
 

Federated Learning for multi-omics: a performance evaluation in Parkinson’s 
disease  

Benjamin Danek1,2,3, Mary B. Makarious4,5,6, Anant Dadu2,3, Dan Vitale2,3, Paul Suhwan Lee2, 

Mike A Nalls2,3,4, Jimeng Sun1,7, Faraz Faghri2,3,4* 

 

 

1- Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, 

IL, 61820, USA 

2- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and 

National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, 

MD, 20892, USA 

3- DataTecnica, Washington, DC, 20037, USA 

4- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, 

Bethesda, MD, 20892, USA 

5 - Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of 

Neurology, London, UK 

6 - UCL Movement Disorders Centre, University College London, London, UK 

7- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, 

IL, 61820, USA 

 

 

Corresponding author: Dr. Faraz Faghri (faraz@datatecnica.com) (FF) 

                                                 

* Lead contact 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted December 26, 2023. ; https://doi.org/10.1101/2023.10.04.560604doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.04.560604


 

1 

Summary 

While machine learning (ML) research has recently grown more in popularity, its application in 
the omics domain is constrained by access to sufficiently large, high-quality datasets needed to 
train ML models. Federated Learning (FL) represents an opportunity to enable collaborative 
curation of such datasets among participating institutions. We compare the simulated 
performance of several models trained using FL against classically trained ML models on the 
task of multi-omics Parkinson’s Disease prediction. We find that FL model performance tracks 
centrally trained ML models, where the most performant FL model achieves an AUC-PR of 
0.876 ± 0.009, 0.014 ± 0.003 less than its centrally trained variation. We also determine that the 
dispersion of samples within a federation plays a meaningful role in model performance. Our 
study implements several open source FL frameworks and aims to highlight some of the 
challenges and opportunities when applying these collaborative methods in multi-omics studies. 
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Introduction 

In recent years, Machine Learning (ML) algorithms have gained popularity as a possible vehicle 
for solving many long-standing research questions in the clinical and biomedical setting. 
Concretely, the adoption of sophisticated ML models can aid in tasks such as biomarker 
detection, disease subtyping 1, disease identification 2–3, and the development of novel medical 
interventions. The nascence of powerful predictive methods such as ML has enabled 
investigations into advanced analytics of granular patient features, such as genomics and 
transcriptomics4–6, to achieve the ultimate goal of precision medicine.  

Adopting ML methods is constrained by access to high-quality datasets. In biomedical studies, 
curating such quality datasets is particularly difficult due to the sample collection and processing 
costs and the barriers associated with recruiting patients who meet a study's inclusion/exclusion 
criteria. The challenge of this task is exacerbated by the fact that institutions that typically collect 
biomedical samples cannot easily share human specimens’ data due to data privacy regulations, 
such as HIPAA, EU GDPR, India’s PDPA, Canada’s PIPEDA, mandated by medical systems, or 
at a national, and international level7.  

Federated Learning (FL) is an optimization method for performing machine learning model 
training among a group of clients, allowing each client to maintain governance of their local 
data. Initially developed for learning user behavior patterns on personal mobile devices without 
breaching individual privacy8, FL has found valuable applications in numerous domains, 
including finance9, medicine10,11, and the pharmaceutical industry12. In biomedical research, FL 
represents an opportunity to enable cross-silo analytics and more productive collaboration13–15. 

This work evaluates Federated Learning methods' practical availability and utility to enable 
large-scale, multi-institutional, and private analytics of multiple modality biomedical samples. 
Specifically, we aim to identify the frameworks biomedical researchers can use to perform 
federated learning in their work, the expected performance changes, and the implementation 
challenges they may face. We also discuss the opportunities and limitations of applying federated 
learning in multi-omics, where samples capture a patient's genomic, transcriptomic features, and 
clinical and demographic information through the case study of Parkinson's disease prediction. 

We use the multi-modal Parkinson's disease prediction as a case study for testing Federated 
Learning on omics data. Timely and accurate diagnosis of neurodegenerative diseases like 
Parkinson's is crucial in exploring the efficacy of novel therapies to treat and manage the disease. 
Since the onset of these diseases typically begins many years before any visible symptoms, early 
detection is difficult to achieve at a clinical level alone. Usually, it requires information inherent 
to the patient's biology. Makarious et al. 20225 have already determined that leveraging genomic 
and transcriptomic information as part of the diagnosis process allows for higher model 
performance. This study demonstrates the feasibility and practicality of deploying FL for 
Parkinson's disease prediction. 
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Results 

Federated learning models trained using publicly available and accessible frameworks 
results follow central model performance. 

We aim to evaluate the performance differences between classical ML algorithms frequently 
used in the biomedical setting, against federated learning algorithms suitable for cross-silo 
modeling. An overview of our approach (Fig. 1) shows the experimental design for evaluating 
several FL and central ML methods in the task of Parkinson’s disease prediction based on 
genomic, transcriptomic, and clinico-demographic features (Supplementary Table 1). The 
datasets used in experiments originate from studies providing clinical, demographic, and 
biological information of Parkinson’s Disease patients, the Parkinson’s Progression Marker 
Initiative (PPMI) and Parkinson’s Disease Biomarkers Program (PDBP). The PPMI dataset is a 
longitudinal, observational study where patients contribute clinical, demographic, imaging data, 
as well as biological samples for whole-genome sequencing and whole-blood RNA sequencing. 
PPMI specifically includes newly diagnosed and drug-naïve patients, collected at clinical sites 
globally over a span of 5 to 13 years. The PDBP dataset provides clinical, genetic, imaging, and 
biomarker data associated with Parkinson’s disease, Lewy Body Dementia, and other 
parkinsonisms. Patients in PDBP are not necessarily newly diagnosed or drug-naïve. The PPMI 
dataset is used for model training, validation, and testing. The PDBP dataset is used strictly as an 
external test set. In our experiments, the PPMI dataset is split into K folds, one of which is used 
as a holdout test set, and the remaining folds are used for model training and validation. To 
establish a baseline performance of classically trained, central algorithms representative of 
methods used in the current biomedical research paradigm, several central ML algorithms are fit 
to the training set (Supplementary Table 2) and tested on the holdout PPMI fold, as well as the 
whole PDBP dataset. To simulate the cross-silo federated setting, the training set is split into N 
disjoint subsets, referred to as client datasets. Where each baseline ML algorithm is fit to the full 
centralized training dataset, the FL model is fit to N disjoint, siloed client datasets, the union of 
which equates to the entire training data set. An illustration of the FL training process is shown 
in Fig. 2. The fitted FL models are finally evaluated against the PPMI test fold, and the PDBP 
dataset. 

