient ticks fed on FVBJax mice, which revealed elevated expression of *Col1a1*, *Col1a2*, and *Col3a1* (Fig. 4C).
Evaluation of the marker gene *Col1a1* across pseudotime further underscored the distinct
transcriptional program of this unique keratinocyte subcluster (Fig 4D). Altogether, these results
suggested an increase in the collagen production by this keratinocyte population in response to
feeding of EV-deficient ticks.

266 Pathway enrichment analysis of all significant marker genes in the unidentified 267 keratinocyte population revealed an overrepresentation of genes associated with the wound 268 healing circuitry, including growth factor, collagen, fibronectin and heparin binding, and 269 phosphoinositide 3-kinase (PI3K) activity (Fig. 4E, Supplementary Dataset 7). These molecules 270 have been implicated in keratinocyte function during wound healing, primarily by enhancing 271 keratinocyte proliferation and migration to support re-epithelialization and tissue repair (Bártolo 272 et al., 2022; Matsuura-Hachiya et al., 2018; Misiura et al., 2020). Our findings suggested that a 273 unique keratinocyte population with a prominent wound healing signature was selectively 274 responding to EV-deficient ticks during hematophagy. To make a comparison between EV-275 deficient and EV-sufficient ticks in the murine skin, we subjected keratinocytes to a differential expression analysis and assessed enriched pathways through ingenuity pathway analysis (IPA). 276 Notably, we observed a wound healing signature in the skin of DETC-sufficient mice fed with 277 278 EV-deficient ticks, which was not detected in animals deficient for DETCs (Fig. 4F). 279 Further inspection of differentially expressed genes annotated for wound healing 280 revealed a decrease in transcript levels for Fos and Jun and an increase of expression for 281 Col1a1 and Col1a2 (Fig. 4G, Supplementary Dataset 8). Fos and Jun are subunits of AP-1, which is important for epithelial proliferation and differentiation (Angel et al., 2001; Li et al., 282 283 2003). Conversely, collagens have various roles during all stages of wound healing, aiding in the regulation of the wound healing response, reinforcing barrier integrity and facilitating the 284

stratification of epidermal layers (Matsuura-Hachiya et al., 2018). Collectively, tick EVs impaired
wound healing through specific molecular pathways in keratinocytes.

287

Tick EVs interfere with keratinocyte proliferation. To understand how tick EVs 288 289 influenced wound healing in keratinocytes, we then evaluated molecular networks altered in the 290 epidermis of DETC-sufficient and DETC-deficient mice. We performed a similar analysis in naive animals to exclude confounding effects originated from genetic differences occurring 291 292 between these two strains. Four pathways were identified: eukaryotic Initiation Factor 2 (EIF2), 293 natural killer (NK) cell, sirtuin signaling, and the unfolded protein response (UPR) (Fig. 5A, 294 Supplementary Dataset 9). The results obtained concerning NK cell, sirtuin signaling, and the 295 UPR pathways were likely due to the *skint1* deficiency in FVB-Tac mice. However, the EIF2 296 cascade was dependent on tick EVs because the computational prediction occurred regardless 297 of the mouse genetic background (yellow highlight, Fig. 5A).

298 A granular view of the EIF2 signaling pathway displayed PI3K as part of the biological 299 circuit targeted by tick EVs (Fig. 5B, Supplementary Dataset 10). The PI3K/Akt pathway is important for skin development and wound healing, two processes dependent on keratinocyte 300 301 proliferation and differentiation (Calautti et al., 2005). Upon injury, keratinocytes adjacent to the wound are guiescent, opting for a migratory phenotype that allows for the initiation of re-302 epithelialization (Dekoninck & Blanpain, 2019). Conversely, keratinocytes farther from the 303 304 wound edge undergo a proliferative burst, allowing for the closure of the gap generated by 305 migratory keratinocytes (Aragona et al., 2017). Given that the PI3K/Akt/mTOR pathway has 306 been observed in the proliferative zone and correlates with accelerated wound closure, we 307 reasoned that tick EVs interfered with keratinocyte proliferation. To evaluate this hypothesis, we used the protein Ki-67 and flow cytometry as a readout for proliferative keratinocytes 308 309 (Supplementary Fig. 8). We observed a significant reduction in keratinocyte proliferation when EV-sufficient ticks fed on wildtype mice (Fig. 5C). However, the effect of keratinocyte 310

proliferation was not observed in the absence of tick EVs (Fig. 5C). As noted above, the impact of tick feeding on keratinocyte proliferation was fully dependent on DETCs. In the absence of DETCs, the observed phenotype for keratinocyte proliferation in EV-sufficient ticks did not occur (Fig. 5C). Taken together, our reductionist approach orthogonally validated our scRNA-seq results, demonstrating that tick EVs decrease keratinocyte proliferation, which is a key step in wound healing.

317 The genetic constitution of a mouse may lead to substantial alterations in phenotypic 318 traits (Tanner & Lorenz, 2022; Woodworth et al., 2004). We therefore investigated the ability of I. 319 scapularis to interfere with keratinocyte homeostasis in C57BL/6 mice, a more commonly used 320 strain. We ascertained the keratinocyte PI3K status by flow cytometry due to its ability to assess 321 protein expression on limited cell counts. Variation in the total PI3K comparing keratinocyte 322 populations among treatments was not observed (Fig. 5D). However, a decrease in phospho-323 PI3K-positive keratinocytes was recorded when ticks deficient in EVs fed on C57BL/6 mice (Fig. 324 5E). Additionally, the bite of *I. scapularis* ticks reduced levels of the growth factor KGF and increased levels of TGF- β in the skin, compared to the EV-deficient treatment (Fig. 5F-G). 325 These findings correlated to a significant decrease in the frequency of EpCAM⁺ keratinocytes 326 327 expressing the negative regulator of TGF- β signaling, Smad7, in skin infested with scV33 ticks compared to siV33 ticks. (Fig. 5H; Supplementary Fig. 8). Next, we observed a significant 328 329 decline in the frequency of EpCAM⁺ Ki67⁺ keratinocytes when EV-sufficient ticks fed on 330 C57BL/6 mice (Fig. 51). Remarkably, the ability of ticks to impair keratinocyte proliferation was 331 observed in a density-dependent manner. As the number of ticks feeding on C57BL/6 mice 332 increased, the capacity of keratinocytes to proliferate decreased (Fig. 5J). This observation was 333 not recorded in mice infested with ticks deficient for EVs (Fig. 5K). In summary, we uncovered that tick EVs: (i) impacted keratinocyte proliferation; (ii) suppressed KGF and PI3K activity; and 334 335 (*iii*) enhanced TGF- β levels, thereby, maintaining successful arthropod hematophagy.

336

Discussion

337	Ticks are ancient hematophagous arthropods that co-evolved with their hosts for millions
338	of years (Sonenshine & Roe, 2014). Currently, we have a limited understanding of the
339	mechanisms employed by these ectoparasites to feed on a mammal and enable pathogen
340	transmission. Previously, we implicated Ixodes scapularis EVs in promoting fitness and
341	generating distinct outcomes of pathogen transmission. This was accomplished through the
342	SNARE protein Vamp33 and DETCs (Oliva Chávez et al., 2021). Here, we connect the
343	mammalian wound healing circuitry as a target of tick-mediated host immunomodulation via
344	salivary EVs. Our work connects in vivo proliferation of keratinocytes as a tick EV regulatory
345	process during hematophagy.
346	We established the importance of EVs as a conserved strategy for arthropod fitness in
347	three medically relevant tick species: I. scapularis, A. americanum, and D. variabilis. We
348	demonstrated that <i>I. scapularis</i> EVs led to a decrease in DETCs at the bite site; yet DETCs
349	present in the skin epidermis displayed upregulated co-stimulatory molecules. During skin injury,
350	DETCs are activated whereby recognition of self-antigens on damaged or stressed
351	keratinocytes allows for the orchestration of a host response (Jameson et al., 2004). Reduction
352	of DETCs at the tick-skin interface may not be a result of cellular migration. DETC migration is
353	facilitated by the conversion of a dendrite to a rounded morphology, which is partially regulated
354	by CD100 signaling (Jameson et al., 2002; Witherden et al., 2012). To capture morphological
355	changes, we employed intravital microscopy in an EV-injected triple-reporter mouse model
356	(Park et al., 2021). Our results suggested that DETCs may not migrate during tick feeding due
357	to the lack of cell rounding and CD100 upregulation. Importantly, DETCs regulate epidermal
358	homeostasis and coordinate a wound healing response together with epidermal cells (Jameson
359	et al., 2002). Collectively, our data suggest that tick EVs alter epidermal immune surveillance by
360	restricting DETC presence and altering cell surface receptor expression, ultimately disrupting
361	epidermal function and promoting hematophagy.

362 By employing a scRNA-seq approach in a mouse model naturally devoid of DETCs, we 363 characterized the epidermal response to tick infestation. We revealed a unique keratinocyte population when EV-deficient ticks fed on DETC-sufficient mice. The absence of this unique cell 364 population when EV-deficient ticks fed on DETC-deficient mice suggested that EVs may alter 365 366 keratinocyte function within the context of intraepithelial $y\delta$ T cells. Sub clustering and 367 pseudotime analysis of keratinocytes further emphasized the distinct nature of this unique population. Remarkably, this subcluster exhibited an overrepresentation of pathways associated 368 369 with the wound healing circuitry, including growth factor, collagen and fibronectin binding, and 370 cell proliferation. Moreover, specific biological signatures were associated with down regulation 371 of AP-1 and upregulation of PI3K transcripts in EV-deficient tick fed on DETC-sufficient mice. 372 These molecular circuits have been linked to epithelial proliferation and maintenance of barrier 373 integrity in the skin epidermis (Angel et al., 2001; Jochum et al., 2001; Li et al., 2003; Matsuura-374 Hachiya et al., 2018).

Consistent with our systems level approach, EV-sufficient ticks fed on DETC-sufficient 375 mice led to a decrease in keratinocyte proliferation. This observation was dependent on the role 376 of DETCs as DETC-deficient mice did not exhibit a decrease in Ki67⁺ keratinocytes. Wound 377 378 healing is marked by keratinocyte proliferation and migration to restore barrier function of the 379 epidermis (Dekoninck & Blanpain, 2019). For instance, proliferation was deemed as a 380 necessary step for proper wound closure at the leading edge in the murine tail (Aragona et al., 381 2017). Conversely, proliferation was judged dispensable for wound closure in the murine ear 382 (Park et al., 2017). Our work was done using the natural site of tick infestation in mammals, the 383 skin of the dorsal neck. Whether proliferation is necessary for migration during a tick bite 384 remains to be determined.

385 KGF serves as a strong mitogenic factor for both mouse and human keratinocytes, and
386 its overexpression can lead to a hyperproliferative state associated with skin disorders (Ni & Lai,
387 2020). Upon damage of the skin, activated DETCs secrete KGF to promote wound repair

388 (Jameson et al., 2002). We observed that tick feeding on mice led to decreased KGF levels 389 compared to the EV-deficient treatment. We also postulated that tick EVs interfered with other components of the wound healing biological program, including PI3K and TGF-β. We observed 390 decreased levels of phosphorylated PI3K during EV-sufficient tick feeding on C57BL/6 mice, 391 392 mirroring the findings from the scRNA-seg studies. Furthermore, we observed an increase in 393 TGF- β release during tick feeding, which correlated to lower Smad7 levels compared to EVdeficient feeding at the bite site. Increased levels of TGF- β in the epidermis have been 394 395 associated with the inhibition keratinocyte proliferation (Sellheyer et al., 1993). Moreover, TGF-B 396 transduction is mediated by SMAD proteins, with Smad7 acting as a negative regulator of the 397 TGF- β signaling network (Schmierer & Hill, 2007). Thus, we suggest that the observed 398 reduction of DETCs during tick feeding may obstruct the necessary levels of KGF and TGF- β in 399 the epidermis during wounding.

