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The Bigger Picture 

The wide-scale application of artificial intelligence and computationally intensive analytical 
approaches in the biomedical and clinical domain is largely restricted by access to sufficient 
training data. This data scarcity exists due to the isolated nature of biomedical and clinical 
institutions, mandated by patient privacy policies in the health system or government legislation. 
Federated Learning (FL), a machine learning approach that facilitates collaborative model training 
is a promising strategy to address these restrictions. Therefore, understanding the limitations of 
cooperatively trained FL models, and their performance differences to similar, centrally trained 
models, is crucial to valuing their implementation in the broader biomedical research community. 
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Summary 

While machine learning (ML) research has recently grown more in popularity, its application in 
the omics domain is constrained by access to sufficiently large, high-quality datasets needed to 
train ML models. Federated Learning (FL) represents an opportunity to enable collaborative 
curation of such datasets among participating institutions. We compare the simulated performance 
of several models trained using FL against classically trained ML models on the task of multi-
omics Parkinson’s Disease prediction. We find that FL model performance tracks centrally trained 
ML models, where the most performant FL model achieves an AUC-PR of 0.876 ± 0.009, 0.014 
± 0.003 less than its centrally trained variation. We also determine that the dispersion of samples 
within a federation plays a meaningful role in model performance. Our study implements several 
open source FL frameworks and aims to highlight some of the challenges and opportunities when 
applying these collaborative methods in multi-omics studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords 

Federated learning, Machine Learning, Omics Data Analysis, Parkinson’s Disease Diagnosis 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted February 12, 2024. ; https://doi.org/10.1101/2023.10.04.560604doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.04.560604


 

3 

Introduction 

In recent years, Machine Learning (ML) algorithms have gained popularity as a possible vehicle 
for solving many long-standing research questions in the clinical and biomedical setting. 
Concretely, the adoption of sophisticated ML models can aid in tasks such as biomarker detection, 
disease subtyping 1, disease identification 2; 3; 4, and the development of novel medical 
interventions. The nascence of powerful predictive methods such as ML has enabled investigations 
into advanced analytics of granular patient features, such as genomics and transcriptomics 5–7, to 
achieve the ultimate goal of precision medicine.  

Adopting ML methods is constrained by access to high-quality datasets. In biomedical studies, 
curating such quality datasets is particularly difficult due to the sample collection and processing 
costs and the barriers associated with recruiting patients who meet a study's inclusion/exclusion 
criteria. The challenge of this task is exacerbated by the fact that institutions that typically collect 
biomedical samples cannot easily share human specimens’ data due to data privacy regulations, 
such as HIPAA, EU GDPR, India’s PDPA, Canada’s PIPEDA, mandated by medical systems, or 
at a national, and international level 8.  

Federated Learning (FL) is an optimization method for performing machine learning model 
training among a group of clients, allowing each client to maintain governance of their local data. 
Initially developed for learning user behavior patterns on personal mobile devices without 
breaching individual privacy 9, FL has found valuable applications in numerous domains, 
including finance 10, medicine 11,12, and the pharmaceutical industry 13. In biomedical research, FL 
represents an opportunity to enable cross-silo analytics and more productive collaboration 14–16. 

This work evaluates Federated Learning methods' practical availability and utility to enable large-
scale, multi-institutional, and private analytics of multiple modality biomedical samples. 
Specifically, we aim to identify the frameworks biomedical researchers can use to perform 
federated learning in their work, the expected performance changes, and the implementation 
challenges they may face. We also discuss the opportunities and limitations of applying federated 
learning in multi-omics, where samples capture a patient's genomic, transcriptomic features, and 
clinical and demographic information through the case study of Parkinson's disease prediction. 

We use the multi-modal Parkinson's disease prediction as a case study for testing Federated 
Learning on omics data. Timely and accurate diagnosis of neurodegenerative diseases like 
Parkinson's is crucial in exploring the efficacy of novel therapies to treat and manage the disease. 
Since the onset of these diseases typically begins many years before any visible symptoms, early 
detection is difficult to achieve at a clinical level alone. Usually, it requires information inherent 
to the patient's biology. 6 have already determined that leveraging genomic and transcriptomic 
information as part of the diagnosis process allows for higher model performance. This study 
demonstrates the feasibility and practicality of deploying FL for Parkinson's disease prediction. 
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Results 

Federated learning models trained using publicly available and accessible frameworks 
results follow central model performance. 