In the optimistic FL setting where we compare a federation of N=2 client sites, which have been 
assigned samples through uniform stratified random sampling without replacement, against the 
central baseline algorithms (Fig. 3), it can be seen that for all the included FL methods, the 
absolute difference in performance is relatively small. For the internal test set, the central 
Logistic Regression (LR) Classifier 16 has an Area Under the Precision-Recall Curve (AUC-PR) 
of 0.915±0.039 (standard deviation across K = 6 folds). Among the classifiers trained using FL, 
which implement the same local learner, FedAvg17 LR, FedProx18 μ = 0.5  LR, and FedProx μ = 
2 LR, have an AUC-PR of 0.874±0.042, 0.887±0.041, 0.906±0.04. In the external test set, a 
similar relationship between central LR and federated LR is exhibited, where classical LR has an 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted December 26, 2023. ; https://doi.org/10.1101/2023.10.04.560604doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.04.560604


 

4 

AUC-PR of 0.842±0.009 and FedAvgLR, μ = 0.5  LR, and FedProx μ = 2 LR, have an AUC-PR 
of 0.826±0.011, 0.823±0.015, and 0.835±0.007. This general reduction in performance between 
the centrally trained classifier and the classifier trained collaboratively through FL is a trend 
observed in nearly all of the FL algorithms across both test sets. Similarly, the central MLP 
classifier19 has an AUC-PR of 0.892±0.032 and 0.826±0.007 respectively, while the best 
performing FL variation, FedProx MLP μ = 2 has an AUC-PR of 0.868±0.06 and 0.785±0.015 
for the internal and external test set respectively. A similar trend can be observed for FedAvg 
XGBRF20, where the performance reduction is proportional to that observed in other learners. 
The only exception to this pattern is in the case of SGDClassifier21,22, where in the PDBP 
exhibits a marginal improvement of 0.002 AUC-PR. The resulting performance details, including 
several additional centrally trained ML algorithms, are in Table 1, and Table 2. The statistical 
significance of pairwise observed differences in performance is presented in Supplementary 
Table 3. The results of this side-by-side comparison of FL methods in an idealistic setting with 
minimal heterogeneity among client datasets show a relatively small difference in performance 
compared to the central algorithms. 

Sample dispersion among client sites negatively impacts global model performance.  

By splitting the training samples among an increasing number of clients, we aim to understand 
the implications of federation configurations that have more dispersed samples (Fig. 4). In both 
the PPMI and PDBP data sets, there is a similar relative change in AUC-PR performance when 
increasing the number of client sites; the absolute performance scores, and variance are 
considerably higher for the PPMI test set than the PDBP test set. The performance of PPMI 
FedAvg XGBRF starts at 0.924 ± 0.015 AUC-PR in a federation of two client sites, and 
progressively drops to 0.861 ± 0.043 AUC-PR at 18 clients. For the PDBP performance, FedAvg 
XGBRF similarly reduces from 0.876 ± 0.009 to 0.752 ± 0.054 AUC-PR, at a minimum. Such a 
reduction in performance is also observed in the FedAvg SGD Classifier, which has an AUC-PR 
of 0.92 ± 0.025 for two clients, and an AUC-PR of 0.886 ± 0.055 for 18 clients in PPMI. In 
PDBP the same classifier starts at 0.847 ± 0.008 for two client sites, and ends at 0.798 ± 0.014 
AUC-PR for 18 client sites. The trend of performance decline is observed for the LR classifiers 
as well, for both the PPMI and PDBP test sets. The FedAvg MLP, as well as both FedProx MLP 
classifiers do not exhibit such a reduction performance. In the PPMI test set, FedAvg MLP 
performance at N=2 client sites is 0.872 ± 0.072 AUC-PR, and at N=18 client sites, 0.876 ± 0.06 
client sites. Similarly, for PDBP performance FedAvg MLP performance is 0.78 ± 0.012 for two 
client sites, and 0.781 ± 0.009 for N=18 client sites. A nearly identical trend is observed in 
FedProx μ = 0.5, μ = 2 across both test sets. Detailed results are in supplementary materials, 
Table 3, and Table 4. 

Data heterogeneity at client sites does not significantly influence model performance. 

To understand the implications of data heterogeneity among client sites, we examine the change 
in AUC-PR in a federation of two clients with respect to the split method (Fig 5). In our 
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experiments, we find that the performance changes introduced by dataset heterogeneity vary. 
Some FL models, such as FedAvg LR, FedProx μ = 0.5, FedAvg MLP, FedProx μ = 0.5 MLP, 
FedProx μ = 2 MLP exhibit performance improvements as both label heterogeneity and dataset 
size heterogeneity are introduced. The greatest performance improvement in PDBP is 0.018 
AUCPR by FedProx μ = 2 MLP, and 0.029 by FedAvg LR in PPMI. Conversely, find that 
FedProx μ = 0.5 LR, FedProx μ = 2 LR, FedAvg SGD, FedAvg XGBRF exhibit performance 
degradation on account of dataset heterogeneity, where the greatest reduction in performance is 
0.014 AUC-PR by XGBRF in PDBP, and 0.031 AUC-PR by FedProx μ = 2 LR on PPMI. In all 
such cases, the performance changes induced by dataset heterogeneity are marginal relative to 
other parameters such as algorithm choice or quantity of participating clients. The implications 
of performance heterogeneity as the number of clients increases are shown in Supplementary 
Fig. 1, Supplementary Fig 2. 

 

FL training time is not dramatically affected by choice in federated aggregation strategy.  

To shed light on the computational costs associated with using different FL aggregation 
strategies, we measure the model training time for FL algorithms in which the federation consists 
of N=2 client sites. For the FedAvg aggregation strategy, FedAvg LR had the lowest mean 
runtime of 7.909e+00 ± 0.550 seconds. Similarly, for the algorithms implementing FedProx 
aggregation, FedProx μ = 0.5 LRClassifier had the lowest overall runtime of 8.747e+00 ± 0.158 
seconds. FedProx μ = 2 LRClassifier had the second lowest runtime for FedProx variants with a 
runtime of 8.905e+00 ± 0.130 seconds. For the MLP classifier, FedAvg, FedProx μ = 0.5, and 
FedProx μ = 2 had a progressively increasing runtimes 8.755e+00 ± 0.141 seconds, 9.039e+00 ± 
0.266 seconds, 9.260e+00 ± 0.163 seconds respectively. FedAvg XGBRF, and FedAvg SGD had 
a considerably higher runtime of 1.061e+01 ± 0.014 and 1.513e+01 ± 1.497 seconds 
respectively. A visualization of the runtimes for FL algorithms is presented in Figure 6.  

In contrast to the FL algorithms, central algorithm training time is at least an order of magnitude 
lower. The fastest model to train, SGD Classifier fits the model in 6.771e-03 ± 0.001 seconds, 
and the slowest model, MLP Classifier fits its model in 1.609e-01 ± 0.009. Central LR Classifier 
and XGBRF run in 1.857e-02 ± 0.008 and 1.633e-01 ± 0.003 seconds respectively. The full list 
of runtimes including central and federated algorithms is presented in Table 7. 

Discussion 

In conjunction with increased access to genomic and transcriptomic data, the proliferation of 
high-quality Machine Learning open-source packages, has helped advance numerous long-
standing challenges in biomedical research, such as disease subtyping, biomarker identification, 
and early disease diagnosis. The common bottleneck limiting such advances has thus shifted 
from the ability to apply ML methods to the availability of high-quality, well-designed datasets. 
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Federated Learning has been cited as a promising means of alleviating the data scarcity problem 
through data-private collaborative model training 23–25. Previous works focus on applying FL to 
domains adjacent to multi-omics disease diagnosis, namely focusing on imaging data13,26, 
longitudinal health records14, named entity recognition 27. Similar works such as Salmeron, 
Arévalo, and Ruiz-Celma 202328 approach benchmarking FL models on biomedical datasets, but 
focus on comparing different FL aggregation strategies, rather than evaluating FL against a 
central baseline, as is done in our study. By approaching federated learning for multi-omics 
disease diagnosis from a performance benchmarking perspective, focusing on algorithms that are 
broadly accessible in the open-source community, we hope to shed light on what kind of 
practical performance can be achieved in a real-world setting where deep AI and Software 
Systems expertise may be limited. We additionally aim to understand what fundamental pitfalls 
researchers must be aware of before applying such methods in their multi-omics tasks.  