400 Extracts from tick salivary glands have shown their capability to impede cellular growth 401 in vitro (Hajnicka et al., 2011). Accordingly, we demonstrated in vivo that tick EVs led to a 402 significant reduction in the frequency of Ki67⁺ keratinocytes. Strikingly, the ability of ticks to impair epithelial cell proliferation was observed in a quantitative-dependent manner. An increase 403 404 in the number of ticks fed simultaneously at a given skin site, resulted in a decrease of proliferative keratinocytes. In sum, this study unveiled the immunomodulatory effects of tick EVs 405 in the epidermal layer, deviating from the established viewpoint that arthropod saliva mainly 406 407 influences dermal responses.

408	Materials and Methods
409	Reagents and resources
410	All primers, reagents, resources, and software used in this study, together with their
411	manufacturer's information and catalog numbers are listed in Supplementary Tables 1 and 3.
412	
413	Ticks
414	I. scapularis nymphs were obtained from two independent sources: (1) Dr. Ulrike
415	Munderloh and Dr. Jonathan Oliver at the University of Minnesota; and the (2) tick rearing
416	facility at Oklahoma State University. A. americanum and D. variabilis nymphs were obtained
417	from the tick rearing facility at Oklahoma State University. Partially engorged I. scapularis adult
418	ticks were obtained from Dr. Albert Mulenga and Dr. Adela Oliva Chavez at Texas A&M
419	University. Upon arrival, ticks were maintained in a Percival I-30BLL incubator at 23°C with 85%
420	relative humidity and a 12/10-hours light/dark photoperiod regimen.
421	
422	Місе
423	Experiments were performed on C57BL/6, FVB/N Jax, and FVB/N Tac mice. Breeding
424	pairs were purchased from the Jackson Laboratory except FVB/N Tac mice, which were
425	purchased from Taconic Biosciences. All mouse strains were bred at the University of Maryland
426	School of Medicine, unless otherwise indicated. Male mice (7–9 weeks) were used for all
427	experiments. All mouse experiments were approved by the Institutional Biosafety (IBC-
428	00002247) and Animal Care and Use (IACUC numbers 0119012 and 1121014) committees at
429	the University of Maryland School of Medicine and complied with the National Institutes of
430	Health (NIH) guidelines (Office of Laboratory Animal Welfare [OLAW] assurance number A3200-
431	01). <i>huLangerin-CreER;Rosa-stop-tdTomato;CX3CR1-GFP*/-;K14-H2B-Cerulean</i> mice used for
432	intravital microscopy imaging were housed at Michigan State University as described elsewhere
433	(Park et al., 2021) (IACUC number PROTO202300065). To activate DETCs, Cytochalasin D

(Sigma-Aldrich, C8273) was delivered topically as previously described (Park et al., 2021).
Briefly, Cytochalasin D was dissolved in a 25 mg/ml stock solution in dimethyl sulfoxide (DMSO),
and later, the stock solution was diluted 100 times in 100% petroleum jelly (Vaseline; final
concentration is 250 µg/ml). One hundred micrograms of the mixture of Cytochalasin D and the
petroleum jelly were spread evenly on the skin once every 24 hours for 2 days. A mixture of
100% DMSO in petroleum jelly (1:100) was used as a vehicle control.

441 **RNA interference**

siRNAs and scRNAs for *vamp33* were designed as previously described (Oliva Chávez
et al., 2021). Both siRNAs and scRNAs were synthesized according to the Silencer® SiRNA
construction kit (Thermo Fisher Scientific). Primers are described in Supplementary Table 1.
Unfed nymphs were microinjected with 60-80 ng of siRNA or scRNA using a Nanoject III
(Drummond Scientific Company). Ticks recovered overnight at 23°C with saturated humidity
before being placed on respective mice.

448

449 **EV-depleted media**

450 L15C300 medium was supplemented with 5% FBS (Millipore-Sigma), 5% tryptose phosphate broth (TPB) (BD), 0.1% lipoprotein concentrate (LPC) (MP Biomedicals), 0.25% 451 sodium bicarbonate (Millipore-Sigma), and 25 mM HEPES (Millipore-Sigma). Media was cleared 452 453 from EVs by ultracentrifugation at 100,000×g for 18 h at 4 °C in a LE-80 ultracentrifuge 454 (Beckman Coulter) with a 60Ti rotor. EV-free media was then passed through a 0.22-µm 455 Millipore Express® PLUS (Millipore-Sigma). The absence of EVs was confirmed by determining 456 the particle size distribution with the NanoSight NS300 (Malvern Panalytical) for nanoparticle tracking analysis (NTA). 457

458

459 Tick salivary gland culture

460 Salivary gland EVs were purified from ex vivo cultures that originated from partially engorged adult female ticks. Adult I. scapularis females were fed on New Zealand white rabbits 461 for 5–6 days at either Dr. Albert Mulenga or Dr. Adela Oliva Chavez laboratories at Texas A&M 462 463 University, as previously described (Oliva Chávez et al., 2021). Then, ticks were shipped to the 464 University of Maryland School of Medicine. Partially-fed adult female ticks (90-120) were dissected 1-2 days post-removal. Briefly, midguts, Malpighian tubes, and other organs were 465 466 removed. PBS was added to samples to avoid desiccation. Salivary glands were dissected and 467 cultured in 24-well cell culture plates (Corning). 10 salivary glands from adult ticks were placed 468 in each well, containing 500 µl of L15C300 EV-free medium supplemented with 1x penicillin/streptomycin (Corning) and 1x Amphotericin B (Gibco). Salivary glands were incubated 469 470 for 24 h at 34 °C to allow EV secretion.

471

472 **EV purification**

Medium collected from salivary gland cultures were cleared of any live cells by 473 centrifugation at 300 × g for 10 minutes at 4 °C. Dead cells were removed by a second 474 475 centrifugation at 2,000 × g for 10 minutes at 4 °C. The supernatant was collected, and apoptotic bodies were removed by a third centrifugation at $10,000 \times q$ for 30 minutes at $10^{\circ}C$. The 476 supernatant was filtered through a 0.22-µm Millipore syringe filter (Millipore-Sigma) to reduce 477 478 the number of EVs >200 nm in size. EVs were pelleted by ultracentrifugation $(100,000 \times g)$ for 479 18 hours at 4 °C. Supernatant was discarded and EVs were resuspended in PBS. EV 480 concentration and sizes were determined using the NanoSight 300 machine (Malvern 481 Panalytical) with the software versions 2.0 or 3.0. The mean of the size generated in the reports 482 was used to calculate the average size of the EVs in each sample. The concentration of 483 proteins in tick EVs was determined using the BCA assay (Thermo Scientific), following the 484 manufacturer's procedure.

485

486 Mouse capsule placement

Capsules made from the upper portion of a snap or screw top tube were adhered to the 487 dorsal neck of each mouse to contain the ticks in one area. This technique is referred to as the 488 489 capsule-feeding method and was adapted from a previous study (Schoeler et al., 1999). Briefly, 490 capsule adhesive solution was made from 3 parts gum rosin (Sigma-Aldrich) and 1 part beeswax (FisherScience). Mice were anesthetized using isoflurane and shaved between the 491 492 shoulder blades to the top of the cranium. Capsules were applied with the warmed adhesive 493 and allowed to dry up for 24 hours prior to tick placement. Capsules were sealed with either a 494 glued piece of mesh or a screw top after tick placement. Naïve groups consisted of capsule 495 placement without ticks.

496

497 Tick feeding experiments

Microinjected ticks were placed on mice using either the free-feeding or capsule-feeding
method and allowed to feed for 3 days. On day 3, ticks were collected, weighed, and either
placed in a humidified chamber for survival analysis or frozen at -80°C for RNA purification. To
purify the mRNA, ticks were flash-frozen in liquid nitrogen and crushed with small plastic
pestles. TRIzol® reagent (200 µl) was added to the crushed tick and RNA was purified using the
PureLink™ RNA mini kit. cDNA was synthesized from 50 to 200 ng (5–10 µl) of RNA using the
Verso cDNA synthesis kit (Thermo scientific).

505

506 **Quantitative reverse transcription polymerase chain reaction (qRT-PCR)**

qRT-PCR was performed to measure gene expression. qRT-PCR was performed with
 the CFX96 Touch Real-Time PCR Detection 233 System (Biorad). No template controls were
 included to verify the absence of primer-dimers formation and/or contamination. Reactions on

each sample and controls were run in duplicate. Gene expression was determined by relative
quantification normalized to the tick *actin*, using the primers listed in Supplementary Table 1.

512

513 Flow cytometry of skin cell populations

514 I. scapularis nymphs fed on C57BL/6, FVB/N Jax, or FVB/N Tac male mice. On the third day of feeding, mice were euthanized with CO₂. A 10- or 5-mm skin punch biopsy was taken 515 while ticks were still attached. Skin samples from un-infested control mice were collected from 516 517 matching locations. Single cell suspensions were prepared from each skin sample. Briefly, skin 518 samples were cut into small pieces with sterile surgical scissors and placed into round-bottom tubes containing digestion buffer consisting of 90% RPMI-1640 (Quality Biological), 10% 519 520 Liberase[™] TL Research Grade (Roche), and 0.1% DNAse I (Millipore-Sigma). Digestions were 521 carried out for 1 hour and 15 minutes at 37°C with constant shaking. Single cell suspensions 522 were obtained by passing the digested tissues through a 40-µm cell strainer (Corning), 523 homogenizing the tissue with a plunger and flushing cells with wash buffer consisting of PBS and 2 mM EDTA. Cells were centrifuged at 300 x g for 5 minutes at 4 °C, resuspended in 1 ml 524 FACS buffer (PBS containing 1% BSA, 2 mM EDTA, and 0.05% NaN3) or FACS intracellular 525 526 buffer (PBS containing 1% BSA and 0.05% NaN3). Cell suspensions were placed into a 96-well U-bottom plate and stained with respective antibody panels. 527

Live and dead cells were discriminated using Zombie Violet Fixable Live Dead stain 528 529 (BioLegend). Cells were washed with FACS buffer. Cells were then blocked with anti-FcR 530 (CD16-CD32) (BioLegend 156603), and subsequently stained with the respective antibody 531 panel for 15 minutes at 4°C and washed with FACS buffer. Whenever appropriate, anti-rat IgM was added to the cells, incubated for 15 minutes at 4°C, and washed twice with the FACS 532 buffer. Finally, cells were resuspended in 4% paraformaldehyde. For intracellular staining, cells 533 534 were further processed following the instructions for the BioLegend's FOXP3 Fix/Perm Buffer Set kit. Cells were measured with a LSRII flow cytometer (BD) at the Flow & Mass Cytometry 535

Facility at the University of Maryland School of Medicine. Analysis was performed using theFlowJo software.