We aim to evaluate the performance differences between classical ML algorithms frequently used 
in the biomedical setting, against federated learning algorithms suitable for cross-silo modeling. 
An overview of our approach (Fig. 1) shows the experimental design for evaluating several FL 
and central ML methods in the task of Parkinson’s disease prediction based on genomic, 
transcriptomic, and clinico-demographic features (Supplementary Table 1). The datasets used in 
experiments originate from studies providing clinical, demographic, and biological information of 
Parkinson’s Disease patients, the Parkinson’s Progression Marker Initiative (PPMI) and 
Parkinson’s Disease Biomarkers Program (PDBP). The PPMI dataset is a longitudinal, 
observational study where patients contribute clinical, demographic, imaging data, as well as 
biological samples for whole-genome sequencing and whole-blood RNA sequencing. PPMI 
specifically includes newly diagnosed and drug-naïve patients, collected at clinical sites globally 
over a span of 5 to 13 years. The PDBP dataset provides clinical, genetic, imaging, and biomarker 
data associated with Parkinson’s disease, Lewy Body Dementia, and other parkinsonisms. Patients 
in PDBP are not necessarily newly diagnosed or drug-naïve. The PPMI dataset is used for model 
training, validation, and testing. The PDBP dataset is used strictly as an external test set. In our 
experiments, the PPMI dataset is split into K folds, one of which is used as a holdout test set, and 
the remaining folds are used for model training and validation. To establish a baseline performance 
of classically trained, central algorithms representative of methods used in the current biomedical 
research paradigm, several central ML algorithms are fit to the training set (Supplementary Table 
2) and tested on the holdout PPMI fold, as well as the whole PDBP dataset. To simulate the cross-
silo federated setting, the training set is split into N disjoint subsets, referred to as client datasets. 
Where each baseline ML algorithm is fit to the full centralized training dataset, the FL model is fit 
to N disjoint, siloed client datasets, the union of which equates to the entire training data set. An 
illustration of the FL training process is shown in Fig. 2. The fitted FL models are finally evaluated 
against the PPMI test fold, and the PDBP dataset. 

In the optimistic FL setting where we compare a federation of N=2 client sites, which have been 
assigned samples through uniform stratified random sampling without replacement, against the 
central baseline algorithms (Fig. 3), it can be seen that for all the included FL methods, the absolute 
difference in performance is relatively small. For the internal test set, the central Logistic 
Regression (LR) Classifier 17 has an Area Under the Precision-Recall Curve (AUC-PR) of 
0.915±0.039 (standard deviation across K = 6 folds). Among the classifiers trained using FL, 
which implement the same local learner, FedAvg 18 LR, FedProx 19 μ = 0.5  LR, and FedProx μ = 
2 LR, have an AUC-PR of 0.874±0.042, 0.887±0.041, 0.906±0.04. In the external test set, a similar 
relationship between central LR and federated LR is exhibited, where classical LR has an AUC-
PR of 0.842±0.009 and FedAvgLR, μ = 0.5  LR, and FedProx μ = 2 LR, have an AUC-PR of 
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0.826±0.011, 0.823±0.015, and 0.835±0.007. This general reduction in performance between the 
centrally trained classifier and the classifier trained collaboratively through FL is a trend observed 
in nearly all of the FL algorithms across both test sets. Similarly, the central MLP classifier 20 has 
an AUC-PR of 0.892±0.032 and 0.826±0.007 respectively, while the best performing FL variation, 
FedProx MLP μ = 2 has an AUC-PR of 0.868±0.06 and 0.785±0.015 for the internal and external 
test set respectively. A similar trend can be observed for FedAvg XGBRF 21, where the 
performance reduction is proportional to that observed in other learners. The only exception to this 
pattern is in the case of SGDClassifier 22,23, where in the PDBP exhibits a marginal improvement 
of 0.002 AUC-PR. The resulting performance details, including several additional centrally trained 
ML algorithms, are in Table 1, and Table 2. The statistical significance of pairwise observed 
differences in performance is presented in Supplementary Table 3. The results of this side-by-
side comparison of FL methods in an idealistic setting with minimal heterogeneity among client 
datasets show a relatively small difference in performance compared to the central algorithms. 

Sample dispersion among client sites negatively impacts global model performance.  

By splitting the training samples among an increasing number of clients, we aim to understand the 
implications of federation configurations that have more dispersed samples (Fig. 4). In both the 
PPMI and PDBP data sets, there is a similar relative change in AUC-PR performance when 
increasing the number of client sites; the absolute performance scores, and variance are 
considerably higher for the PPMI test set than the PDBP test set. The performance of PPMI 
FedAvg XGBRF starts at 0.924 ± 0.015 AUC-PR in a federation of two client sites, and 
progressively drops to 0.861 ± 0.043 AUC-PR at 18 clients. For the PDBP performance, FedAvg 
XGBRF similarly reduces from 0.876 ± 0.009 to 0.752 ± 0.054 AUC-PR, at a minimum. Such a 
reduction in performance is also observed in the FedAvg SGD Classifier, which has an AUC-PR 
of 0.92 ± 0.025 for two clients, and an AUC-PR of 0.886 ± 0.055 for 18 clients in PPMI. In PDBP 
the same classifier starts at 0.847 ± 0.008 for two client sites, and ends at 0.798 ± 0.014 AUC-PR 
for 18 client sites. The trend of performance decline is observed for the LR classifiers as well, for 
both the PPMI and PDBP test sets. The FedAvg MLP, as well as both FedProx MLP classifiers do 
not exhibit such a reduction performance. In the PPMI test set, FedAvg MLP performance at N=2 
client sites is 0.872 ± 0.072 AUC-PR, and at N=18 client sites, 0.876 ± 0.06 client sites. Similarly, 
for PDBP performance FedAvg MLP performance is 0.78 ± 0.012 for two client sites, and 0.781 
± 0.009 for N=18 client sites. A nearly identical trend is observed in FedProx μ = 0.5, μ = 2 across 
both test sets. Detailed results are in supplementary materials, Table 3, and Table 4. 