When comparing centrally trained models against collaboratively trained models that implement 
the same local learner algorithm, our results indicate the FL trained model performance tends to 
be consistently less than that of the central method, while approximately following the 
performance of the central ML method. The general reduction in AUC-PR testing score between 
the FL and central method is noteworthy, but not a substantial deterioration. It can also be 
observed that for the studied aggregation strategies, FL model performance follows central 
model performance. In cases where the central model is performant, the FL trained model will be 
as well. In the case of the strongest central classifier in the central setting, XGBRF, the FL 
method implementing the same algorithm as a local learner, FedAvg XGBRF, also had the 
highest performance among models trained using FL. Additionally, we see that in many cases, 
FedAvg XGBRF outperforms central ML classifiers such as Logistic Regression, SGD, and 
MLP at the same task by a significant margin. This empirical result indicates that in cases where 
institutions must decide between applying FL methods to their setting, or centralizing data by 
complying with potentially stringent regulations, FL can be considered an effective option. In 
addition to this, because the implementation of such methods is available through open-source, 
strongly documented frameworks, the resource investment to achieve scientifically meaningful 
results may not be significant. We also note that because an FL model’s performance tracks, and 
seldom exceeds its central model performance, it can be crudely used to approximate the central 
model lower bound. Such an estimate of central performance, even if inexact, may be valuable 
for institutional stakeholders when deciding whether financial and administrative resources 
should be allocated to centralize several siloed datasets. We also note the overall reduction in 
performance between models trained using FL methods and models trained using central 
methods can be attributed to the federated aggregation process, which, in our case, is 
implemented as the unweighted average of the local learner model weights. Such a naive 
averaging process detracts from the parameter optimization implemented by local learners, but is 
a necessary cost to enable sample-private federated training. Furthermore, we note that several 
novel methods which implement more sophisticated weight aggregation strategies have been 
developed in academic settings, but are not always available as generally applicable open source 
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packages. Overall, this test indicates that FL may be used to enable productive collaboration 
among institutions existing on opposite sides of geographic and policy boundaries, such as EU-
GDPR, as well as across cloud providers and bare metal servers.  

In the second arm of our study, we aim to understand the model performance cost of conducting 
collaborative training among a federation with increasing sample dispersion. Such a situation 
may arise, when institution stakeholders must comply with several layers of regulatory 
requirements, where centralizing some sites is easier than others. A concrete example of such a 
regulation is in the case of EU-GDPR, where transport of patient samples beyond the boundaries 
of the EU requires compliance with GDPR, and each country's respective legislation mandates 
the transport of samples between countries within the EU. In this series of experiments, we 
assume that the globally available set of samples is constant, but the quantity of federation 
members containing the samples varies. Our experiments show that some methods, such as the 
LR classifiers, FedAvg SGD and FedAvg XGBRF, tend to exhibit performance degradation 
when there are more siloes with fewer samples per silo. We also observe that methods 
implementing MLP as a local learner, tend not to exhibit performance degradation with respect 
to sample concentration at siloes. Such methods do not necessarily achieve the best performance 
for any federation configurations, however, in the most extreme federation configuration of 18 
clients, are still outperformed by methods such as FedAvg SGD and FedAvg LR. Methods 
whose performance is not strongly affected by silo size may represent practical starting points for 
the application of FL in an exploratory task. Ultimately, because FL models appear to have an 
optimal operating point which is modulated by the federation configuration, the final choice in 
FL methods used to reach peak performance should be determined by an exhaustive search. This 
finding suggests that a practical future format for applying FL in the biomedical setting may be 
through the auto-ML paradigm, which frameworks such as H2O29, Auto Sklearn30 currently 
implemented in the classical ML setting.  

We additionally find in our studies that the implementation of heterogeneous client sites, with 
respect to dataset size and label counts, does not necessarily result in performance reductions for 
all algorithms. Some models such as FedAvg LR, models implementing MLP as a local learner, 
tend to increase performance, while models such FedAvg XGBRF, and FedAvg SGD exhibit 
performance degradation when the number of client sites is two (Supplementary Figure 1). We 
further find that when the number of clients is four, such heterogeneity has varying effects on 
performance, different from the configuration with two client sites. Overall, performance 
changes with respect to client dataset heterogeneity are marginal relative to changes introduced 
by factors such a number of clients per federation, or algorithm selection. 

When comparing training time among federated learning algorithms, we found a mild 
progression in training time between FedAvg LRClassifier, FedProx μ = 0.5 LRClassifier, and 
FedProx μ = 2 LRClassifier respectively. The same trend can be observed for the FL algorithms 
using MLP as a local learner. The progressive increase in runtime may be attributed to the 
relative difference in complexity between the FedAvg and FedProx optimization mechanism. 
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The objective of FedProx weight aggregation function includes a regularization term, μ, designed 
to handle heterogeneity among clients18. The FedAvg optimization objective does not include 
this mechanism, making it conceptually simpler. In the context of this study, the performance 
differences incurred by choice in aggregation method are minor relative to parameters such as 
choice in local learner, number of federated aggregation rounds, and dataset size. 

When comparing the training time of central and federated models, we find that the central 
model training time is at least an order of magnitude lower than the federated training time. This 
result is not surprising, given that federated models implement global weight aggregation and 
updating steps in model training. Given that our study performs federated optimization in 
simulation, production deployments of FL methods can be expected to have slower overall 
runtimes due to network latency and operating system throughput capabilities.  

The algorithms used in evaluating collaboratively trained models using FL against centralized 
applications of their local learner methods are detailed in Supplementary Table 2. In our study, 
we omitted using closed-source FL methods available through platform interfaces since these 
methods allow data governance capabilities to external parties, or vendor security evaluations, 
which in some cases instantiates barriers to productive research. While numerous publications 
explore methodological improvements that push forward state-of-the-art FL model performance 
in an experimental setting, we encountered challenges in applying such methods in our case, as 
many of these academic studies do not result in broadly applicable packages. In our research, we 
found a set of open-source projects that implement FL methods and provide out-of-the-box 
solutions, or well-designed examples that could be interpolated to the multi-omics classification 
task to be limited. Ultimately, the FL interfaces made available by NVFlare31 and Flower32 were 
selected to conduct experiments, with local learners implemented using Sklearn21 and DMLC20 
packages. Several open-source projects, such as Owkin33, Tensorflow Federated34, and OpenFL35 
provide full interfaces for implementing deep learning models in TensorFlow34, and PyTorch36, 
but such deep methods are less suitable for tabular tasks on datasets with only a handful of 
samples, as is the case the multi-omics datasets used in this study. Additionally, we found that 
while several packages provided abstract interfaces for implementing any arbitrary set of local 
learners and aggregation strategies, without detailed examples with a straightforward path to 
adaptation to a particular research task, the practical application of such methods becomes 
challenging, and less approachable for groups which may be resource constrained.  

The extent to which Federation Site configurations could be studied was largely limited by the 
number of case patients within the dataset. Concretely, the implications of heterogeneity in site 
data could only be observed to the extent that each silo would maintain enough samples from 
case and control cohorts to allow the local learner to successfully train. Datasets at silos needed 
to have at least one sample from both the case and control groups. Similarly, although the PPMI 
dataset was collected across several geographically distributed institutions, point of origin 
information is not available for each sample, preventing the evaluation of performance on 
naturally occurring siloes. In our study, all experiments assume that the collective dataset 
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available among all client sites has a constant size. An additional limitation of our work is in 
observing the effect of adding federation members, which contribute novel samples to the 
federation.  