DETC populations in the murine skin were labeled with APC anti-CD45 (BioLegend 538 103111) or PE/Cyanine7 anti-CD45 (BioLegend 103114), FITC anti-CD3 (BioLegend 100203), 539 540 BV60 anti-Vy5 (BD 743241), APC anti-Thy1.2 (BioLegend 105312), and/or monoclonal antibody 17D1 (kindly provided by Dr. Adrian Hayday, King's College London, and Dr. Robert Tigelaar, 541 Yale University), and PE mouse anti-rat IgM (BD 553888). DETC costimulatory markers were 542 543 measured with PE anti-JAML (BioLegend 128503), BV711 anti-CD100 (BD 745492), 544 PE/Cyanine5 anti-CD44 (BioLegend 103010), APC/Cyanine7 anti-CD25 (BioLegend 102026), PerCP/Cyanine5.5 anti-CD69 (BioLegend 104522), and APC anti-CD314 (BioLegend 130212). 545 Keratinocyte populations in the murine skin were labeled with BV711 anti-CD324 (BioLegend 546 547 118233), PE anti-CD200 (BioLegend 123807), PE/Cyanine5 anti-CD34 (BioLegend 119312), 548 BV605 Sca1 (BioLegend 108133), and/or PE anti-CD49f (BioLegend 313612). Keratinocyte proliferation was labeled with the Alexa Fluor 700 anti-Ki-67 (BioLegend 652420). Smad7 was 549 550 labeled with the anti-MADH7/SMAD7 polyclonal antibody (Abcam ab216428) and Alexa Fluor 405 goat anti-Rabbit IgG secondary antibody (Thermo Fischer Scientific A-31556). 551 552

553 Enzyme-linked immunosorbent assay

To determine levels of KGF, 5 mm skin biopsies were placed in 200µL of RPMI media tissue bath for one hour shaking at 32°C (150 revolutions per minute). KGF levels in tissue bath supernatant were determined using the R&D Systems KGF/FGF-7 Quantikine ELISA kit according to manufacturer instructions. To determine levels of TGF- β , 5mm skin biopsies were homogenized in lysis buffer containing 1X RIPA buffer (catalogue number 20-188, Millipore) with 1X protease-phosphatase inhibitor cocktail (catalogue number 78420, Thermo Scientific). TGF- β levels in tissue supernatant were determined using the R&D Systems TGF- β 1 Quantikine

ELISA kit according to manufacturer instructions. Total protein in samples was determined using
 the Pierce BCA Protein Assay Kit (catalogue number 23227 Thermo Scientific). Sample
 concentration of KGF/TGF-β were normalized to the total protein in a sample.
 Intravital microscopy

Epidermal intravital imaging studies were done in collaboration with Dr. Sangbum Park at Michigan State University. All *in vivo* imaging and analysis were performed, as described previously (Park et al., 2021). Simultaneous visualization of Langerhans cells, DETCs and epithelial cells was achieved by utilizing the *huLangerin-CreER;Rosa-stop-tdTomato;CX3CR1-* $GFP^{+/-}$;*K14-H2B-Cerulean* mice.

571

572 Epidermal single-cell isolation, scRNA-seq library preparation and sequencing

573 I. scapularis nymphs were microinjected with vamp33 si or vamp33 sc and fed on FVB/N Jax or FVB/N Tac mice. On the third day of feeding, mice were euthanized with CO₂. Partially 574 fed ticks were removed and the sites where ticks bit were shaved followed by an application of a 575 light layer of Nair depilatory lotion. A total of three 5-mm skin punch biopsies were obtained from 576 577 the dorsal neck for each mouse. 5-mm skin punch biopsies were obtained from the same physiological site of naïve mice. Skin samples were incubated in dispase solution (4 U/mL 578 dispase, 5mM MgCl2, and 0.4mM CaCl2 in PBS) for 2.5 hours at 37°C with constant 579 580 shaking/stirring. Epidermal sheets were separated from the dermal layer using forceps. 581 Epidermal sheets were then incubated in a digestion solution (2.5mg/mL collagenase D and 582 0.2mg/mL DNase in RPMI Medium) for 1 hour at 37°C with constant shaking/stirring. 583 Cells were resuspended using a wide-bore pipette tip and three samples per treatment per mouse were combined. Samples were passed through a 40 µM cell strainer and washed 584 585 with RPMI +10% FBS. Cells were counted using the Countess II FL Automated Cell Counter, stained with 5 µl of 7-AAD per million cells, and incubated in the dark for 10 minutes at 4°C. 586

Samples were then sorted at the CIBR Flow Cytometry Core Facility at the University of Maryland School of Medicine. Cells were sorted into a PBS in the absence of calcium and magnesium + 10% FBS collection buffer. They were then transported on ice to the Institute of Genome Sciences at the University of Maryland School of Medicine for library preparation and sequencing. Single cell libraries were generated with the 3' NextGEM v3.1 kit targeting 3800-5000 cells. Libraries were sequenced with a NovaSeq 6000, S2 flowcell targeting 375M read pairs per sample.

594

595 **Bioinformatics**

All scRNA-seq reads were processed and mapped to the mouse mm10 reference 596 597 genome using 10X Genomics' Cell Ranger software. Approximately 20,640 total cells were profiled with 88,027 mean reads per cell across all conditions. A count matrix (gene-by-cell) 598 599 generated by cell ranger count for each library was then aggregated into a single count matrix. 600 Expression matrices were generated using the Bioconductor packages scater (v1.22.0) (Lun, 601 McCarthy, et al., 2016) and scran (v1.22.1) (Lun, Bach, et al., 2016). Cells with less than 2,500 or greater than 60,000 UMIs were removed after calculating cell metrics using scater (v1.22.0). 602 603 DoubletFinder (v2.0.1) (McGinnis et al., 2019) was applied removing 1,364 cells, which yielded a total of 10,715 cells. The remaining transcriptomes were normalized by first calculating size 604 factors via the scran functions quickCluster and computeSumFactors. Then, we computed 605 606 normalized counts for each cell with logNormCounts function in scran (v1.22.1).

For downstream analysis, highly variable genes were selected using getTopHVGs before performing the Principal Component Analysis (PCA) and the tSNE projection. Clustering was conducted using kmeans function based on the calculated tSNE. Differential gene expression between clusters was calculated using find Markers function. Only identified epidermal cells of interest (Keratinocytes, T cells, and APCs) were further analyzed, resulting in a total of 5,172 cells with a median UMI count of 13,910 per cell. For pseudotime analysis, the Bioconductor

613 matrix was imported into slingshot (v2.2.1) (Street et al., 2018). To compare the T cell receptor 614 delta variable 4 (Trdv4) expression, normalized counts were used for visualization by the violin plot. The permutation test was applied to calculate the significance of the difference in the mean 615 expression between two groups. A list of differentially expressed keratinocyte genes between 616 617 treatments was generated by MAST (v1.24.0) (Finak et al., 2015) with significance testing under the Hurdle model for downstream analysis by the IPA. 618 619 620 Gene set enrichment analysis 621 Gene set enrichment analysis was performed using DAVID, version 2021. Default DAVID

622 parameters were employed and included the following categories for the enrichment analysis:

623 GOTERM_BP_DIRECT, GOTERM_CC_DIRECT and GOTERM_MF_DIRECT (from

624 Gene_Ontology), KEGG_PATHWAY (from Pathways) and INTERPRO (from Protein_Domains).

p value and FDR< 0.05 were set as a threshold.

626

627 Ingenuity pathway analysis

Differentially expressed keratinocyte genes from the following samples were analyzed in 628 629 the IPA as independent datasets: 1) FVB-Tac Naïve versus FVB-Jax Naïve 2) FVB-Jax siV33 versus FVB-Jax scV33 and 3) FVB-Tac siV33 versus FVB-Tac scV33. Genes were considered 630 differentially expressed if the p value and FDR were < 0.05. Dataset input criteria for the IPA 631 632 included expression, p value, log ratio, FDR, and Ensemble ID codes. All datasets were 633 examined for canonical pathway and upstream regulator analysis. FVB-Tac Naïve versus FVB-634 Jax Naïve dataset had 591 IDs, including 589 mapped and 2 unmapped IDs. FVB-Jax siV33 635 versus FVB-Jax scV33 dataset had 1207 IDs, including 1204 mapped and 3 unmapped IDs. FVB-Tac siV33 versus FVB-Tac scV33 had 732 IDs, including 728 mapped and 4 unmapped 636 637 IDs. The IPA proprietary algorithm segments the network map between molecules into multiple networks and assigns scores for each network as described previously (Calvano et al., 2005). 638

639 For the canonical pathway analysis, $-\log (P-value) > 2$ was taken as threshold and for the 640 upstream regulator analysis, the p value of overlap <0.05 was set as the threshold. A positive Zscore was defined as the predicted activation, and a negative Z-score was defined as the 641 predicted inhibition. 642 643 **Statistical analysis** 644 Statistical significance was assessed as follows: percent tick attachment was calculated 645 646 by the Fisher's exact test, tick weight by the t test or the Mann Whitney test, and survival curve 647 by the Log-rank (Mantel-Cox) test. One-way ANOVA followed by Tukey's post hoc test for multiple comparisons was also used. Kruskal-Wallis ANOVA was implemented if the dataset 648

- 649 failed normality of residuals or displayed heterogeneity of variance. We used GraphPad
- 650 PRISM® (version 9.1.0) for all statistical analyses. Outliers were detected by a GraphPad
- 651 Quickcals program (https://www.graphpad.com/quickcalcs/Grubbs1.cfm). *p* values of < 0.05
- 652 were considered statistically significant.

653

65	4
----	---

Acknowledgements

655	We acknowledge members of the Pedra laboratory for providing insightful discussions.
656	We thank the rearing facility at Oklahoma State University for providing I. scapularis, A.
657	americanum, and D. variabilis ticks; Xiaoxuan Fan, Bryan Hahn, Regina Harley, and Sean
658	McGill (University of Maryland School of Medicine) for flow cytometry and sorting assistance;
659	Adrian Hayday (King's College London) and Robert Tigelaar (Yale University) for the
660	monoclonal antibody 17D1; the Maryland Genomics Core at the Institute for Genome Sciences,
661	University of Maryland School of Medicine for the services provided in next generation
662	sequencing; the University of Maryland Greenebaum Comprehensive Cancer Center Flow
663	Cytometry Shared Service core facility and the Flow & Mass Cytometry Facility at the University
664	of Maryland School of Medicine for flow cytometry services; Cristiana Cairo, Nevil Singh,
665	Nicholas Carbonetti (University of Maryland School of Medicine) and Jere McBride (University of
666	Texas Medical Branch) for insightful advice. This work was supported by grants from the NIH to
667	F31AI152215 (AJO), F31AI167471 (LRB), R01AI134696 (JHFP), R01AI116523 (JHFP),
668	P01AI138949 (JHFP), T32AI162579 (HJL-Y), R01AR083086 (SP), the United States
669	Department of Agriculture, National Institute of Food and Agriculture (USDA-NIFA) Hatch-
670	Multistate Project to TEX0-1-7714 (AOC), and the Knipling-Bushland-Swahrf fellowship from the
671	Department of Entomology at Texas A&M University (BL-G). The content is solely the
672	responsibility of the authors and does not represent the official views of the NIH, the Department
673	of Health and Human Services, the USDA-NIFA or the United States government.