Data heterogeneity at client sites does not significantly influence model performance. 

To understand the implications of data heterogeneity among client sites, we examine the change 
in AUC-PR in a federation of two clients with respect to the split method (Fig 5). In our 
experiments, we find that the performance changes introduced by dataset heterogeneity vary. Some 
FL models, such as FedAvg LR, FedProx μ = 0.5, FedAvg MLP, FedProx μ = 0.5 MLP, FedProx 
μ = 2 MLP exhibit performance improvements as both label heterogeneity and dataset size 
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heterogeneity are introduced. The greatest performance improvement in PDBP is 0.018 AUCPR 
by FedProx μ = 2 MLP, and 0.029 by FedAvg LR in PPMI. Conversely, find that FedProx μ = 0.5 
LR, FedProx μ = 2 LR, FedAvg SGD, FedAvg XGBRF exhibit performance degradation on 
account of dataset heterogeneity, where the greatest reduction in performance is 0.014 AUC-PR 
by XGBRF in PDBP, and 0.031 AUC-PR by FedProx μ = 2 LR on PPMI. In all such cases, the 
performance changes induced by dataset heterogeneity are marginal relative to other parameters 
such as algorithm choice or quantity of participating clients. The implications of performance 
heterogeneity as the number of clients increases are shown in Supplementary Fig. 1, 
Supplementary Fig 2. 

 

FL training time is not dramatically affected by choice in federated aggregation strategy.  

To shed light on the computational costs associated with using different FL aggregation strategies, 
we measure the model training time for FL algorithms in which the federation consists of N=2 
client sites. For the FedAvg aggregation strategy, FedAvg LR had the lowest mean runtime of 
7.909e+00 ± 0.550 seconds. Similarly, for the algorithms implementing FedProx aggregation, 
FedProx μ = 0.5 LRClassifier had the lowest overall runtime of 8.747e+00 ± 0.158 seconds. 
FedProx μ = 2 LRClassifier had the second lowest runtime for FedProx variants with a runtime of 
8.905e+00 ± 0.130 seconds. For the MLP classifier, FedAvg, FedProx μ = 0.5, and FedProx μ = 2 
had a progressively increasing runtimes 8.755e+00 ± 0.141 seconds, 9.039e+00 ± 0.266 seconds, 
9.260e+00 ± 0.163 seconds respectively. FedAvg XGBRF, and FedAvg SGD had a considerably 
higher runtime of 1.061e+01 ± 0.014 and 1.513e+01 ± 1.497 seconds respectively. A visualization 
of the runtimes for FL algorithms is presented in Figure 6.  

In contrast to the FL algorithms, central algorithm training time is at least an order of magnitude 
lower. The fastest model to train, SGD Classifier fits the model in 6.771e-03 ± 0.001 seconds, and 
the slowest model, MLP Classifier fits its model in 1.609e-01 ± 0.009. Central LR Classifier and 
XGBRF run in 1.857e-02 ± 0.008 and 1.633e-01 ± 0.003 seconds respectively. The full list of 
runtimes including central and federated algorithms is presented in Table 7. 

Discussion 

In conjunction with increased access to genomic and transcriptomic data, the proliferation of high-
quality Machine Learning open-source packages, has helped advance numerous long-standing 
challenges in biomedical research, such as disease subtyping, biomarker identification, and early 
disease diagnosis. The common bottleneck limiting such advances has thus shifted from the ability 
to apply ML methods to the availability of high-quality, well-designed datasets. Federated 
Learning has been cited as a promising means of alleviating the data scarcity problem through 
data-private collaborative model training 24–26. Previous works focus on applying FL to domains 
adjacent to multi-omics disease diagnosis, namely focusing on imaging data 14,27, longitudinal 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted February 12, 2024. ; https://doi.org/10.1101/2023.10.04.560604doi: bioRxiv preprint 

https://paperpile.com/c/O6ZNQ0/C6C9Y+DxmTT+nGbAp
https://paperpile.com/c/O6ZNQ0/7ItjU+DJPJ2
https://doi.org/10.1101/2023.10.04.560604


 

7 

health records 15, named entity recognition 28. Similar works such as 29 approach benchmarking FL 
models on biomedical datasets, but focus on comparing different FL aggregation strategies, rather 
than evaluating FL against a central baseline, as is done in our study. By approaching federated 
learning for multi-omics disease diagnosis from a performance benchmarking perspective, 
focusing on algorithms that are broadly accessible in the open-source community, we hope to shed 
light on what kind of practical performance can be achieved in a real-world setting where deep AI 
and Software Systems expertise may be limited. We additionally aim to understand what 
fundamental pitfalls researchers must be aware of before applying such methods in their multi-
omics tasks.  