While FL methods enable data owners to maintain governance of their local datasets, on its own, 
FL does not provide end to end privacy guarantees. Our study examines the utility of FL 
methods in the multi-omics case study to understand the availability and characteristics of FL, 
and does not include a concrete evaluation of privacy, or security methods. Thus, we assume that 
the federated learning aggregation server is neither dishonest, curious, nor malicious in any way 
and fulfills its functions as an intermediary between client sites benevolently. Privacy preserving 
methods orthogonal to FL such as Differential Privacy (DP) enable the application of FL with 
formal guarantees of sample-privacy 37. Such approaches were not included in the scope of this 
evaluation, but represent a factor which should be considered when applying FL methods in 
settings where verifiable sample privacy guarantees are critical. In our experimentation, we do 
not focus on the implications of the federation which has heterogeneous compute capabilities, 
since applying machine learning model fitting on datasets with few samples can be done without 
much difficulty.  

The datasets utilized in our analysis, including PPMI and PDBP, are sourced from the 
Accelerating Medicines Partnership Parkinson’s Disease (AMP-PD) initiative. This initiative 
plays a pivotal role in unifying transcriptomic and genomic samples, ensuring consistency and 
accuracy through central harmonization and joint-calling processes. Furthermore, the 
construction of machine learning features for our analysis is also centralized, leveraging these 
cohesive datasets. Recognizing the potential for broader application, our future focus includes 
exploring federated analysis tasks 38–40. This involves enhancing cross-silo harmonization, joint-
calling, and feature construction across diverse datasets. To facilitate this, the development of 
specialized federated learning libraries, specifically tailored for genomics and transcriptomics, is 
crucial. Such advancements will not only democratize access to federated learning (FL) methods 
for the wider biomedical community but also significantly broaden the scope for applying 
machine learning techniques in various biomedical contexts. 

Overall, we believe that this work sheds light onto the feasibility, and noteworthy characteristics 
of applying Federated Learning for omics analysis. Through our experiments, we find that 
collaboratively trained FL models can achieve high classification accuracy in multi-omics 
Parkinson’s Disease Diagnosis, and can remain relatively performance despite heterogeneity 
among client sites. We also find in our evaluation that although FL is a relatively novel research 
space in bioinformatics, there is sufficient access to open source methods which biomedical 
researchers may leverage to enable productive collaborations. 
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Experimental Procedures 

Resource Availability 

Lead Contact 

Further information and requests for resources and reagents should be directed to and will be 
fulfilled by the lead contact, Faraz Faghri (faraz@datatecnica.com). 

Materials Availability 

This study did not generate new unique materials. 

Data and Code Availability 

Data 

The data used in this study was access-controlled from the Parkinson's Progression Marker 

Initiative (PPMI, http://www.ppmi-info.org/) and the Parkinson's Disease Biomarkers Program 

(PDBP, https://pdbp.ninds.nih.gov/).  

Code 

To facilitate replication and expansion of our work, we have made the notebook publicly 
available at the Zenodo repository41. It includes all code, figures, models, and supplements for 
this study. The code is part of the supplemental information; it includes the rendered Jupyter 
notebook with full step-by-step data preprocessing, statistical, and machine learning analysis. 

Any additional information required to reanalyze the data reported in this paper is available from 
the lead contact upon request. 

Method Details 

Datasets 

The dataset used in this study as the basis for training and as the internal test set is the 
Parkinson’s Progression Marker Initiative (PPMI) dataset. The PPMI dataset represents a 
longitudinal, observational study where patients contribute clinical, demographic, imaging data, 
biological samples for whole-genome sequencing, and whole-blood RNA sequencing. Samples 
are collected at 33 clinical sites globally and across a time span of anywhere from 5 to 13 years. 
This preprocessed dataset consists of 171 samples of case patients diagnosed with Parkinson’s 
disease and 427 healthy control patients. The PPMI cohort contains newly diagnosed, and drug-
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naive patient samples. The PPMI cohort contains 209 (36%) female samples, 388 (67%) male 
samples (Supplementary Table 4). 

The dataset used in this study for external, out-of-distribution validation is the Parkinson’s 
Disease Biomarker Program (PDBP). It is a longitudinal, observational study where patients 
contribute clinical, demographic, and imaging data and biological samples for whole-genome 
and whole-blood RNA sequencing. The preprocessed dataset consists of 712 healthy control 
patients and 404 case patients diagnosed with Parkinson’s disease. Each sample comprises 713 
features, including genetic, transcriptomic, and clinico-demographic information collected at the 
baseline. The PDBP cohort consists of 480 (43%) female samples, and 636 (57%) male samples. 
(Supplementary Table 5). 

Both PPMI and PDBP data used in this study were acquired through the AMP-PD initiative42, an 
effort to provide harmonized datasets that include common clinical and genomic data. Through 
this initiative, the PPMI and PDBP datasets are centrally joint-called and harmonized to allow 
standardization across cohorts.  
 
Transcriptomic data from whole blood RNA sequencing was generated by the Translational 
Genomics Research Institute team using standard protocols for the Illumina NovaSeq technology 
and processed through variance-stabilization and limma pipelines43 for experimental covariates. 
Gene expression counts for protein-coding genes were extracted, then differential expression p 
values were calculated between cases and controls using logistic regression adjusted for 
additional covariates of sex, plate, age, ten principal components, and percentage usable bases. A 
comprehensive description of the RNA-Sequencing method is presented in44 for PPMI, and45 for 
PDBP. 
 
For genetic data, sequencing data were generated using Illumina’s standard short-read 
technology, and the functional equivalence pipeline during alignment was the Broad Institute’s 
implementation46. Applied quality control measures included criteria like gender concordance 
and call rate, with a focus on SNPs meeting the GATK gold standards pipeline and additional 
filters like non-palindromic alleles and missingness by case-control status thresholds. Polygenic 
risk scores (PRS) were constructed using effect sizes from a large European genome-wide meta-
analysis, supplementing the genetic data from whole genome sequences. The process from 
sample prep to variant calling is comprehensively described in42.  

Quality control for genetic samples based on genetic data output by the pipeline included the 
following inclusion criteria: concordance between genetic and clinically ascertained genders, call 
rate > 95% at both the sample and variant levels, heterozygosity rate < 15%, free mix estimated 
contamination rate < 3%, transition:transversion ratio > 2, unrelated to any other sample at a 
level of the first cousin or closer (identity by descent < 12.5%), and genetically ascertained 
European ancestry. For inclusion of whole-genome DNA sequencing data, the variants must 
have passed basic quality control as part of the initial sequencing effort (PASS flag from the joint 
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genotyping pipeline) as well as meeting the following criteria: non-palindromic alleles, 
missingness by case-control status P�>�1E-4, missingness by haplotype P�>�1E-4, Hardy–
Weinberg p value > 1E-4, minor allele frequency in cases > 5% (in the latest Parkinson’s disease 
meta-GWAS by Nalls et al. 201947). As an a priori genetic feature to be included in our modeling 
efforts, Polygenic Risk Scores (PRS) were computed per individual in the PPMI and PDBP 
datasets, where we used the estimated effect sizes from the largest European Parkinson’s disease 
meta-GWAS, using the genome-wide significant loci only 47. The PPMI dataset is a minor 
portion of the most recent GWAS study (less than 0.1% of the sample size). The algorithmic 
feature selection process, described by Makarious et al. 20225 excluded the majority of features 
reaching the p value thresholds of interest thus reducing any impact caused by potential data 
leakage. The PDBP dataset is not included as a part of the study. 