674

675	Data and Code Availability
676	All scRNA sequences are deposited into the NCBI Sequence Read Archive under the
677	BioProject accession PRJNA905677. R codes for scRNA sequencing datasets were adapted
678	from https://bioconductor.org/books/3.16/OSCA/ and specified R package vignettes. Tokens can
679	be made available upon request.
680	
681	Resource Availability
682	Further information and request for resources and reagents should be directed to and
683	will be honored by the corresponding author: Joao HF Pedra (jpedra@som.umaryland.edu)
684	
685	Author contributions
686	LM and JHFP designed the study. LM and LMV performed the experiments. HNB, HJL-Y
687	and AR performed computational analysis. AJO, LRB, CRF, ADS-S, DMR, MTM, SS, NS, and
688	FECP aided with experimentation. EBC, T-TN, BL-G, ASOC, AM, UGM and JDO provided ticks.
689	LM, LV and JHFP wrote the manuscript. LRB created illustrations. JMJ, SP, and DS supervised
690	experiments and/or provided resources and guidance. JHFP supervised the study. All authors
691	analyzed the data, provided intellectual input into the study, and contributed to editing of the
692	manuscript.

694	Figure Legends
695	Figure 1: Tick EVs affect hematophagy and survival. (A) Graphical illustration of
696	experimental design. (B-M) Vamp33 siRNA (siV33) (red) or vamp33 scramble control (scV33)
697	(blue) microinjected nymphs were placed on C57BL/6 mice and allowed to feed for 3 days. On
698	day 3, ticks were harvested and assessed for fitness measurements. Efficiency of Vamp33
699	silencing and tick attachment, weight, and survival curves for (B-E) I. scapularis, (F-I) A.
700	americanum and (J-M) D. variabilis. Graphs represent at least three independent experiments
701	combined. Statistical significance shown as * <i>p</i> <0.05, ** <i>p</i> <0.01, ns = not significant was
702	assessed by t test (B, F, J); Fisher's exact test (C, G, K); Mann Whitney test (D, H, L); and Log-
703	rank (Mantel-Cox) test (E, I, M) .
704	
705	Figure 2: Tick EVs alter epidermal immune surveillance. (A) Schematic representation of
706	the DETC-keratinocyte crosstalk at the skin epidermis. (B-F, H) <i>I. scapularis scV33</i> (blue) or
707	<i>siV33</i> (red) ticks were placed on C57BL/6 mice and allowed to feed for 3 days. On day 3,
708	biopsies were taken from the skin at the bite site and compared to the naïve treatment (gray).
709	(B) DETC (Vγ5), (C) JAML, (D) NKG2D, (E) CD69, (F) CD25, and (H) CD100 cells were
710	assessed by flow cytometry. Graphs represent 1 of 3 independent experiments. (G) Epidermis
711	containing Langerhans cells (red), DETCs (green), and keratinocytes (white) imaged on day 3
712	after injection with phosphate buffered saline (PBS - mock) or EV ($4x10^7$ particles) into the
713	mouse ear. Cytochalasin D (100 $\mu g)$ was applied topically on the mouse ear every 24 hours for
714	2 days to induce DETC rounding as a positive control. Langerhans cells, DETCs and epithelial
715	cells were simultaneously visualized in the huLangerin-CreER; Rosa-stop-tdTomato; CX3CR1-
716	GFP ^{+/-} ; K14-H2B-Cerulean mouse strain. Cre expression was induced with an intraperitoneal
717	injection of tamoxifen (2 mg). Images from one out of three independent experiments. Statistical
718	significance shown as * p <0.05, ns = not significant. Data are presented as a mean with

standard deviation. Significance was measured by One-way ANOVA followed by Tukey's *post hoc* test.

721

722 Figure 3: Epidermally-enriched scRNA-seq of the tick bite site. (A) Overview of the 723 experimental design. ScV33 and siV33 I. scapularis nymphs were placed on FVB-Jackson 724 (FVB-Jax) or FVB-Taconic (FVB-Tac) mice and fed for 3 days. Skin biopsies at the bite site were digested with dispase and collagenase for epidermal cell isolation. Cells were sorted and 725 726 prepared for scRNA-seq. (B) Composite tSNE plot of keratinocyte, T cell and antigen presenting 727 cells in FVB-Jax and FVB-Tac mice in the presence or absence of *I. scapularis* nymphs 728 microinjected with scV33 or siV33. tSNE plot represents 5,172 total cells following filtration as 729 described in the materials and methods. (C) Heatmap depicting expression of the top 5 marker 730 genes present in clusters from the epidermally enriched tSNE plot clusters (as shown in B). (D-731 I) Individual tSNE plots separated by mouse strain (FVB-Jax or FVB-Tac) in the presence or 732 absence of *I. scapularis* nymphs microinjected with scV33 or siV33. 733 734 Figure 4: Impact of tick EVs on wound healing circuitry. (A) Composite tSNE plot of 735 keratinocytes in FVB-Jax and FVB-Tac mice in the presence or absence of *I. scapularis* nymphs

microinjected with *scV33* or *siV33*. (B) Cells colored by clusters originated from the keratinocyte
tSNE plot (as shown in A) ordered across pseudotime (x-axis) for naïve, *scV33*-, and *siV33*-tick
bites of FVB-Jax and FVB-Tac mice. (C) Dot plot of the top 5 marker genes present in the

739 keratinocyte clusters (as shown in **A**). Average gene expression is demarked by the intensity of

color. Percent of gene expression within individual clusters is represented by the dot diameter.

(**D**) Expression of *Col1a1* across treatments ordered across pseudotime (x-axis) for naïve,

scV33-, and siV33-tick bites of FVB-Jax and FVB-Tac mice. (E) Enriched pathways in the

unidentified cell cluster based on functional annotation in DAVID. Fold enrichment is indicated in

a Log2 scale. **p* value and false discovery rate (FDR)<0.05 were set as threshold. KEGG, GO

745 and InterPro were used as reference annotation databases. (F) Ingenuity pathway analysis comparing keratinocytes of skin biopsies from FVB-Jax siV33 to FVB-Jax scV33. Blue denotes 746 747 pathways predicted to be inhibited (negative z-score) whereas orange indicates pathways predicted to be activated (positive z-score) based on default parameters. Differential expression 748 749 datasets were assessed for canonical pathway analysis. Results are shown in a -log (p-value) 750 scale. *p value and FDR< 0.05 were set as threshold. (G) Volcano plot of genes representing 751 the wound healing signaling pathway in keratinocytes of FVB-Jax siV33 compared to FVB-Jax 752 scV33 datasets (highlighted in yellow; F). Blue denotes decrease whereas red indicates increase in the coefficient (coef) of expression. 753

754

755 Figure 5: Tick EVs impact keratinocyte proliferation. (A) Ingenuity pathway analysis derived from siV33 compared to the bite of scV33 ticks on FVB-Jax or FVB-Tac mice. Canonical 756 757 pathways predicted to be inhibited (blue, negative z-score) or activated (orange, positive z-758 score) based on differential expression profile. The solid line indicates the p value significance 759 threshold of 0.05 (-log=1.3). (B) The signaling cascade of EIF2 (highlighted in yellow, A), yielding (\rightarrow) or inhibitory ($\frac{1}{2}$) arrows. Orange indicates activation whereas blue shows inhibition 760 according to the IPA prediction. Gene expression based on the scRNA-seg experiment is 761 762 indicated in red (increased) or green (decreased). Gray – denotes no expression or prediction. 763 (C) ScV33 (circle) or siV33 (square) injected *I. scapularis* nymphs were fed on FVB-Jax (white) 764 or FVB-Tac (gray) mice for 3 days. Biopsies were taken from the skin at the bite site and 765 assessed for EpCAM⁺ Ki67⁺ keratinocytes by flow cytometry. (D-H) ScV33 or siV33 ticks fed on 766 C57BL/6 mice for 3 days. Biopsies were taken from the skin at the bite site and processed for 767 flow cytometry analysis. (D) PI3K p85⁺, and (E) phospho-PI3K p85/p55⁺. (F) ELISA analysis of 768 KGF levels normalized to total protein per 5 mm skin punch biopsy. (G) ELISA analysis of TGFβ levels normalized to total protein per 5 mm skin punch biopsy. (H) EpCAM⁺ Smad7⁺ 769 keratinocytes assessed by flow cytometry. (I) EpCAM⁺ Ki67⁺ keratinocytes assessed by flow 770

- cytometry. Graph displays proliferation changes within the *scV33* or *siV33* treatments compared
- to the naïve skin. (C-I) Significance was measured by One-way ANOVA followed by Tukey's
- post hoc test. (J-K) Flow cytometry histogram plots of EpCAM⁺ Ki67⁺ keratinocytes. (J) scV33
- or (K) *siV*33 treatments displayed according to the number of ticks bitten per biopsy. X-axis
- shows fluorescence intensity, and the Y-axis indicates the count of events in the fluorescence
- channel. All experiments have statistical significance shown as ***p<0.001, **p<0.01, *p<0.05,
- ns = not significant. Data are presented as a mean with standard deviation.

778	Supplementary Figure Legends
779	Supplementary Figure 1: DETC flow cytometry gating strategy. 5 mm skin punch biopsies
780	were obtained from the bite of ticks and compared to the naïve skin followed by flow cytometry
781	analysis. Representative flow cytometry plots were gated for (A) DETCs (Vy5 ⁺) and (B) DETC
782	co-receptors (JAML ⁺ , NKG2D ⁺ , CD25 ⁺ , CD69 ⁺ , CD100 ⁺ or CD44 ⁺).
783	
784	Supplementary Figure 2: ScRNA-seq data filtration. Composite datasets of FVB-Jax and
785	FVB-Tac samples included 20,640 cells (A) before filtration by scran (R package). (B) tSNE plot
786	of fixed threshold filtration, set to 2500-60,000 UMIs. (C) Doublet finder (R package) of dataset.
787	tSNE was colored by the doublet score. (D) tSNE plot after fixed threshold filtration and doublet
788	finder analysis.
789	
790	Supplementary Figure 3: Expression of keratinocyte-specific markers. (A) Graphical
791	illustration of keratinocyte stratified layers with select marker genes. tSNE of keratinocyte
792	clusters depicting gene expression of (B) Krt14, (C) Krt5, (D) Krt1, (E) Krt10 and (F) IvI.
793	
794	Supplementary Figure 4: Expression of hair follicle-specific markers. (A) Graphical
795	illustration of hair follicle microanatomy with select marker genes. tSNE of keratinocyte clusters
796	depicting gene expression of (B) Shh, (C) Krt75, (D) Lgr5, (E) Mgst1 and (F) Krt79.
797	
798	Supplementary Figure 5: Epidermal cell type characterization. Cluster frequency of
799	keratinocytes, antigen presenting and T cells in (A) FVB-Jax and (B) FVB-Tac mice in the
800	presence or absence of <i>I. scapularis</i> nymphs microinjected with <i>scV</i> 33 or <i>siV</i> 33. (C) Violin plot
801	displaying the expression of the TCR-V δ 1 gene, <i>Trdv4</i> , in the epidermal T cell cluster of naïve
802	FVB-Jax and FVB-Tac mice. Significance shown as $p<0.05$ based on a permutation test using
803	R statistical packages.