When comparing centrally trained models against collaboratively trained models that implement 
the same local learner algorithm, our results indicate the FL trained model performance tends to 
be consistently less than that of the central method, while approximately following the 
performance of the central ML method. The general reduction in AUC-PR testing score between 
the FL and central method is noteworthy, but not a substantial deterioration. It can also be observed 
that for the studied aggregation strategies, FL model performance follows central model 
performance. In cases where the central model is performant, the FL trained model will be as well. 
In the case of the strongest central classifier in the central setting, XGBRF, the FL method 
implementing the same algorithm as a local learner, FedAvg XGBRF, also had the highest 
performance among models trained using FL. Additionally, we see that in many cases, FedAvg 
XGBRF outperforms central ML classifiers such as Logistic Regression, SGD, and MLP at the 
same task by a significant margin. This empirical result indicates that in cases where institutions 
must decide between applying FL methods to their setting, or centralizing data by complying with 
potentially stringent regulations, FL can be considered an effective option. In addition to this, 
because the implementation of such methods is available through open-source, strongly 
documented frameworks, the resource investment to achieve scientifically meaningful results may 
not be significant. We also note that because an FL model’s performance tracks, and seldom 
exceeds its central model performance, it can be crudely used to approximate the central model 
lower bound. Such an estimate of central performance, even if inexact, may be valuable for 
institutional stakeholders when deciding whether financial and administrative resources should be 
allocated to centralize several siloed datasets. We also note the overall reduction in performance 
between models trained using FL methods and models trained using central methods can be 
attributed to the federated aggregation process, which, in our case, is implemented as the 
unweighted average of the local learner model weights. Such a naive averaging process detracts 
from the parameter optimization implemented by local learners, but is a necessary cost to enable 
sample-private federated training. Furthermore, we note that several novel methods which 
implement more sophisticated weight aggregation strategies have been developed in academic 
settings, but are not always available as generally applicable open source packages. Overall, this 
test indicates that FL may be used to enable productive collaboration among institutions existing 
on opposite sides of geographic and policy boundaries, such as EU-GDPR, as well as across cloud 
providers and bare metal servers.  
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In the second arm of our study, we aim to understand the model performance cost of conducting 
collaborative training among a federation with increasing sample dispersion. Such a situation may 
arise, when institution stakeholders must comply with several layers of regulatory requirements, 
where centralizing some sites is easier than others. A concrete example of such a regulation is in 
the case of EU-GDPR, where transport of patient samples beyond the boundaries of the EU 
requires compliance with GDPR, and each country's respective legislation mandates the transport 
of samples between countries within the EU. In this series of experiments, we assume that the 
globally available set of samples is constant, but the quantity of federation members containing 
the samples varies. Our experiments show that some methods, such as the LR classifiers, FedAvg 
SGD and FedAvg XGBRF, tend to exhibit performance degradation when there are more siloes 
with fewer samples per silo. We also observe that methods implementing MLP as a local learner, 
tend not to exhibit performance degradation with respect to sample concentration at siloes. Such 
methods do not necessarily achieve the best performance for any federation configurations, 
however, in the most extreme federation configuration of 18 clients, are still outperformed by 
methods such as FedAvg SGD and FedAvg LR. Methods whose performance is not strongly 
affected by silo size may represent practical starting points for the application of FL in an 
exploratory task. Ultimately, because FL models appear to have an optimal operating point which 
is modulated by the federation configuration, the final choice in FL methods used to reach peak 
performance should be determined by an exhaustive search. This finding suggests that a practical 
future format for applying FL in the biomedical setting may be through the auto-ML paradigm, 
which frameworks such as H2O 30, Auto Sklearn 31 currently implemented in the classical ML 
setting.  

We additionally find in our studies that the implementation of heterogeneous client sites, with 
respect to dataset size and label counts, does not necessarily result in performance reductions for 
all algorithms. Some models such as FedAvg LR, models implementing MLP as a local learner, 
tend to increase performance, while models such FedAvg XGBRF, and FedAvg SGD exhibit 
performance degradation when the number of client sites is two (Supplementary Figure 1). We 
further find that when the number of clients is four, such heterogeneity has varying effects on 
performance, different from the configuration with two client sites. Overall, performance changes 
with respect to client dataset heterogeneity are marginal relative to changes introduced by factors 
such a number of clients per federation, or algorithm selection. 

When comparing training time among federated learning algorithms, we found a mild progression 
in training time between FedAvg LRClassifier, FedProx μ = 0.5 LRClassifier, and FedProx μ = 2 
LRClassifier respectively. The same trend can be observed for the FL algorithms using MLP as a 
local learner. The progressive increase in runtime may be attributed to the relative difference in 
complexity between the FedAvg and FedProx optimization mechanism. The objective of FedProx 
weight aggregation function includes a regularization term, μ, designed to handle heterogeneity 
among clients 19. The FedAvg optimization objective does not include this mechanism, making it 
conceptually simpler. In the context of this study, the performance differences incurred by choice 
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in aggregation method are minor relative to parameters such as choice in local learner, number of 
federated aggregation rounds, and dataset size. 

When comparing the training time of central and federated models, we find that the central model 
training time is at least an order of magnitude lower than the federated training time. This result is 
not surprising, given that federated models implement global weight aggregation and updating 
steps in model training. Given that our study performs federated optimization in simulation, 
production deployments of FL methods can be expected to have slower overall runtimes due to 
network latency and operating system throughput capabilities.  