Compared to the PPMI dataset, PDBP includes an additional 40 genetic features, which are 
excluded from this study, allowing PPMI and PBDP to have the same feature set. Additionally, 
the PPMI samples are collected before any medical intervention, whereas the PDBP samples are, 
in some cases, collected after patient treatment has commenced. Since the PDBP dataset may 
include artifacts which result from disease treatment, the PDBP dataset is used exclusively for 
evaluation to avoid the possibility of label leakage. A shortened version of the final feature set is 
provided in Supplementary Table 1. A comprehensive feature list is available in the external 
code repository48. 

Each sample consists of 673 features, including genetic, transcriptomic, and clinico-demographic 
information collected at the baseline. Of the 673 features, 72 originate from genome sequencing 
data and polygenic risk score,  596 are transcriptomic, and 5 are clinico-demographic. The 
clinico-demographic features include age, family history, inferred Ashkenazi Jewish status, sex, 
University of Pennsylvania Smell Identification (UPSIT) score.  

Data Preprocessing 

The construction of features from genomic, transcriptomic, and clinico-demographic data is 
handled for each cohort independently, and in a centralized manner, for the entirety of the cohort. 
As part of the initial data preprocessing, principal components summarizing genetic variation in 
DNA and RNA sequencing data modalities are generated separately. For the DNA sequencing, 
ten principal components were calculated based on a random set of 10,000 variants sampled after 
linkage disequilibrium pruning that kept only variants with r2 < 0.1 with any other variants in ±1 
MB. As a note, these variants were not p value filtered based on recent GWAS, but they do 
exclude regions containing large tracts of linkage disequilibrium 49. Our genetic data pruning 
removed SNPs in long tracts of high LD such as in the HLA region (we excluded any SNPs 
within r2 > 0.1 within a sliding window of 1 MB), while retaining known genetic risk SNPs 
within the region. For RNA sequencing data, all protein-coding genes’ read counts per sample 
were used to generate a second set of ten principal components. All potential features 
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representing genetic variants (in the form of minor allele dosages) from sequencing were then 
adjusted for the DNA sequence-derived principal components using linear regression, extracting 
the residual variation. This adjustment removes the effects of quantifiable European population 
substructure from the genetic features prior to training, this is similar in theory to adjusting 
analyses for the same principal components in the common variant regression paradigm 
employed by GWAS models. The same was done for RNA sequencing data using RNA 
sequencing derived principal components. This way, we statistically account for latent 
population substructure and experimental covariates at the feature level to increase 
generalizability across heterogeneous datasets. In its simplest terms, all transcriptomic data were 
corrected for possible confounders, and the same is done for genotype dosages. After adjustment, 
all continuous features were then Z-transformed to have a mean of 0 and a standard deviation of 
1 to keep all features on the same numeric scale when possible. Once feature adjustment and 
normalization were complete, internal feature selection was carried out in the PPMI training 
dataset using decision trees (extraTrees Classifier) to identify features contributing information 
content to the model while reducing the potential for overfitting prior to model generation21, 50. 
Overfitting here is defined as the over-performance of a model in the training phase with 
minimal generalizability in the validation dataset due to the inclusion of potentially correlated or 
unimportant features. The implementation of decision trees for feature selection helps remove 
redundant and low-impact features, helping us to generate the most parsimonious feature set for 
modeling. Feature selection was run on combined data modalities to remove potentially 
redundant feature contributions that could artificially inflate model accuracy. Export estimates 
for features most likely to contribute to the final model in order of importance were generated by 
the extraTrees classifier for each of the combined models, and are available on the Online 
Repository48. By removing redundant features, the potential for overfitting is limited while also 
making the models more conservative. Additionally, if a variant provided redundant model 
information, such as being in strong linkage with a PRS variant, it would be removed from the 
potential feature list.  

Feature selection was performed using the extremely randomized trees classifier algorithm, 
extraTrees50, on combined data modalities to remove redundant feature contributions that could 
overfit the model to optimize the information content from the features and limit artificial 
inflation in predictive accuracy that might be introduced by including such a large number of 
features before filtering. In many cases, including more data might not be better for performance. 
With this in mind, we attempted to build the most parsimonious model possible using systematic 
feature selection criteria 51. Among the top 5% of features ranked in the Shapley analysis, the 
mean correlation between features was r2 < 5%, with a maximum of 36%. By removing 
redundant features using correlation-based pruning and an extraTrees classifier as a data 
munging step, the potential for overfitting is limited while also making the models more 
conservative.  
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Clinical and demographic data ascertained as part of this project included age at diagnosis for 
cases and age at baseline visit for controls. Family history (self-reporting if a first or second-
degree relative has a PD diagnosis) was also a known clinico-demographic feature of interest. 
Ashkenazi Jewish status was inferred using principal component analysis comparing those 
samples to a genetic reference series, referencing the genotyping array data from GSE23636 at 
Gene Expression Omnibus as previously described elsewhere 42,52. Sex was clinically ascertained 
but also confirmed using X chromosome heterozygosity rates. The University of Pennsylvania 
smell inventory test (UPSIT) was used in modeling53. A comprehensive description of data and 
preprocessing is described in5. 

Quantification and Statistical Analysis 

We conducted K-fold cross-validation on the PPMI dataset, where K=6, allowing each fold to 
contain approximately 100 samples. For each cross-validation fold, 1/K of the PPMI samples are 
withheld as a holdout test set. The remaining training split of K - 1/K samples are further split 
using uniform stratified random sampling at an 80:20 ratio into training and validation subsets. 
The evaluation set was used for cross validated hyperparameter tuning in the central and 
federated models. The PPMI dataset was selected as the training and internal test set due to the 
fact that patients samples recorded in the PPMI protocol are newly diagnosed and drug-naive. 
Additionally, by training on the PPMI dataset, the model is developed on patients earlier on in 
their disease course. This intentional choice was made in the hopes the model would identify 
other individuals early on in their disease course and prioritize them for follow-up. The PDBP 
cohort samples are collected within five years after diagnosis, and may be actively taking 
medications. While the PDBP cohort is larger, because samples are collected several years after 
diagnosis, and because patients may be actively taking medication, there is a possibility of label 
leakage, ultimately motivating the usage of the PPMI dataset for training. Due to the similar 
nature of the PPMI and PDBP dataset, after processing, the PDBP dataset can be used as an 
external test set, approximating out-of-distribution model performance. 

To conduct federated model training, the fully preprocessed PPMI dataset is split into disjoint 
client subsets, using one of the split strategies, and assigned to a local learner. To train a global 
model using the data among all federation participants, an iterative optimization process is run 
for a predefined set of rounds (Fig. 2). During this process, federation members fit local learner 
models to their locally available datasets. The parameters resulting from local model fitting are 
then sent to the central aggregation server. Once all model parameters are received, the 
aggregation server applies a federated learning strategy to the set of model weights, resulting in 
aggregated model weights, referred to as the global model. The global model is then sent back to 
the client sites, and used as the starting point for local learner optimization in subsequent 
iterations. The best performing global model on the evaluation set is used for final testing. 
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We simulate two types of heterogeneity in our experiments by distributing samples from the 
training dataset using different split methods. The split method uniform stratified sampling 
implements label, and site size homogeneity. The split method uniform random sampling 
implements label heterogeneity, but site size homogeneity. The split method linear random 
sampling implements label and site size heterogeneity (Fig. 3).  