804

805	Supplementary Figure 6: Keratinocyte-specific markers along pseudotime trajectory. (A)
806	Krt14, (B) Krt1, and (C) IvI gene expression along pseudotime values (x axis) for naïve, scV33-,
807	or <i>siV</i> 33-tick bites on FVB-Jax or FVB-Tac mice. Cells colored by clusters from keratinocyte
808	tSNE plot (as shown in Figure 4D) ordered across the pseudotime (x-axis).
809	
810	Supplementary Figure 7: Individual tSNE plots of keratinocyte clusters. Subclustering
811	analysis of keratinocytes across samples: (A) FVB-Jax, (B) FVB-Jax scV33, (C) FVB-Jax siV33,
812	(D) FVB-Tac, (E) FVB-Tac scV33, and (F) FVB-Tac siV33.
813	
814	Supplementary Figure 8: Flow cytometry gating strategy in keratinocytes. 5 mm punch
815	biopsies were obtained from the bite site of ticks or naïve skin and processed for flow cytometry.
816	Representative flow cytometry plots were gated for (A) EpCAM ⁺ keratinocytes, (B) Ki67 ⁺ , (C)

817 Anti-rabbit IgG⁺ for PI3K and Smad7, and **(D)** p-PI3K⁺ keratinocytes.

818	References
819	Allen, J. R., Khalil, H. M., & Wikel, S. K. (1979). Langerhans cells trap tick salivary gland
820	antigens in tick-resistant guinea pigs. <i>J Immunol</i> , 122 (2), 563-565.
821	Angel, P., Szabowski, A., & Schorpp-Kistner, M. (2001). Function and regulation of AP-1
822	subunits in skin physiology and pathology. Oncogene, 20 (19), 2413-2423.
823	https://doi.org/10.1038/sj.onc.1204380
824	Aragona, M., Dekoninck, S., Rulands, S., Lenglez, S., Mascre, G., Simons, B. D., & Blanpain, C.
825	(2017). Defining stem cell dynamics and migration during wound healing in mouse skin
826	epidermis. Nat Commun, 8, 14684. https://doi.org/10.1038/ncomms14684
827	Bakshi, M., Kim, T. K., Porter, L., Mwangi, W., & Mulenga, A. (2019). Amblyomma americanum
828	ticks utilizes countervailing pro and anti-inflammatory proteins to evade host defense. PLoS
829	<i>Pathog</i> , <i>15</i> (11), e1008128. https://doi.org/10.1371/journal.ppat.1008128
830	Barbee, S. D., Woodward, M. J., Turchinovich, G., Mention, J. J., Lewis, J. M., Boyden, L. M.,
831	Lifton, R. P., Tigelaar, R., & Hayday, A. C. (2011). Skint-1 is a highly specific, unique selecting
832	component for epidermal T cells. Proc Natl Acad Sci U S A, 108 (8), 3330-3335.
833	https://doi.org/10.1073/pnas.1010890108
834	Bártolo, I., Reis, R. L., Marques, A. P., & Cerqueira, M. T. (2022). Keratinocyte growth factor-
835	based strategies for wound re-epithelialization. <i>Tissue Eng Part B Rev</i> , 28 (3), 665-676.
836	https://doi.org/10.1089/ten.TEB.2021.0030
837	Bernard, Q., Grillon, A., Lenormand, C., Ehret-Sabatier, L., & Boulanger, N. (2020). Skin
838	interface, a key player for Borrelia multiplication and persistence in Lyme borreliosis. Trends
839	<i>in Parasitology</i> , <i>36</i> (3), 304-314. https://doi.org/https://doi.org/10.1016/j.pt.2019.12.017
840	Boyden, L. M., Lewis, J. M., Barbee, S. D., Bas, A., Girardi, M., Hayday, A. C., Tigelaar, R. E., &
841	Lifton, R. P. (2008). Skint1, the prototype of a newly identified immunoglobulin superfamily
842	gene cluster, positively selects epidermal gammadelta T cells. Nat Genet, 40 (5), 656-662.

843 https://doi.org/10.1038/ng.108

- Calautti, E., Li, J., Saoncella, S., Brissette, J. L., & Goetinck, P. F. (2005). Phosphoinositide 3-
- kinase signaling to Akt promotes keratinocyte differentiation versus death. J Biol Chem, 280

846 (38), 32856-32865. https://doi.org/10.1074/jbc.M506119200

- Calvano, S. E., Xiao, W., Richards, D. R., Felciano, R. M., Baker, H. V., Cho, R. J., Chen, R. O.,
- Brownstein, B. H., Cobb, J. P., Tschoeke, S. K., Miller-Graziano, C., Moldawer, L. L.,
- Mindrinos, M. N., Davis, R. W., Tompkins, R. G., Lowry, S. F., Inflamm, & host response to
- injury large scale collab. research program. (2005). A network-based analysis of systemic
- inflammation in humans. *Nature*, *4*37 (7061), 1032-1037.
- 852 https://doi.org/10.1038/nature03985
- Chen, G., Wang, X., Severo, M. S., Sakhon, O. S., Sohail, M., Brown, L. J., Sircar, M., Snyder,
- G. A., Sundberg, E. J., Ulland, T. K., Olivier, A. K., Andersen, J. F., Zhou, Y., Shi, G. P.,
- 855 Sutterwala, F. S., Kotsyfakis, M., & Pedra, J. H. (2014). The tick salivary protein sialostatin L2
- inhibits caspase-1-mediated inflammation during *Anaplasma phagocytophilum* infection.

857 Infect Immun, 82 (6), 2553-2564. https://doi.org/10.1128/IAI.01679-14

- ⁸⁵⁸ Dekoninck, S., & Blanpain, C. (2019). Stem cell dynamics, migration and plasticity during wound
- healing. Nat Cell Biol, 21 (1), 18-24. https://doi.org/10.1038/s41556-018-0237-6
- Dickinson, R. G., O'Hagan, J. E., Schotz, M., Binnington, K. C., & Hegarty, M. P. (1976).
- Prostaglandin in the saliva of the cattle tick *Boophilus microplus*. Aust J Exp Biol Med Sci, 54
- 862 (5), 475-486. https://doi.org/10.1038/icb.1976.48
- Eisen, L. (2022). Tick species infesting humans in the United States. *Ticks and tick-borne*
- *diseases*, *13* (6), 102025. https://doi.org/https://doi.org/10.1016/j.ttbdis.2022.102025
- 865 Esteves, E., Maruyama, S. R., Kawahara, R., Fujita, A., Martins, L. A., Righi, A. A., Costa, F. B.,
- Palmisano, G., Labruna, M. B., Sá-Nunes, A., Ribeiro, J. M. C., & Fogaça, A. C. (2017).
- 867 Analysis of the salivary gland transcriptome of unfed and partially fed *Amblyomma sculptum*
- ticks and descriptive proteome of the saliva. *Frontiers in Cellular and Infection Microbiology*,
- 869 7, 476. https://doi.org/10.3389/fcimb.2017.00476

- 870 Eyerich, S., Eyerich, K., Traidl-Hoffmann, C., & Biedermann, T. (2018). Cutaneous barriers and
- skin immunity: differentiating a connected network. *Trends Immunol*, 39 (4), 315-327.

872 https://doi.org/10.1016/j.it.2018.02.004

- Finak, G., McDavid, A., Yajima, M., Deng, J., Gersuk, V., Shalek, A. K., Slichter, C. K., Miller, H.
- W., McElrath, M. J., Prlic, M., Linsley, P. S., & Gottardo, R. (2015). MAST: a flexible statistical
- 875 framework for assessing transcriptional changes and characterizing heterogeneity in single-
- cell RNA sequencing data. *Genome Biol*, *16*, 278. https://doi.org/10.1186/s13059-015-0844-5
- 877 Francischetti, I. M., Sa-Nunes, A., Mans, B. J., Santos, I. M., & Ribeiro, J. M. (2009). The role of
- saliva in tick feeding. *Front Biosci*, *14* (6), 2051-2088. https://doi.org/10.2741/3363
- 879 Fuchs, E. (1993). Epidermal differentiation and keratin gene expression. Journal of Cell
- 880 Science, 1993, 197-208. https://doi.org/10.1242/jcs.1993.Supplement_17.28
- Girardi, M., Oppenheim, D. E., Steele, C. R., Lewis, J. M., Glusac, E., Filler, R., Hobby, P.,
- 882 Sutton, B., Tigelaar, R. E., & Hayday, A. C. (2001). Regulation of cutaneous malignancy by
- 883 γδ T cells. *Science*, *294* (5542), 605-609. https://doi.org/doi:10.1126/science.1063916
- Glatz, M., Means, T., Haas, J., Steere, A. C., & Mullegger, R. R. (2017). Characterization of the
- early local immune response to *Ixodes ricinus* tick bites in human skin. *Exp Dermatol*, 26 (3),
- 886 263-269. https://doi.org/10.1111/exd.13207
- Hajnicka, V., Vancova-Stibraniova, I., Slovak, M., Kocakova, P., & Nuttall, P. A. (2011). Ixodid
- tick salivary gland products target host wound healing growth factors. Int J Parasitol, 41 (2),
- 213-223. https://doi.org/10.1016/j.ijpara.2010.09.005
- 890 Havran, W. L., Chien, Y. H., & Allison, J. P. (1991). Recognition of self antigens by skin-derived T
- cells with invariant gamma delta antigen receptors. *Science*, *252* (5011), 1430-1432.
- 892 https://doi.org/10.1126/science.1828619
- Jameson, J., Ugarte, K., Chen, N., Yachi, P., Fuchs, E., Boismenu, R., & Havran, W. L. (2002). A
- role for skin gammadelta T cells in wound repair. *Science*, 296 (5568), 747-749.
- 895 https://doi.org/10.1126/science.1069639

- Jameson, J. M., Cauvi, G., Witherden, D. A., & Havran, W. L. (2004). A keratinocyte-responsive
- 897 γδ TCR is necessary for dendritic epidermal T cell activation by damaged keratinocytes and
- maintenance in the epidermis. *The Journal of Immunology*, *172* (6), 3573-3579.
- 899 https://doi.org/10.4049/jimmunol.172.6.3573
- Jochum, W., Passegué, E., & Wagner, E. F. (2001). AP-1 in mouse development and
- 901 tumorigenesis. Oncogene, 20 (19), 2401-2412. https://doi.org/10.1038/sj.onc.1204389
- Joost, S., Annusver, K., Jacob, T., Sun, X., Dalessandri, T., Sivan, U., Sequeira, I., Sandberg,
- 903 R., & Kasper, M. (2020). The molecular anatomy of mouse skin during hair growth and rest.
- 904 *Cell Stem Cell*, 26 (3), 441-457.e447. https://doi.org/10.1016/j.stem.2020.01.012
- Joost, S., Jacob, T., Sun, X., Annusver, K., La Manno, G., Sur, I., & Kasper, M. (2018). Single-
- cell transcriptomics of traced epidermal and hair follicle stem cells reveals rapid adaptations
- 907 during wound healing. *Cell Rep*, 25 (3), 585-597.e587.
- 908 https://doi.org/10.1016/j.celrep.2018.09.059
- Joost, S., Zeisel, A., Jacob, T., Sun, X., La Manno, G., Lönnerberg, P., Linnarsson, S., & Kasper,
- 910 M. (2016). Single-cell transcriptomics reveals that differentiation and spatial signatures shape
- 911 epidermal and hair follicle heterogeneity. *Cell Syst*, 3 (3), 221-237.e229.
- 912 https://doi.org/10.1016/j.cels.2016.08.010
- Kabashima, K., Honda, T., Ginhoux, F., & Egawa, G. (2019). The immunological anatomy of the
- skin. *Nature Reviews Immunology*, *19* (1), 19-30. https://doi.org/10.1038/s41577-018-0084-5
- 915 Karim, S., & Ribeiro, J. M. (2015). An insight into the sialome of the lone star tick, Amblyomma
- 916 *americanum*, with a glimpse on its time dependent gene expression. *PLoS One*, *10* (7),
- 917 e0131292. https://doi.org/10.1371/journal.pone.0131292
- Kazimirova, M., & Stibraniova, I. (2013). Tick salivary compounds: their role in modulation of
- host defences and pathogen transmission. *Front Cell Infect Microbiol*, *3*, 43.
- 920 https://doi.org/10.3389/fcimb.2013.00043