The algorithms used in evaluating collaboratively trained models using FL against centralized 
applications of their local learner methods are detailed in Supplementary Table 2. In our study, 
we omitted using closed-source FL methods available through platform interfaces since these 
methods allow data governance capabilities to external parties, or vendor security evaluations, 
which in some cases instantiates barriers to productive research. While numerous publications 
explore methodological improvements that push forward state-of-the-art FL model performance 
in an experimental setting, we encountered challenges in applying such methods in our case, as 
many of these academic studies do not result in broadly applicable packages. In our research, we 
found a set of open-source projects that implement FL methods and provide out-of-the-box 
solutions, or well-designed examples that could be interpolated to the multi-omics classification 
task to be limited. Ultimately, the FL interfaces made available by NVFlare 32 and Flower 33 were 
selected to conduct experiments, with local learners implemented using Sklearn 22 and DMLC 21 
packages. Several open-source projects, such as Owkin 34, Tensorflow Federated 35, and OpenFL 
36 provide full interfaces for implementing deep learning models in TensorFlow 35, and PyTorch 
37, but such deep methods are less suitable for tabular tasks on datasets with only a handful of 
samples, as is the case the multi-omics datasets used in this study. Additionally, we found that 
while several packages provided abstract interfaces for implementing any arbitrary set of local 
learners and aggregation strategies, without detailed examples with a straightforward path to 
adaptation to a particular research task, the practical application of such methods becomes 
challenging, and less approachable for groups which may be resource constrained.  

The extent to which Federation Site configurations could be studied was largely limited by the 
number of case patients within the dataset. Concretely, the implications of heterogeneity in site 
data could only be observed to the extent that each silo would maintain enough samples from case 
and control cohorts to allow the local learner to successfully train. Datasets at silos needed to have 
at least one sample from both the case and control groups. Similarly, although the PPMI dataset 
was collected across several geographically distributed institutions, point of origin information is 
not available for each sample, preventing the evaluation of performance on naturally occurring 
siloes. In our study, all experiments assume that the collective dataset available among all client 
sites has a constant size. An additional limitation of our work is in observing the effect of adding 
federation members, which contribute novel samples to the federation.  
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While FL methods enable data owners to maintain governance of their local datasets, on its own, 
FL does not provide end to end privacy guarantees. Our study examines the utility of FL methods 
in the multi-omics case study to understand the availability and characteristics of FL,  and does 
not include a concrete evaluation of privacy, or security methods. Thus, we assume that the 
federated learning aggregation server is neither dishonest, curious, nor malicious in any way and 
fulfills its functions as an intermediary between client sites benevolently. Privacy preserving 
methods orthogonal to FL such as Differential Privacy (DP) enable the application of FL with 
formal guarantees of sample-privacy 38. Such approaches were not included in the scope of this 
evaluation, but represent a factor which should be considered when applying FL methods in 
settings where verifiable sample privacy guarantees are critical. In our experimentation, we do not 
focus on the implications of the federation which has heterogeneous compute capabilities, since 
applying machine learning model fitting on datasets with few samples can be done without much 
difficulty.  

The datasets utilized in our analysis, including PPMI and PDBP, are sourced from the Accelerating 
Medicines Partnership Parkinson’s Disease (AMP-PD) initiative. This initiative plays a pivotal 
role in unifying transcriptomic and genomic samples, ensuring consistency and accuracy through 
central harmonization and joint-calling processes. Furthermore, the construction of machine 
learning features for our analysis is also centralized, leveraging these cohesive datasets. 
Recognizing the potential for broader application, our future focus includes exploring federated 
analysis tasks 39–41. This involves enhancing cross-silo harmonization, joint-calling, and feature 
construction across diverse datasets. To facilitate this, the development of specialized federated 
learning libraries, specifically tailored for genomics and transcriptomics, is crucial. Such 
advancements will not only democratize access to federated learning (FL) methods for the wider 
biomedical community but also significantly broaden the scope for applying machine learning 
techniques in various biomedical contexts. 

Overall, we believe that this work sheds light onto the feasibility, and noteworthy characteristics 
of applying Federated Learning for omics analysis. Through our experiments, we find that 
collaboratively trained FL models can achieve high classification accuracy in multi-omics 
Parkinson’s Disease Diagnosis, and can remain relatively performance despite heterogeneity 
among client sites. We also find in our evaluation that although FL is a relatively novel research 
space in bioinformatics, there is sufficient access to open source methods which biomedical 
researchers may leverage to enable productive collaborations. 
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Experimental Procedures 

Resource Availability 

Lead Contact 

Further information and requests for resources and reagents should be directed to and will be 
fulfilled by the lead contact, Faraz Faghri (faraz@datatecnica.com). 

Materials Availability 

This study did not generate new unique materials. 

Data and Code Availability 

Data 
The data used in this study was access-controlled from the Parkinson's Progression Marker Initiative (PPMI, 

http://www.ppmi-info.org/ ) and the Parkinson's Disease Biomarkers Program (PDBP, 

https://pdbp.ninds.nih.gov/).  

Code 
To facilitate replication and expansion of our work, we have made the notebook publicly available in an 

open repository42. It includes all code, figures, models, and supplements for this study. The code is part of 

the supplemental information; it includes the rendered Jupyter notebook with full step-by-step data 

preprocessing, statistical, and machine learning analysis. 

Any additional information required to reanalyze the data reported in this paper is available from 
the lead contact upon request. 