Local client data sets were formed by applying such sampling techniques to the centralized 
training data set. Uniform stratified sampling was used to form the K folds and during 
experiments that study homogenous federations. Uniform stratified sampling entails sampling 
the source dataset such that there is a nearly even distribution of samples among each of the N 
clients, and the ratio of cases to controls across each client subset is equivalent (where surplus 
samples are assigned to one of the client sites at random). This method was implemented by 
partitioning the source dataset by phenotype and then, without replacement, assigning 1/N 
samples of each phenotype partition to each client using uniform random sampling, with the last 
client receiving any extra samples. In practice, this additional data was less than 10 of samples. 
Uniform random sampling entails assigning 1/N using uniform random sampling. Linear random 
sampling entails assigning ci samples to a client site, where the following is true: 

�� � ��
�

���

� � 

In the above formula, C is the number of samples to distribute, in practice the size of the PPMI 
training set, and i is the index of the client site. As with previous methods, the final client 
receives any surplus samples left over. The effect of this linear random sampling strategy is that 
each of the N clients contains an increasing number of samples relative to the previous clients, 
and each client site contains a random distribution of cases versus controls.  

To measure algorithm runtime, for central algorithms, we measured the quantity of seconds from 
model initialization, to model training completion. For federated algorithms, we measured the 
quantity of seconds from model initialization, to the end of the FL training simulation. For FL 
models, model optimization was conducted for a federation of N=2 federation clients, for 5 
aggregation rounds. 

In our simulation configurations, federation rounds operate synchronously, and without failure. 
Hyperparameters that were used to compute the final results are reported in the appendix, 
including the random seed used for the presented results. 

The Federated Machine Learning methods implemented in the study utilize the federated 
aggregation methods FedAvg17, FedProx18, and the local learner classification methods, Logistic 
Regression16, Multi-Layer Perceptron19, Stochastic Gradient Descent22, and XGBoost20 available 
through Sklearn21 and DMLC 20,21. The aggregation methods are implemented using NVFlare31, 
and Flower32, while local learner methods are implemented using Sklearn, and DMLC APIs. 
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Configuration details are available in the supplementary section. Simulation Frameworks used to 
implement model experiments are made available through the NVFlare and Flower packages. A 
single client site exhibits a minor computational cost of a single GB CPU and a single logical 
processor, which must be available throughout the life of the simulation. The simulations for 
both NVFlare and Flower required 18 Gb of RAM, and 18 logical cores. A simulation to train a 
single FL model takes less than 1 minute to complete. Running the full suite of simulations to 
reproduce the paper figures takes 6-8 hours. All experiments were conducted on Redhat 
Enterprise Linux Distribution. 
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Figures 

Figure 1: The experiment workflow diagram and the data summary.  

The harmonized, and joint-called PPMI and PDBP cohorts originate from the AMP-PD
initiative. The PPMI cohort is split into K folds, where one fold is left as a holdout (internal) test
set, and the remaining are used for model fitting. The training folds are split using an 80:20 ratio
to form the training validation split. The training split is distributed among N clients using one of
the split strategies to simulate the cross-silo collaborative training setting. FL Methods consist of
a local learner and an aggregation method. Similarly, several central algorithms are used to fit
the training data. The resultant Global FL models and the ML models resulting from central
training are tested on the PPMI holdout fold (internal test) and the whole PDBP test set (external
test). 
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Figure 2: Federated architecture and training summary.  

The FL architecture used in the study also illustrates 1 round of FL training for the case of N=3
clients. The aggregation server aggregates trained local learner parameters from clients and
computing a global model. Client Sites contain their own siloed dataset, each with different
samples. The trained client parameters are represented by the blue, orange, and green weights;
the black weights represent the aggregated global model. Client model aggregation implemented
by the federated learning strategy is denoted by f. Once global weights are computed, a copy is
sent to each client; the global model is used to initialize the local learner model weights in
subsequent FL training rounds. 
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Figure 3: Federated learning models trained using publicly available and accessible
frameworks results follow central model performance. 

The Precision Recall Area Under Curve (PRAUC) comparing Central Algorithms against
Federated Algorithms. We pair FL algorithms with central algorithms by the local learning
algorithm applied at client sites. Federated Algorithms receive the training data set split across
n=2 clients, using label stratified random sampling. Presented data is mean score and standard
deviation resulting from cross validation. 
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Figure 4: Sample dispersion among client sites negatively impacts global model
performance.  

For a fixed training dataset, the AUC-PR of Federated Algorithms as the quantity of client sites
increases. Training data is split uniformly among each member of the federation using stratified
random sampling. The PDBP and PPMI datasets are used for external and internal validation,
respectively. Presented data is mean score and standard deviation resulting from cross validation.
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Figure 5: Data heterogeneity at client sites does not deeply influence model performance. 

The AUC-PR for a federation of 2 clients, for several split methods. Uniform stratified sampling,
representing the most homogenous data distribution method, while uniform random, and linear
random represent increasingly heterogeneous client distributions. Presented data is mean score
and standard deviation resulting from cross validation. 
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Figure 6. The mean runtime to train FL models using FedAvg and FedProx strategies. 

The mean total runtime in seconds to train FL models. FL models are trained on the PPMI 
training folds for 5 communication rounds. Algorithms are grouped by aggregation strategy. 
Results presented as mean and standard deviation over K=6 folds. 
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Tables 
Algorithm Name ROC-AUC AUC-PR Balanced 

Accuracy 
Precision Recall F 0.5 F 1 F 2 Log Loss Matthews 

Correlation 
Coefficient 

AdaBoost Classifier 0.865±0.033 0.939±0.01 0.736±0.069 0.844±0.043 0.89±0.047 0.897±0.017 0.885±0.027 0.942±0.013 0.632±0.007 0.499±0.122 
Bagging Classifier 0.82±0.05 0.916±0.025 0.69±0.052 0.813±0.027 0.897±0.061 0.865±0.021 0.862±0.024 0.933±0.01 1.001±0.382 0.428±0.123 
GradientBoosting Classifier 0.879±0.046 0.943±0.026 0.723±0.072 0.833±0.042 0.911±0.021 0.916±0.03 0.894±0.022 0.942±0.015 0.444±0.099 0.486±0.119 
KNeighbors Classifier 0.61±0.099 0.806±0.065 0.533±0.029 0.729±0.014 0.937±0.046 0.782±0.023 0.837±0.007 0.927±0.004 2.836±0.617 0.111±0.104 
LinearDiscriminantAnalysis 
Classifier 

0.763±0.045 0.883±0.031 0.681±0.053 0.826±0.04 0.77±0.05 0.7±0.344 0.714±0.35 0.776±0.38 1.608±0.488 0.347±0.095 

LogisticRegression Classifier 0.831±0.068 0.915±0.039 0.734±0.072 0.841±0.043 0.894±0.028 0.872±0.047 0.883±0.033 0.939±0.011 0.648±0.203 0.493±0.134 
MLP Classifier 0.739±0.078 0.892±0.032 0.703±0.059 0.833±0.038 0.815±0.054 0.843±0.038 0.858±0.034 0.932±0.013 6.616±1.844 0.402±0.119 
QuadraticDiscriminantAnalysis 
Classifier 

0.504±0.057 0.774±0.029 0.504±0.057 0.725±0.055 0.385±0.081 0.757±0.008 0.833±0.006 0.926±0.003 19.674±1.492 0.009±0.105 