921	Keyes, B. E., Liu, S., Asare, A., Naik, S., Levorse, J., Polak, L., Lu, C. P., Nikolova, M., Pasolli,
922	H. A., & Fuchs, E. (2016). Impaired epidermal to dendritic T cell signaling slows wound repair
923	in aged skin. <i>Cell</i> , <i>1</i> 67 (5), 1323-1338.e1314. https://doi.org/10.1016/j.cell.2016.10.052
924	Kotal, J., Langhansova, H., Lieskovska, J., Andersen, J. F., Francischetti, I. M., Chavakis, T.,
925	Kopecky, J., Pedra, J. H., Kotsyfakis, M., & Chmelar, J. (2015). Modulation of host immunity
926	by tick saliva. <i>J Proteomics</i> , 128, 58-68. https://doi.org/10.1016/j.jprot.2015.07.005
927	Kotsyfakis, M., Horka, H., Salat, J., & Andersen, J. F. (2010). The crystal structures of two
928	salivary cystatins from the tick <i>Ixodes scapularis</i> and the effect of these inhibitors on the
929	establishment of Borrelia burgdorferi infection in a murine model. Mol Microbiol, 77 (2), 456-
930	470. https://doi.org/10.1111/j.1365-2958.2010.07220.x
931	Kotsyfakis, M., Karim, S., Andersen, J. F., Mather, T. N., & Ribeiro, J. M. (2007). Selective
932	cysteine protease inhibition contributes to blood-feeding success of the tick Ixodes
933	scapularis. J Biol Chem, 282 (40), 29256-29263. https://doi.org/10.1074/jbc.M703143200
934	Kramer, C. D., Poole, N. M., Coons, L. B., & Cole, J. A. (2011). Tick saliva regulates migration,
935	phagocytosis, and gene expression in the macrophage-like cell line, IC-21. Exp Parasitol,
936	127(3), 665-671. https://doi.org/10.1016/j.exppara.2010.11.012
937	Lewis, J. M., Girardi, M., Roberts, S. J., Barbee, S. D., Hayday, A. C., & Tigelaar, R. E. (2006).
938	Selection of the cutaneous intraepithelial gammadelta+ T cell repertoire by a thymic stromal
939	determinant. Nat Immunol, 7 (8), 843-850. https://doi.org/10.1038/ni1363
940	Li, G., Gustafson-Brown, C., Hanks, S. K., Nason, K., Arbeit, J. M., Pogliano, K., Wisdom, R. M.,
941	& Johnson, R. S. (2003). c-Jun is essential for organization of the epidermal leading edge.
942	<i>Dev Cell</i> , <i>4</i> (6), 865-877. https://doi.org/10.1016/s1534-5807(03)00159-x
943	Lun, A. T., Bach, K., & Marioni, J. C. (2016). Pooling across cells to normalize single-cell RNA
944	sequencing data with many zero counts. Genome Biol, 17, 75.
945	https://doi.org/10.1186/s13059-016-0947-7

- Lun, A. T., McCarthy, D. J., & Marioni, J. C. (2016). A step-by-step workflow for low-level
- analysis of single-cell RNA-seq data with Bioconductor. *F1000Res*, *5*, 2122.
- 948 https://doi.org/10.12688/f1000research.9501.2
- 949 Macleod, A. S., & Havran, W. L. (2011). Functions of skin-resident γδ T cells. Cell Mol Life Sci,
- 950 68 (14), 2399-2408. https://doi.org/10.1007/s00018-011-0702-x
- 951 Matsuura-Hachiya, Y., Arai, K. Y., Muraguchi, T., Sasaki, T., & Nishiyama, T. (2018). Type IV
- 952 collagen aggregates promote keratinocyte proliferation and formation of epidermal layer in
- 953 human skin equivalents. *Exp Dermatol*, 27 (5), 443-448. https://doi.org/10.1111/exd.13328
- McGinnis, C. S., Murrow, L. M., & Gartner, Z. J. (2019). DoubletFinder: doublet detection in
- 955 single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst, 8(4), 329-337
- 956 e324. https://doi.org/10.1016/j.cels.2019.03.003
- 957 Misiura, M., Baszanowska, W., Ościłowska, I., Pałka, J., & Miltyk, W. (2020). Prolidase
- stimulates proliferation and migration through activation of the PI3K/Akt/mTOR signaling
- pathway in human keratinocytes. *Int J Mol Sci*, *21* (23), 9243.
- 960 https://doi.org/10.3390/ijms21239243
- Ni, X., & Lai, Y. (2020). Keratinocyte: a trigger or an executor of psoriasis? *J Leukoc Biol*, 108
- 962 (2), 485-491. https://doi.org/10.1002/JLB.5MR0120-439R
- Nielsen, M. M., Witherden, D. A., & Havran, W. L. (2017). γδ T cells in homeostasis and host
- 964 defence of epithelial barrier tissues. *Nat Rev Immunol*, *17* (12), 733-745.
- 965 https://doi.org/10.1038/nri.2017.101
- 966 Oliva Chávez, A. S., Wang, X., Marnin, L., Archer, N. K., Hammond, H. L., Carroll, E. E. M.,
- 967 Shaw, D. K., Tully, B. G., Buskirk, A. D., Ford, S. L., Butler, L. R., Shahi, P., Morozova, K.,
- 968 Clement, C. C., Lawres, L., Neal, A. J. O., Mamoun, C. B., Mason, K. L., Hobbs, B.
- 969 E.,...Pedra, J. H. F. (2021). Tick extracellular vesicles enable arthropod feeding and promote
- 970 distinct outcomes of bacterial infection. *Nature Communications*, *12*(1), 3696.
- 971 https://doi.org/10.1038/s41467-021-23900-8

- 972 Park, S., Gonzalez, D. G., Guirao, B., Boucher, J. D., Cockburn, K., Marsh, E. D., Mesa, K. R.,
- Brown, S., Rompolas, P., Haberman, A. M., Bellaiche, Y., & Greco, V. (2017). Tissue-scale
- 974 coordination of cellular behaviour promotes epidermal wound repair in live mice. *Nat Cell*
- 975 *Biol*, 19(2), 155-163. https://doi.org/10.1038/ncb3472
- 976 Park, S., Matte-Martone, C., Gonzalez, D. G., Lathrop, E. A., May, D. P., Pineda, C. M., Moore,
- J. L., Boucher, J. D., Marsh, E., Schmitter-Sanchez, A., Cockburn, K., Markova, O.,
- 978 Bellaiche, Y., & Greco, V. (2021). Skin-resident immune cells actively coordinate their
- distribution with epidermal cells during homeostasis. *Nat Cell Biol*, 23 (5), 476-484.
- 980 https://doi.org/10.1038/s41556-021-00670-5
- Pastar, I., Stojadinovic, O., Yin, N. C., Ramirez, H., Nusbaum, A. G., Sawaya, A., Patel, S. B.,
- 982 Khalid, L., Isseroff, R. R., & Tomic-Canic, M. (2014). Epithelialization in wound healing: a
- 983 comprehensive review. *Adv Wound Care* 3 (7), 445-464.
- 984 https://doi.org/10.1089/wound.2013.0473
- 985 Peña, O. A., & Martin, P. (2024). Cellular and molecular mechanisms of skin wound healing.
- 986 Nature Reviews Molecular Cell Biology 25 (8), 599-616. https://doi.org/10.1038/s41580-024-
- 987 00715-1
- Piipponen, M., Li, D., & Landén, N. X. (2020). The immune functions of keratinocytes in skin
 wound healing. *Int J Mol Sci*, *21* (22), 8790. https://doi.org/10.3390/ijms21228790
- Poole, N. M., Mamidanna, G., Smith, R. A., Coons, L. B., & Cole, J. A. (2013). Prostaglandin E₂
- in tick saliva regulates macrophage cell migration and cytokine profile. *Parasites & Vectors*, 6
- 992 (1), 261. https://doi.org/10.1186/1756-3305-6-261
- 993 Proksch, E., Brandner, J. M., & Jensen, J.-M. (2008). The skin: an indispensable barrier.
- Experimental Dermatology, 17 (12), 1063-1072. https://doi.org/https://doi.org/10.1111/j.1600 0625.2008.00786.x
- Ribeiro, J. M., Evans, P. M., MacSwain, J. L., & Sauer, J. (1992). *Amblyomma americanum*:
- 997 characterization of salivary prostaglandins E₂ and F₂ alpha by RP-HPLC/bioassay and gas

- 998 chromatography-mass spectrometry. *Exp Parasitol*, 74 (1), 112-116.
- 999 https://doi.org/10.1016/0014-4894(92)90145-z
- 1000 Ribeiro, J. M., Makoul, G. T., Levine, J., Robinson, D. R., & Spielman, A. (1985). Antihemostatic,
- 1001 antiinflammatory, and immunosuppressive properties of the saliva of a tick, *Ixodes dammini*.
- 1002 *J Exp Med*, *161* (2), 332-344. https://doi.org/10.1084/jem.161.2.332
- 1003 Ribeiro, J. M., Makoul, G. T., & Robinson, D. R. (1988). *Ixodes dammini*: evidence for salivary
- 1004 prostacyclin secretion. *J Parasitol*, 74 (6), 1068-1069.
- 1005 Rice, G., & Rompolas, P. (2020). Advances in resolving the heterogeneity and dynamics of
- 1006 keratinocyte differentiation. *Curr Opin Cell Biol*, 67, 92-98.
- 1007 https://doi.org/10.1016/j.ceb.2020.09.004
- 1008 Rosenberg, R., Lindsey, N. P., Fischer, M., Gregory, C. J., Hinckley, A. F., Mead, P. S., Paz-
- Bailey, G., Waterman, S. H., Drexler, N. A., Kersh, G. J., Hooks, H., Partridge, S. K., Visser,
- 1010 S. N., Beard, C. B., & Petersen, L. R. (2018). Vital signs: trends in reported vectorborne
- 1011 disease cases United States and Territories, 2004-2016. MMWR Morb Mortal Wkly Rep,
- 1012 67(17), 496-501. https://doi.org/10.15585/mmwr.mm6717e1
- 1013 Rousselle, P., Braye, F., & Dayan, G. (2019). Re-epithelialization of adult skin wounds: cellular
- 1014 mechanisms and therapeutic strategies. *Adv Drug Deliv Rev*, *146*, 344-365.
- 1015 https://doi.org/10.1016/j.addr.2018.06.019
- 1016 Schmierer, B., & Hill, C. S. (2007). TGFβ–SMAD signal transduction: molecular specificity and
- 1017 functional flexibility. *Nature Reviews Molecular Cell Biology*, *8*(12), 970-982.
- 1018 https://doi.org/10.1038/nrm2297
- 1019 Schoeler, G. B., Manweiler, S. A., & Wikel, S. K. (1999). Ixodes scapularis: effects of repeated
- 1020 infestations with pathogen-free nymphs on macrophage and T lymphocyte cytokine
- responses of BALB/c and C3H/HeN mice. *Exp Parasitol*, *92*(4), 239-248.
- 1022 https://doi.org/10.1006/expr.1999.4426