 

Datasets 

The dataset used in this study as the basis for training and as the internal test set is the Parkinson’s 
Progression Marker Initiative (PPMI) dataset. The PPMI dataset represents a longitudinal, 
observational study where patients contribute clinical, demographic, imaging data, biological 
samples for whole-genome sequencing, and whole-blood RNA sequencing. Samples are collected 
at 33 clinical sites globally and across a time span of anywhere from 5 to 13 years. This 
preprocessed dataset consists of 171 samples of case patients diagnosed with Parkinson’s disease 
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and 427 healthy control patients. The PPMI cohort contains newly diagnosed, and drug-naive 
patient samples. The PPMI cohort contains 209 (36%) female samples, 388 (67%) male samples 
(Supplementary Table 4). 

The dataset used in this study for external, out-of-distribution validation is the Parkinson’s Disease 
Biomarker Program (PDBP). It is a longitudinal, observational study where patients contribute 
clinical, demographic, and imaging data and biological samples for whole-genome and whole-
blood RNA sequencing. The preprocessed dataset consists of 712 healthy control patients and 404 
case patients diagnosed with Parkinson’s disease. Each sample comprises 713 features, including 
genetic, transcriptomic, and clinico-demographic information collected at the baseline. The PDBP 
cohort consists of 480 (43%) female samples, and 636 (57%) male samples. (Supplementary 
Table 5). 

Both PPMI and PDBP data used in this study were acquired through the AMP-PD initiative 43, 
an effort to provide harmonized datasets that include common clinical and genomic data. 
Through this initiative, the PPMI and PDBP datasets are centrally joint-called and harmonized to 
allow standardization across cohorts.  
 
Transcriptomic data from whole blood RNA sequencing was generated by the Translational 
Genomics Research Institute team using standard protocols for the Illumina NovaSeq technology 
and processed through variance-stabilization and limma pipelines 44 for experimental covariates. 
Gene expression counts for protein-coding genes were extracted, then differential expression p 
values were calculated between cases and controls using logistic regression adjusted for 
additional covariates of sex, plate, age, ten principal components, and percentage usable bases. A 
comprehensive description of the RNA-Sequencing method is presented in 45 for PPMI, and 46 
for PDBP. 
 
For genetic data, sequencing data were generated using Illumina’s standard short-read 
technology, and the functional equivalence pipeline during alignment was the Broad Institute’s 
implementation 47. Applied quality control measures included criteria like gender concordance 
and call rate, with a focus on SNPs meeting the GATK gold standards pipeline and additional 
filters like non-palindromic alleles and missingness by case-control status thresholds. Polygenic 
risk scores (PRS) were constructed using effect sizes from a large European genome-wide meta-
analysis, supplementing the genetic data from whole genome sequences. The process from 
sample prep to variant calling is comprehensively described in 43.  
 
Quality control for genetic samples based on genetic data output by the pipeline included the 
following inclusion criteria: concordance between genetic and clinically ascertained genders, call 
rate > 95% at both the sample and variant levels, heterozygosity rate < 15%, free mix estimated 
contamination rate < 3%, transition:transversion ratio > 2, unrelated to any other sample at a 
level of the first cousin or closer (identity by descent < 12.5%), and genetically ascertained 
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European ancestry. For inclusion of whole-genome DNA sequencing data, the variants must 
have passed basic quality control as part of the initial sequencing effort (PASS flag from the joint 
genotyping pipeline) as well as meeting the following criteria: non-palindromic alleles, 
missingness by case-control status P > 1E-4, missingness by haplotype P > 1E-4, Hardy–
Weinberg p value > 1E-4, minor allele frequency in cases > 5% (in the latest Parkinson’s disease 
meta-GWAS by 48) . As an a priori genetic feature to be included in our modeling efforts, we 
also used the basic polygenic risk score from the latest Parkinson’s disease meta-GWAS 
(genome-wide significant loci only) that did not include our testing or training samples as 
weights 48. 

Compared to the PPMI dataset, PDBP includes an additional 40 genetic features, which are 
excluded from this study, allowing PPMI and PBDP to have the same feature set. Additionally, 
the PPMI samples are collected before any medical intervention, whereas the PDBP samples are, 
in some cases, collected after patient treatment has commenced. Since the PDBP dataset may 
include artifacts which result from disease treatment, the PDBP dataset is used exclusively for 
evaluation to avoid the possibility of label leakage. A shortened version of the final feature set is 
provided in Supplementary Table 1. A comprehensive feature list is available in the external code 
repository 42. 

Each sample consists of 673 features, including genetic, transcriptomic, and clinico-demographic 
information collected at the baseline. Of the 673 features, 72 originate from genome sequencing 
data and polygenic risk score,  596 are transcriptomic, and 5 are clinico-demographic. The clinico-
demographic features include age, family history, inferred Ashkenazi Jewish status, sex, 
University of Pennsylvania Smell Identification (UPSIT) score.  