RandomForest 0.816±0.076 0.917±0.027 0.552±0.034 0.736±0.016 0.993±0.017 0.857±0.043 0.874±0.032 0.942±0.014 0.508±0.029 0.249±0.121 
SGD Classifier 0.755±0.065 0.907±0.025 0.735±0.062 0.846±0.032 0.857±0.068 0.857±0.037 0.876±0.036 0.936±0.015 7.525±2.282 0.481±0.143 
SVC Classifier 0.838±0.069 0.924±0.032 0.711±0.071 0.827±0.041 0.883±0.042 0.872±0.042 0.886±0.024 0.941±0.008 0.44±0.082 0.447±0.145 
XGBoost Classifier 0.89±0.046 0.953±0.018 0.765±0.097 0.86±0.062 0.911±0.03 0.915±0.03 0.900±0.033 0.942±0.014 0.461±0.135 0.557±0.167 
XGBoost Random Forest Classifier 0.857±0.064 0.936±0.029 0.773±0.057 0.868±0.04 0.885±0.047 0.907±0.039 0.891±0.041 0.936±0.011 1.79±0.853 0.558±0.105 
FedAvg LR 0.69±0.16 0.874±0.042 0.617±0.109 0.772±0.054 0.955±0.037 0.818±0.054 0.863±0.026 0.935±0.008 0.655±0.14 0.278±0.25 
FedAvg MLP 0.76±0.102 0.872±0.072 0.671±0.087 0.817±0.051 0.768±0.089 0.708±0.35 0.728±0.358 0.779±0.382 0.767±0.308 0.334±0.179 
FedAvg SGD 0.828±0.048 0.92±0.025 0.757±0.048 0.904±0.049 0.707±0.033 0.871±0.032 0.872±0.018 0.939±0.008 0.545±0.032 0.47±0.084 
FedAvg XGBRF 0.829±0.023 0.924±0.015 0.739±0.058 0.848±0.043 0.883±0.036 0.886±0.02 0.875±0.012 0.929±0.005 0.691±0.0 0.497±0.089w 
FedProx μ = 0.5 LR 0.755±0.142 0.887±0.041 0.653±0.088 0.791±0.042 0.941±0.031 0.704±0.349 0.729±0.358 0.784±0.384 0.609±0.155 0.362±0.198 
FedProx μ = 0.5 MLP 0.757±0.096 0.872±0.061 0.695±0.088 0.829±0.048 0.808±0.075 0.843±0.042 0.868±0.028 0.937±0.004 0.976±0.314 0.387±0.182 
FedProx μ = 2 LR 0.812±0.079 0.906±0.04 0.658±0.028 0.79±0.014 0.937±0.025 0.866±0.045 0.879±0.025 0.941±0.006 0.582±0.137 0.398±0.069 
FedProx μ = 2 MLP 0.765±0.079 0.868±0.06 0.694±0.069 0.83±0.042 0.798±0.045 0.706±0.348 0.724±0.355 0.781±0.382 0.9±0.368 0.379±0.133 

Table 1: Performance of Several models trained using classical machine learning methods, and 
federated learning methods, where the number of participating clients in the federation is N=2, 
tested on the PPMI dataset. Data reported is mean and standard deviation across K=6 fold cross 
validation. 
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Accuracy Correlation 
Coefficient 

AdaBoost Classifier 0.834±0.021 0.891±0.015 0.697±0.026 0.757±0.023 0.917±0.033 0.835±0.016 0.834±0.009 0.905±0.004 0.639±0.005 0.456±0.029 
Bagging 0.812±0.01 0.871±0.01 0.696±0.019 0.753±0.015 0.932±0.015 0.828±0.007 0.84±0.004 0.903±0.003 1.291±0.226 0.463±0.027 
GradientBoosting Classifier 0.856±0.013 0.9±0.016 0.716±0.018 0.766±0.014 0.938±0.013 0.856±0.007 0.857±0.003 0.908±0.003 0.572±0.042 0.502±0.024 
KNeighbors Classifier 0.586±0.024 0.735±0.019 0.551±0.019 0.664±0.011 0.946±0.024 0.707±0.008 0.783±0.001 0.899±0.0 3.322±0.641 0.169±0.042 
LinearDiscriminantAnalysis 
Classifier 

0.702±0.012 0.794±0.008 0.64±0.013 0.734±0.01 0.776±0.01 0.622±0.305 0.661±0.324 0.751±0.368 2.104±0.19 0.288±0.024 

LogisticRegression Classifier 0.771±0.011 0.842±0.009 0.657±0.008 0.73±0.005 0.901±0.01 0.791±0.004 0.81±0.005 0.901±0.001 0.996±0.039 0.368±0.02 
MLP Classifier 0.671±0.013 0.826±0.007 0.619±0.012 0.711±0.008 0.839±0.01 0.749±0.009 0.789±0.007 0.899±0.001 8.313±0.708 0.265±0.026 
QuadraticDiscriminantAnalysis 
Classifier 

0.525±0.022 0.721±0.022 0.525±0.022 0.671±0.024 0.366±0.097 0.688±0.0 0.779±0.0 0.898±0.0 18.716±1.33 0.05±0.042 

RandomForest 0.736±0.006 0.825±0.005 0.524±0.005 0.649±0.003 0.985±0.005 0.764±0.007 0.792±0.005 0.899±0.0 0.596±0.004 0.132±0.025 
SGD Classifier 0.662±0.017 0.845±0.007 0.65±0.016 0.728±0.011 0.878±0.024 0.758±0.01 0.803±0.007 0.898±0.0 10.11±0.525 0.343±0.034 
SVC Classifier 0.701±0.007 0.808±0.004 0.593±0.011 0.693±0.006 0.844±0.02 0.742±0.004 0.793±0.002 0.901±0.001 0.65±0.019 0.214±0.029 
XGBoost Classifier 0.862±0.008 0.905±0.007 0.719±0.021 0.77±0.016 0.932±0.013 0.864±0.006 0.857±0.003 0.906±0.003 0.691±0.031 0.504±0.03 
XGBoost Random Forest 
Classifier 

0.829±0.007 0.89±0.006 0.732±0.02 0.781±0.016 0.918±0.01 0.849±0.003 0.855±0.002 0.905±0.003 2.715±0.254 0.515±0.031 

FedAvg LR 0.665±0.128 0.826±0.011 0.565±0.052 0.673±0.028 0.96±0.032 0.745±0.045 0.794±0.012 0.899±0.002 0.829±0.108 0.187±0.147 
FedAvg MLP 0.69±0.018 0.78±0.012 0.629±0.01 0.719±0.007 0.828±0.022 0.744±0.008 0.791±0.007 0.899±0.001 1.038±0.239 0.282±0.024 
FedAvg SGD 0.775±0.011 0.847±0.008 0.689±0.011 0.77±0.008 0.8±0.01 0.794±0.005 0.809±0.004 0.902±0.002 0.559±0.013 0.385±0.023 
FedAvg XGBRF 0.794±0.007 0.876±0.009 0.695±0.023 0.754±0.017 0.919±0.012 0.825±0.007 0.838±0.008 0.902±0.003 0.691±0.0 0.451±0.035 
FedProx μ = 0.5 LR 0.704±0.101 0.823±0.015 0.584±0.042 0.683±0.022 0.943±0.03 0.762±0.038 0.795±0.009 0.9±0.002 0.866±0.092 0.232±0.115 
FedProx μ = 0.5 MLP 0.7±0.008 0.791±0.006 0.63±0.011 0.719±0.007 0.833±0.016 0.748±0.007 0.794±0.004 0.899±0.001 1.312±0.124 0.284±0.023 
FedProx μ = 2 LR 0.761±0.008 0.835±0.007 0.601±0.005 0.691±0.003 0.947±0.013 0.787±0.008 0.804±0.003 0.9±0.001 0.875±0.014 0.293±0.01 
FedProx μ = 2 MLP 0.695±0.022 0.785±0.015 0.631±0.02 0.722±0.013 0.818±0.02 0.747±0.014 0.791±0.005 0.899±0.001 1.231±0.285 0.282±0.044 