- 1023 Sellheyer, K., Bickenbach, J. R., Rothnagel, J. A., Bundman, D., Longley, M. A., Krieg, T.,
- 1024 Roche, N. S., Roberts, A. B., & Roop, D. R. (1993). Inhibition of skin development by
- 1025 overexpression of transforming growth factor beta 1 in the epidermis of transgenic mice. *Proc*
- 1026 Natl Acad Sci U S A, 90 (11), 5237-5241. https://doi.org/10.1073/pnas.90.11.5237
- 1027 Sharma, A., Pham, M. N., Reyes, J. B., Chana, R., Yim, W. C., Heu, C. C., Kim, D., Chaverra-
- 1028 Rodriguez, D., Rasgon, J. L., Harrell, R. A., 2nd, Nuss, A. B., & Gulia-Nuss, M. (2022). Cas9-
- 1029 mediated gene editing in the black-legged tick, *Ixodes scapularis*, by embryo injection and
- 1030 ReMOT Control. *iScience*, 25 (3), 103781. https://doi.org/10.1016/j.isci.2022.103781
- 1031 Sharp, L. L., Jameson, J. M., Cauvi, G., & Havran, W. L. (2005). Dendritic epidermal T cells
- 1032 regulate skin homeostasis through local production of insulin-like growth factor 1. *Nat*
- 1033 *Immunol*, 6 (1), 73-79. https://doi.org/10.1038/ni1152
- 1034 Simo, L., Kazimirova, M., Richardson, J., & Bonnet, S. I. (2017). The essential role of tick
- salivary glands and saliva in tick feeding and pathogen transmission. *Front Cell Infect*
- 1036 *Microbiol*, 7, 281. https://doi.org/10.3389/fcimb.2017.00281
- 1037 Singer, A. J., & Clark, R. A. F. (1999). Cutaneous wound healing. *New England Journal of*
- 1038 *Medicine*, *341* (10), 738-746. https://doi.org/10.1056/nejm199909023411006
- 1039 Sonenshine, D. E., & Roe, R. M. (2014). *Biology of Ticks* (Vol. 1). Oxford University Press.
- 1040 Street, K., Risso, D., Fletcher, R. B., Das, D., Ngai, J., Yosef, N., Purdom, E., & Dudoit, S.
- 1041 (2018). Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. *BMC*
- 1042 *Genomics*, 19 (1), 477. https://doi.org/10.1186/s12864-018-4772-0
- 1043 Tanner, S. M., & Lorenz, R. G. (2022). FVB/N mouse strain regulatory T cells differ in phenotype
- and function from the C57BL/6 and BALB/C strains. *FASEB Bioadv*, *4*(10), 648-661.
- 1045 https://doi.org/10.1096/fba.2021-00161
- 1046 Thelen, F., & Witherden, D. A. (2020). Get in touch with dendritic epithelial T cells! *Front*
- 1047 *Immunol*, *11*, 1656. https://doi.org/10.3389/fimmu.2020.01656

- 1048 Valenzuela, J. G., Francischetti, I. M. B., Pham, V. M., Garfield, M. K., Mather, T. N., & Ribeiro,
- J. M. C. (2002). Exploring the sialome of the tick *Ixodes scapularis*. *Journal of Experimental*

1050 *Biology*, 205 (18), 2843-2864. https://doi.org/10.1242/jeb.205.18.2843

- 1051 Whang, M. I., Guerra, N., & Raulet, D. H. (2009). Costimulation of dendritic epidermal
- 1052 gammadelta T cells by a new NKG2D ligand expressed specifically in the skin. *J Immunol*,
- 1053 182(8), 4557-4564. https://doi.org/10.4049/jimmunol.0802439
- 1054 Wikel, S. (2013). Ticks and tick-borne pathogens at the cutaneous interface: host defenses, tick
- 1055 countermeasures, and a suitable environment for pathogen establishment. *Front Microbiol*, *4*,
- 1056 337. https://doi.org/10.3389/fmicb.2013.00337
- 1057 Wikramanayake, T. C., Stojadinovic, O., & Tomic-Canic, M. (2014). Epidermal differentiation in
- barrier maintenance and wound Healing. *Adv Wound Care*, *3*(3), 272-280.
- 1059 https://doi.org/10.1089/wound.2013.0503
- 1060 Witherden, Deborah A., Watanabe, M., Garijo, O., Rieder, Stephanie E., Sarkisyan, G., Cronin,
- 1061 Shane J. F., Verdino, P., Wilson, Ian A., Kumanogoh, A., Kikutani, H., Teyton, L., Fischer,
- 1062 Wolfgang H., & Havran, Wendy L. (2012). The CD100 receptor interacts with its plexin B2
- ligand to regulate epidermal $\gamma\delta$ T cell function. *Immunity*, 37 (2), 314-325.
- 1064 https://doi.org/https://doi.org/10.1016/j.immuni.2012.05.026
- 1065 Woodworth, C. D., Michael, E., Smith, L., Vijayachandra, K., Glick, A., Hennings, H., & Yuspa,
- 1066 S. H. (2004). Strain-dependent differences in malignant conversion of mouse skin tumors is
- an inherent property of the epidermal keratinocyte. *Carcinogenesis*, 25 (9), 1771-1778.
- 1068 https://doi.org/10.1093/carcin/bgh170

Torrect	Turne	Location Within	SiRNA/Primer	Ctrond	Drimor Comuchos
Target	Туре			Strand	Primer Sequence
I. scapularis	SIRNA	Start at 300	Vamp33SiF	Forward	AAGGACACAGIGIGGAGAGAICCIGICIC
Vamp33			Vamp33SiR	Reverse	AAATCTCTCCACACTGTGTCCCCTGTCTC
	Scrambled		Vamp33ScF	Forward	AAGTGAGGGACGCATAGTAGACCTGTCTC
			Vamp33ScR	Reverse	AATCTACTATGCGTCCCTCACCCTGTCTC
	qRT-PCR	Start at 76	Vamp33qR-F	Forward	TCATACCTGAAGTTGTCCAA
		Start at 180	Vamp33qR-R	Reverse	CTCAAGAATGCCACTGTTG
D. variabilis	siRNA	Start at 280	Vamp33Derm-SiF	Forward	AACCGGATGGTGATGTTAATCCCTGTCTC
Vamp33			Vamp33Derm-SiR	Reverse	AAGATTAACATCACCATCCGGCCTGTCTC
	Scrambled		Vamp33Derm-ScF	Forward	AAGCCTCAGGTGGAATTAGTTCCTGTCTC
			Vamp33Derm-ScR	Reverse	AAAACTAATTCCACCTGAGGCCCTGTCTC
	qRT-PCR	Start at 78	Vamp33DqR-2F	Forward	TCACCTAAAGTTGTCCAACCC
		Start at 160	Vamp33DqR-2R	Reverse	TCAAGGATTCCACTGTTGGG
	qRT-PCR	Start at 64	Vamp33DqR-F	Forward	GACGTGGTTACTTCTCACCTAAA
		Start at 148	Vamp33DqR-R	Reverse	CTGTTGGGCCGTACACAATA
A. americanum	siRNA	Start at 280	Vamp33AA-SiF	Forward	AACCAGATGGTGATGTGAACCCCTGTCTC
Vamp33			Vamp33AA-SiR	Reverse	AAGGTTCACATCACCATCTGGCCTGTCTC
	Scrambled		Vamp33AA-ScF	Forward	AAGGGTGCTAACACGGACTTACCTGTCTC
			Vamp33AA-ScR	Reverse	AATAAGTCCGTGTTAGCACCCCCTGTCTC
	qRT-PCR	Start at 76	Vamp33AA qR-F	Forward	TCTCATCTAAAGCTTTCCAACCC
		Start at 160	Vamp33AA qR-R	Reverse	AAGGATGCCACTGTTGGG
I. scapularis					
β-actin	qRT-PCR	Start at 618	ActinIS 2F	Forward	GGTCATCACAATCGGCAAC
		Start at 742	ActinIS 2R	Reverse	ATGGAGTTGTACGTGGTCTC
A. americanum	qRT-PCR	Start at 285	ActinAA F	Forward	GTCATGGTCGGCATGGG
β-actin		Start at 365	ActinAA R	Reverse	ATGCCGTGCTCAATGGG
D. variabilis	qRT-PCR	Start at 798	ActinIS 2F	Forward	GGTCATCACAATCGGCAAC
β-actin		Start at 905	ActinIS 2R	Reverse	ATGGAGTTGTACGTGGTCTC

Supplementary Table 1: Primers and siRNA sequences

Supplementary Table 2: Cell markers

Cell type	Cell population	Gene	Ensembl
	A 11	H2-Aa	ENSMUSG0000036594
	All	H2-Ab1	ENSMUSG0000073421
	Langerhans	Cd207	ENSMUSG0000034783
		Itgax	ENSMUSG0000030789
Antigon procenting colle		Cd80	ENSMUSG0000075122
Antigen presenting cens	Dendritic cells	Cd86	ENSMUSG0000022901
		<i>Ly</i> 75	ENSMUSG0000026980
		Cd209a	ENSMUSG0000031494
	Macrophago	Adgre1	ENSMUSG0000004730
	Macrophage	Itgam	ENSMUSG0000030786
	Ling difference tigted	Krt5	ENSMUSG0000061527
	(Stratum basale)	Krt14	ENSMUSG0000045545
	(Chatam Sabalo)	Krt15	ENSMUSG0000054146
	Differentiating (Stratum spinosum)	Krt 1	ENSMUSG0000046834
		Krt2	ENSMUSG0000064201
Keratinocytes	(etratam opinoearri)	Krt10	ENSMUSG0000019761
	Terminally differentiated	IvI	ENSMUSG0000049128
	(Stratum granulosum)	Flg	ENSMUSG00000102439
	Corneocytes (Stratum corneum)	Klk5	ENSMUSG0000074155
		Cd3d	ENSMUSG0000032094
	All	Cd3e	ENSMUSG0000032093
T cells		Cd3g	ENSMUSG0000002033
		Trac	ENSMUSG0000076928
αρταει		Trbc1	ENSMUSG0000076490

		Trbc2	ENSMUSG0000076498
		CD4	ENSMUSG0000023274
		CD8a	ENSMUSG0000053977
		Trdc	ENSMUSG00000104876
		Tcrg-C1	ENSMUSG0000076749
	yo r ceii	Tcrg-C2	ENSMUSG0000076752
		Tcrg-C4	ENSMUSG0000076757
		Trdv4	ENSMUSG0000076867
	DETO	Sema4d	ENSMUSG0000021451
	DETCS	Jaml	ENSMUSG0000048534
		Klrk1	ENSMUSG0000030149
		Cldn5	ENSMUSG0000041378
Endothelial		Cdh5	ENSMUSG0000031871
		Egfl7	ENSMUSG0000026921
		Dcn	ENSMUSG0000019929
Fibroblasts		Fgf2	ENSMUSG0000037225
		Fgf7	ENSMUSG0000027208
	Lippor boir folliolo	Krt79	ENSMUSG0000061397
	Opper hair follicle	Krt17	ENSMUSG0000035557
	Cohoooouo alond	Mgst1	ENSMUSG0000008540
	Sebaceous giand	Scd1	ENSMUSG0000037071
L loir folliolo		Postn	ENSMUSG0000027750
Hair foilicle	Outer buige	Lgr5	ENSMUSG0000020140
		Krt6a	ENSMUSG0000058354
		Krt75	ENSMUSG0000022986
	Base of follicle	Shh	ENSMUSG0000002633
	Hair germ	Gli1	ENSMUSG0000025407
Melanocytes		Dct	ENSMUSG0000022129