Data Preprocessing 

The construction of features from genomic, transcriptomic, and clinico-demographic data is 
handled for each cohort independently, and in a centralized manner, for the entirety of the cohort. 
As part of the initial data preprocessing, principal components summarizing genetic variation in 
DNA and RNA sequencing data modalities are generated separately. For the DNA sequencing, ten 
principal components were calculated based on a random set of 10,000 variants sampled after 
linkage disequilibrium pruning that kept only variants with r2 < 0.1 with any other variants in ±1 
MB. As a note, these variants were not p value filtered based on recent GWAS, but they do exclude 
regions containing large tracts of linkage disequilibrium 49. Our genetic data pruning removed 
SNPs in long tracts of high LD such as in the HLA region (we excluded any SNPs within r2 > 0.1 
within a sliding window of 1 MB), while retaining known genetic risk SNPs within the region. For 
RNA sequencing data, all protein-coding genes’ read counts per sample were used to generate a 
second set of ten principal components. All potential features representing genetic variants (in the 
form of minor allele dosages) from sequencing were then adjusted for the DNA sequence-derived 
principal components using linear regression, extracting the residual variation. This adjustment 
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removes the effects of quantifiable European population substructure from the genetic features 
prior to training, this is similar in theory to adjusting analyses for the same principal components 
in the common variant regression paradigm employed by GWAS models. The same was done for 
RNA sequencing data using RNA sequencing derived principal components. This way, we 
statistically account for latent population substructure and experimental covariates at the feature 
level to increase generalizability across heterogeneous datasets. In its simplest terms, all 
transcriptomic data were corrected for possible confounders, and the same is done for genotype 
dosages. After adjustment, all continuous features were then Z-transformed to have a mean of 0 
and a standard deviation of 1 to keep all features on the same numeric scale when possible. Once 
feature adjustment and normalization were complete, internal feature selection was carried out in 
the PPMI training dataset using decision trees (extraTrees Classifier) to identify features 
contributing information content to the model while reducing the potential for overfitting prior to 
model generation 22 50. Overfitting here is defined as the over-performance of a model in the 
training phase with minimal generalizability in the validation dataset due to the inclusion of 
potentially correlated or unimportant features. The implementation of decision trees for feature 
selection helps remove redundant and low-impact features, helping us to generate the most 
parsimonious feature set for modeling. Feature selection was run on combined data modalities to 
remove potentially redundant feature contributions that could artificially inflate model accuracy. 
Export estimates for features most likely to contribute to the final model in order of importance 
were generated by the extraTrees classifier for each of the combined models, and are available on 
the Online Repository. By removing redundant features, the potential for overfitting is limited 
while also making the models more conservative. Additionally, if a variant provided redundant 
model information, such as being in strong linkage with a PRS variant, it would be removed from 
the potential feature list.  

Feature selection was performed using the extremely randomized trees classifier algorithm, 
extraTrees 50, on combined data modalities to remove redundant feature contributions that could 
overfit the model to optimize the information content from the features and limit artificial inflation 
in predictive accuracy that might be introduced by including such a large number of features before 
filtering. In many cases, including more data might not be better for performance. With this in 
mind, we attempted to build the most parsimonious model possible using systematic feature 
selection criteria 51. Among the top 5% of features ranked in the Shapley analysis, the mean 
correlation between features was r2 < 5%, with a maximum of 36%. By removing redundant 
features using correlation-based pruning and an extraTrees classifier as a data munging step, the 
potential for overfitting is limited while also making the models more conservative.  

Clinical and demographic data ascertained as part of this project included age at diagnosis for cases 
and age at baseline visit for controls. Family history (self-reporting if a first or second-degree 
relative has a PD diagnosis) was also a known clinico-demographic feature of interest. Ashkenazi 
Jewish status was inferred using principal component analysis comparing those samples to a 
genetic reference series, referencing the genotyping array data from GSE23636 at Gene Expression 
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Omnibus as previously described elsewhere 43,52. Sex was clinically ascertained but also confirmed 
using X chromosome heterozygosity rates. The University of Pennsylvania smell inventory test 
(UPSIT) was used in modeling 53. A comprehensive description of data and preprocessing is 
described in 6. 

Quantification and Statistical Analysis 

We conducted K-fold cross-validation on the PPMI dataset, where K=6, allowing each fold to 
contain approximately 100 samples. For each cross-validation fold, 1/K of the PPMI samples are 
withheld as a holdout test set. The remaining training split of K - 1/K samples are further split 
using uniform stratified random sampling at an 80:20 ratio into training and validation subsets. 
The evaluation set was used for cross validated hyperparameter tuning in the central and federated 
models. The PPMI dataset was selected as the training and internal test set due to the fact that 
patients samples recorded in the PPMI protocol are newly diagnosed and drug-naive. Additionally, 
by training on the PPMI dataset, the model is developed on patients earlier on in their disease 
course. This intentional choice was made in the hopes the model would identify other individuals 
early on in their disease course and prioritize them for follow-up. The PDBP cohort samples are 
collected within five years after diagnosis, and may be actively taking medications. While the 
PDBP cohort is larger, because samples are collected several years after diagnosis, and because 
patients may be actively taking medication, there is a possibility of label leakage, ultimately 
motivating the usage of the PPMI dataset for training. Due to the similar nature of the PPMI and 
PDBP dataset, after processing, the PDBP dataset can be used as an external test set, approximating 
out-of-distribution model performance. 