Table 2: Performance of Several models trained using classical machine learning methods, and 
federated learning methods, where the number of participating clients in the federation is N=2, 
tested on the PDBP dataset. Data reported is mean and standard deviation across K=6 fold cross 
validation.  
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 Number of Clients 
2 4 6 8 10 12 14 16 18 

Algorithm 
Name 

FedAvg LR 0.874 ± 
0.042 

0.876 ± 
0.041 

0.872 ± 
0.053 

0.858 ± 
0.046 

0.861 ± 
0.048 

0.859 ± 
0.051 

0.855 ± 
0.044 

0.851 ± 
0.045 

0.855 ± 
0.05 

FedAvg MLP 0.872 ± 
0.072 

0.876 ± 
0.069 

0.871 ± 
0.074 

0.877 ± 
0.057 

0.888 ± 
0.061 

0.879 ± 
0.061 

0.88 ± 
0.059 

0.867 ± 
0.075 

0.876 ± 
0.06 

FedAvg SGD 0.92 ± 
0.025 

0.898 ± 
0.044 

0.898 ± 
0.049 

0.891 ± 
0.057 

0.895 ± 
0.056 

0.893 ± 
0.057 

0.893 ± 
0.051 

0.88 ± 
0.06 

0.886 ± 
0.055 

FedAvg 
XGBRF 

0.924 ± 
0.015 

0.902 ± 
0.051 

0.929 ± 
0.02 

0.907 ± 
0.02 

0.882 ± 
0.036 

0.901 ± 
0.028 

0.878 ± 
0.048 

0.845 ± 
0.05 

0.861 ± 
0.043 

FedProx μ = 0 
LR 

0.887 ± 
0.041 

0.885 ± 
0.04 

0.869 ± 
0.048 

0.866 ± 
0.04 

0.855 ± 
0.048 

0.854 ± 
0.045 

0.856 ± 
0.054 

0.853 ± 
0.046 

0.849 ± 
0.047 

FedProx μ = 0 
MLP 

0.872 ± 
0.061 

0.876 ± 
0.063 

0.874 ± 
0.058 

0.884 ± 
0.052 

0.882 ± 
0.061 

0.888 ± 
0.067 

0.882 ± 
0.061 

0.874 ± 
0.067 

0.87 ± 
0.071 

FedProx μ = 2 
LR 

0.906 ± 
0.04 

0.879 ± 
0.042 

0.891 ± 
0.067 

0.871 ± 
0.05 

0.857 ± 
0.046 

0.856 ± 
0.047 

0.856 ± 
0.054 

0.851 ± 
0.05 

0.858 ± 
0.049 

FedProx μ = 2 
MLP 

0.868 ± 
0.06 

0.866 ± 
0.072 

0.876 ± 
0.072 

0.881 ± 
0.066 

0.881 ± 
0.066 

0.882 ± 
0.059 

0.884 ± 
0.053 

0.874 ± 
0.064 

0.877 ± 
0.056 

Table 3: AUC-PR score of models trained using Federated Learning as the quantity of client 
sites increased, tested on the PPMI dataset. Data reported is mean and standard deviation across 
K=6 fold cross validation. 
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 Number of Clients 
2 4 6 8 10 12 14 16 18 

Algorithm 
Name 

FedAvg LR 0.826 ± 
0.011 

0.811 ± 
0.011 

0.805 ± 
0.01 

0.8 ± 
0.016 

0.797 ± 
0.017 

0.799 ± 
0.016 

0.804 ± 
0.018 

0.799 ± 
0.022 

0.794 ± 
0.021 

FedAvg MLP 0.78 ± 
0.012 

0.801 ± 
0.014 

0.79 ± 
0.013 

0.791 ± 
0.015 

0.803 ± 
0.008 

0.782 ± 
0.017 

0.793 ± 
0.006 

0.778 ± 
0.005 

0.781 ± 
0.009 

FedAvg SGD 0.847 ± 
0.008 

0.823 ± 
0.009 

0.821 ± 
0.009 

0.822 ± 
0.009 

0.806 ± 
0.016 

0.81 ± 
0.006 

0.804 ± 
0.013 

0.805 ± 
0.009 

0.798 ± 
0.014 

FedAvg 
XGBRF 

0.876 ± 
0.009 

0.858 ± 
0.016 

0.856 ± 
0.019 

0.834 ± 
0.02 

0.824 ± 
0.018 

0.821 ± 
0.018 

0.807 ± 
0.034 

0.775 ± 
0.051 

0.752 ± 
0.054 

FedProx μ = 
0 LR 

0.823 ± 
0.015 

0.825 ± 
0.005 

0.807 ± 
0.012 

0.801 ± 
0.016 

0.797 ± 
0.018 

0.803 ± 
0.018 

0.793 ± 
0.021 

0.802 ± 
0.019 

0.8 ± 
0.022 

FedProx μ = 
0 MLP 

0.791 ± 
0.006 

0.803 ± 
0.012 

0.795 ± 
0.014 

0.789 ± 
0.011 

0.796 ± 
0.011 

0.794 ± 
0.009 

0.787 ± 
0.007 

0.79 ± 
0.008 

0.778 ± 
0.011 

FedProx μ = 
2 LR 

0.835 ± 
0.007 

0.812 ± 
0.007 

0.809 ± 
0.006 

0.8 ± 
0.013 

0.796 ± 
0.018 

0.796 ± 
0.018 

0.793 ± 
0.02 

0.802 ± 
0.019 

0.789 ± 
0.023 

FedProx μ = 
2 MLP 

0.785 ± 
0.015 

0.8 ± 
0.012 

0.788 ± 
0.01 

0.792 ± 
0.01 

0.797 ± 
0.007 

0.791 ± 
0.01 

0.793 ± 
0.008 

0.784 ± 
0.009 

0.791 ± 
0.011 

Table 4: AUC-PR score of models trained using Federated Learning as the quantity of client 
sites increased, tested on the PDBP dataset. Data reported is mean and standard deviation across 
K=6 fold cross validation. 
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Algorithm Name Runtime (Seconds) 
LogisticRegression 1.857e-02 ± 0.008 
SGDClassifier 6.771e-03 ± 0.001 
MLPClassifier 1.609e-01 ± 0.009 
XGBRFClassifier 1.633e-01 ± 0.003 
FedAvg SGDClassifier 1.513e+01 ± 1.497 
FedAvg XGBRFClassifier 1.061e+01 ± 0.014 
FedAvg LRClassifier 7.909e+00 ± 0.550 
FedAvg MLPClassifier 8.755e+00 ± 0.141 
FedProx μ = 0.5 LRClassifier 8.747e+00 ± 0.158 
FedProx μ = 0.5 MLPClassifier 9.039e+00 ± 0.266 
FedProx μ = 2 LRClassifier 8.905e+00 ± 0.130 
FedProx μ = 2 MLPClassifier 9.260e+00 ± 0.163 

Table 5: The total runtime in seconds to train central and federated models, averaged over K 
folds. Algorithms are grouped by aggregation strategy (Central, FedAvg, FedProx). The lowest 
training time for each group is bolded.  
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The Bigger Picture 

The wide-scale application of artificial intelligence and computationally intensive analytical 
approaches in the biomedical and clinical domain is largely restricted by access to sufficient 
training data. This data scarcity exists due to the isolated nature of biomedical and clinical 
institutions, mandated by patient privacy policies in the health system or government legislation. 
Federated Learning (FL), a machine learning approach that facilitates collaborative model 
training is a promising strategy to address these restrictions. Therefore, understanding the 
limitations of cooperatively trained FL models, and their performance differences to similar, 
centrally trained models, is crucial to valuing their implementation in the broader biomedical 
research community.  
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