	Mlana	ENSMUSG0000024806
	Tyr	ENSMUSG0000004651
Red blood cells	Hbb-bs	ENSMUSG0000052305
Red blood cells	Hbb-bt	ENSMUSG0000073940
	Mal	ENSMUSG0000027375
Schwann cells	Plp1	ENSMUSG0000031425
	Sox10	ENSMUSG0000033006
	Acta2	ENSMUSG0000035783
	Myh11	ENSMUSG0000018830
Smooth muscle cells	Myl9	ENSMUSG0000067818
	Myocd	ENSMUSG0000067818
	Rgs5	ENSMUSG0000026678

Supplementary Table 3: Resources and reagents available

Antibody	Source	Identifier	Dilution/ Concentrati on
7-AAD Viability Staining Solution	Biolegend	420404	1:500
Zombie Violet Fixable Live Dead stain	Biolegend	423113	1:500
Zombie NIR Fixable Live Dead stain	Biolegend	423105	1:500
Anti-mouse CD16/32 Antibody	Biolegend	156603	1:500
APC anti-mouse CD45 Antibody clone: 30-F11	Biolegend	103111	1:100
FITC anti-mouse CD3 Antibody clone:17A2	Biolegend	100203	1:100
BV650 anti-mouse Vy3 Antibody clone: 536	BD	743241	1:50
PE Mouse Anti-Rat IgM clone:G53-238	BD	553888	1:100
Monoclonal antibody 17D1	Adrian Hayday, Kings College London and Robert Tigelaar, Yale University	N/A	1:50
PE/Cyanine7 anti-mouse CD45 Antibody clone: 30-F11	Biolegend	103114	1:100
APC anti-mouse Thy1.2 Antibody clone: 30-H12	Biolegend	105312	1:100
PE anti-mouse JAML Antibody clone: 4E10	Biolegend	128503	1:100
BV711 anti-mouse CD100 Antibody clone: BMA-12	BD	745492	1:100
PE/Cyanine5 anti-mouse CD44 Antibody clone: IM7	Biolegend	103010	1:100
APC/Cyanine7 anti-mouse CD25 Antibody clone: PC61	Biolegend	102026	1:100
PerCP/Cyanine5.5 anti-mouse CD69 Antibody clone: H1.2F3	Biolegend	104522	1:100
APC anti-mouse CD314 (NKG2D) Antibody clone: CX5	Biolegend	130212	1:100
Alexa Fluor 700 anti-mouse Ki-67 Antibody clone: 16A8	Biolegend	652420	1:50
BV711 anti-mouse CD326 (Ep-CAM) Antibody clone: G8.8	Biolegend	118233	1:100
PE anti-mouse CD200 Antibody clone: OX-90	Biolegend	123807	1:100
PE/Cyanine5 anti-mouse CD34 Antibody clone: MEC14.7	Biolegend	119312	1:100
BV605 anti-mouse Sca1 Antibody clone: D7	Biolegend	108133	1:100

PE anti-mouse CD49f Antibody clone: GoH3	Biolegend	313612	1:100
FITC Phospho-PI3K p85/p55 (Tyr458, Tyr199)		MA5-	
Monoclonal Antibody clone: PI3KY458-1A11	ThermoFisher Scientific	36955	1:50
		MA5-	
PI3K p85α Monoclonal Antibody clone: SU04-07	ThermoFisher Scientific	41128	1:50
Alexa Fluor 405 Goat anti-Rabbit IgG (H+L) Secondary			
Antibody	ThermoFisher Scientific	A-31556	1:100
Anti-MADH7/SMAD7 polyclonal antibody	Abcam	ab216428	1:100

Cell media			
Leibovitz's L-15 Medium, powder	Gibco	41300039	N/A
L-aspartic acid	Millipore-Sigma	11189	0.449 g/L
L-glutamine	Millipore-Sigma	G8540	0.500 g/L
L-proline	Millipore-Sigma	81709	0.450 g/L
L-glutamic acid	Millipore-Sigma	49449	0.250 g/L
α-ketoglutaric acid	Millipore-Sigma	K1128	0.449 g/L
Sodium hydroxide	Millipore-Sigma	S8045	10 N
D-glucose	Millipore-Sigma	G7021	18.018 g/L
FBS (USDA approved; for tick media)	Millipore-Sigma	F0926- 500ML	0.1
Bacto™ Tryptose Phophate Broth	BD	260300	5%
Lipoprotein Concentrate	MP Biomedicals	191476	0.1%
Corning® 100 mL Penicillin-Streptomycin Solution, 100x	Corning	30-002-CI	1:100
Amphotericin B	Gibco	15290-026	1:100
Distilled water	Gibco	15-230-147	N/A
Materials			
Cell culture plate with lid (6 well, flat bottom)	Sigma	SIAL0516	N/A

Cellstart®, 96 well cell culture plate, F-bottom	Greiner bio-one	655 160	N/A
		CLS3526-	
Costar® cell culture plate with lid (24 well, flat bottom)	Corning	1EA	N/A
Nunc [™] 96-Well Polystyrene Round Bottom Microwell	Thormo Scientific	262162	NI/A
Verse environ existence 4 mm exiting edge straight		202102	
vannas spring scissors, 4 mm cutting edge straight		15018-10	N/A
Integra Miltex 2 mm biopsy punches	Integra	95039-098	N/A
Integra Miltex 5 mm biopsy punches	Integra	33-35	N/A
AcuPunch biopsy punches 10 mm	Acuderm	P1050	N/A
FALCON® 14 ml Polypropylene round-bottom tube	Corning	352059	N/A
Corning® cell strainer size 40 µm, blue, sterile	Corning	431750	N/A
Falcon 5 mL Round Bottom Polystyrene Test Tube, with			
Cell Strainer Snap Cap	Corning	352235	N/A
12x75mm Plastic Tubes	Globe Scientific	110441	N/A
1.5 mL Eppendorf Safe-Lock Tubes	USA Scientific	1615-5500	N/A
1.5ml Microcentrifuge Tubes with Socket Screw Caps	VWR	525-1238	N/A
Lo-bind tubes	Eppendorf	22431048	N/A
Vannas Spring Scissors - 4mm	Fine Science Tools	15018-10	N/A
Reagents			
Trypsin/Lys-C Mix, Mass Spec Grade	Promega	V5071	N/A
Bovine Serum Albumin	Millipore-Sigma	A2058-5G	N/A
BenchMark™ FBS	Gemini Bio-products	100-106	1:10
Methanol anhydrous, 99.8%	Millipore-Sigma	322415-1L	0-20%
Ethyl alconol, Pure; 200 proof for molecular biology	Millipore-Sigma	E7023-1L	1:1
TRIzol reagent	Ambion	15596018	N/A
		540102000	
Liberase™ TL Research Grade	Roche	1	10%
RPMI-1640 with L-Glutamine	Quality Biological	722461	N/A

		112849320	
DNase I	Roche	01	N/A
		119-069-	
10X Phosphate-buffered saline (PBS)	Quality Biological	131	1X
Phosphate-buffered saline (PBS)	Gibco	10010-023	N/A
0.5M Ethylenediaminetetraacetic acid (EDTA), pH 8.0	Boston BioProducts	BM-150	N/A
Sodium azide (NaN3)	Sigma-Aldrich	S2002-25G	N/A
Paraformaldehyde	Thermo Fisher Scientific	J61899-AP	N/A
RIPA lysis buffer	Millipore	20-188	1X
Halt Protease Inhibitor Cocktail	Thermo Fisher Scientific	87786	1X
Halt™ Phosphatase Inhibitor Cocktail	Thermo Fisher Scientific	78420	1X
Dispase II	Sigma-Aldrich	D4693-1G	NA
Dispase	Gibco	17105-041	4 U/mL
Magnesium chloride (MgCl2)	Sigma-Aldrich	M2393- 100G	5mM
Calcium chloride (CaCl2)	Sigma-Aldrich	C1016- 100G	0.4mM
Collagenase D	Sigma-Aldrich	110888660 01	2.5mg/mL
Gum rosin	Millipore-Sigma	60895	75% (3/4 parts)
Beeswax	Thermo Fisher Scientific	S25192A	25% (1/4 parts)
Cytochalasin D	Sigma-Aldrich	C8273	1:100
Commercial Assays			
Pure Link RNA mini kit	Ambion	12183025	N/A
Silencer™ siRNA Construction Kit	Thermo Scientific	AM1620	N/A
Verso cDNA Synthesis Kit	Thermo Scientific	AB-1453B	N/A
Pierce BCA Protein Assay Kit	Thermo Scientific	23227	N/A
DNeasy® Blood and Tissue kit	Qiagen	69506	N/A

FOXP3 Fix/Perm Buffer Set	BioLegend	421403	N/A
Human KGF/FGF-7 Quantikine ELISA Kit	R&D Systems	DKG00	NA
Human/Mouse/Rat/Porcine/Canine TGF-β 1 ELISA – Quantikine kit	R&D Systems	DB100C	NA
Organisms			
Ixodes scapularis adult partially fed female ticks	Albert Mulenga, Texas A&M University	N/A	N/A
Ixodes scapularis adult partially fed female ticks	Adela Oliva Chavez, Texas A&M University	N/A	N/A
Ixodes scapularis nymph ticks	Jon Oliver and Ulrike Munderloh, University of Minnesota	N/A	N/A
Ixodes scapularis nymph ticks	Tick Lab, Oklahoma State University	N/A	N/A
Amblyomma americanum nymph ticks	Tick Lab, Oklahoma State University	N/A	N/A
Dermacentor variabilis nymph ticks	Tick Lab, Oklahoma State University	N/A	N/A
C57BL6J (WT) mice	University of Maryland	N/A	N/A
C57BL6J (WT) mice	Jackson Laboratories	#000664	N/A
FVB/NJ mice	The Jackson Laboratory	001800	N/A
FVB/NTac mice	Taconic Biosciences	N/A	N/A
Equipment			
CFX96 Touch Real-Time PCR Detection System	Biorad	N/A	N/A
Nanoject III	Drummond Scientific Company	3-000-207	N/A
NanoSight NS300	Malvern Panalytical	N/A	N/A
Percival I30BLL incubator	Percival	I30BLL	N/A
Software			
GraphPad Prism v9.1.2	https://www.graphpad.com/	N/A	N/A
GraphPad Quick Cals Outlier Calculator	https://www.graphpad.com/quickcalcs/Gru bbs1.cfm	N/A	N/A

FlowJo (v10.6.1 – 10.8.1)	https://www.flowjo.com/	N/A	N/A
	https://digitalinsights.qiagen.com/products-		
	overview/discovery-insights-		
	portfolio/analysis-and-visualization/qiagen-		
QIAGEN Ingenuity Pathway Analysis	ipa/	N/A	N/A
Database for Annotation, Visualization and Integrated			
Discovery (DAVID) (version 2021)	https://david.ncifcrf.gov/	N/A	N/A

Marnin et al. – Figure 2