To conduct federated model training, the fully preprocessed PPMI dataset is split into disjoint 
client subsets, using one of the split strategies, and assigned to a local learner. To train a global 
model using the data among all federation participants, an iterative optimization process is run for 
a predefined set of rounds (Fig. 2). During this process, federation members fit local learner models 
to their locally available datasets. The parameters resulting from local model fitting are then sent 
to the central aggregation server. Once all model parameters are received, the aggregation server 
applies a federated learning strategy to the set of model weights, resulting in aggregated model 
weights, referred to as the global model. The global model is then sent back to the client sites, and 
used as the starting point for local learner optimization in subsequent iterations. The best 
performing global model on the evaluation set is used for final testing. 

We simulate two types of heterogeneity in our experiments by distributing samples from the 
training dataset using different split methods. The split method uniform stratified sampling 
implements label, and site size homogeneity. The split method uniform random sampling 
implements label heterogeneity, but site size homogeneity. The split method linear random 
sampling implements label and site size heterogeneity (Fig. 3).  
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Local client data sets were formed by applying such sampling techniques to the centralized training 
data set. Uniform stratified sampling was used to form the K folds and during experiments that 
study homogenous federations. Uniform stratified sampling entails sampling the source dataset 
such that there is a nearly even distribution of samples among each of the N clients, and the ratio 
of cases to controls across each client subset is equivalent (where surplus samples are assigned to 
one of the client sites at random). This method was implemented by partitioning the source dataset 
by phenotype and then, without replacement, assigning 1/N samples of each phenotype partition 
to each client using uniform random sampling, with the last client receiving any extra samples. In 
practice, this additional data was less than 10 of samples. Uniform random sampling entails 
assigning 1/N using uniform random sampling. Linear random sampling entails assigning ci 
samples to a client site, where the following is true: 

!
!

"#$

𝑖 ∗ 𝑐 " = 𝐶 

In the above formula, C is the number of samples to distribute, in practice the size of the PPMI 
training set, and i is the index of the client site. As with previous methods, the final client receives 
any surplus samples left over. The effect of this linear random sampling strategy is that each of the 
N clients contains an increasing number of samples relative to the previous clients, and each client 
site contains a random distribution of cases versus controls.  

To measure algorithm runtime, for central algorithms, we measured the quantity of seconds from 
model initialization, to model training completion. For federated algorithms, we measured the 
quantity of seconds from model initialization, to the end of the FL training simulation. For FL 
models, model optimization was conducted for a federation of N=2 federation clients, for 5 
aggregation rounds. 

In our simulation configurations, federation rounds operate synchronously, and without failure. 
Hyperparameters that were used to compute the final results are reported in the appendix, including 
the random seed used for the presented results. 

The Federated Machine Learning methods implemented in the study utilize the federated 
aggregation methods FedAvg 18, FedProx 19, and the local learner classification methods, Logistic 
Regression 17, Multi-Layer Perceptron 20, Stochastic Gradient Descent 23, and XGBoost 21 available 
through Sklearn 22 and DMLC 21,22. The aggregation methods are implemented using NVFlare 32, 
and Flower 33, while local learner methods are implemented using Sklearn, and DMLC APIs. 
Configuration details are available in the supplementary section. Simulation Frameworks used to 
implement model experiments are made available through the NVFlare and Flower packages. A 
single client site exhibits a minor computational cost of a single GB CPU and a single logical 
processor, which must be available throughout the life of the simulation. The simulations for both 
NVFlare and Flower required 18 Gb of RAM, and 18 logical cores. A simulation to train a single 
FL model takes less than 1 minute to complete. Running the full suite of simulations to reproduce 
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the paper figures takes 6-8 hours. All experiments were conducted on Redhat Enterprise Linux 
Distribution. 
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Figure 1: The experiment workflow diagram and the data summary.  
The harmonized, and joint-called PPMI and PDBP cohorts originate from the AMP-PD initiative. 
The PPMI cohort is split into K folds, where one fold is left as a holdout (internal) test set, and the 
remaining are used for model fitting. The training folds are split using an 80:20 ratio to form the 
training validation split. The training split is distributed among N clients using one of the split 
strategies to simulate the cross-silo collaborative training setting. FL Methods consist of a local 
learner and an aggregation method. Similarly, several central algorithms are used to fit the training 
data. The resultant Global FL models and the ML models resulting from central training are tested 
on the PPMI holdout fold (internal test) and the whole PDBP test set (external test). 
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Figure 2: Federated architecture and training summary.  
The FL architecture used in the study also illustrates 1 round of FL training for the case of N=3 
clients. The aggregation server aggregates trained local learner parameters from clients and 
computing a global model. Client Sites contain their own siloed dataset, each with different 
samples. The trained client parameters are represented by the blue, orange, and green weights; the 
black weights represent the aggregated global model. Client model aggregation implemented by 
the federated learning strategy is denoted by f. Once global weights are computed, a copy is sent 
to each client; the global model is used to initialize the local learner model weights in subsequent 
FL training rounds. 
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Figure 3: Federated learning models trained using publicly available and accessible 
frameworks results follow central model performance. 
The Precision Recall Area Under Curve (PRAUC) comparing Central Algorithms against 
Federated Algorithms. We pair FL algorithms with central algorithms by the local learning 
algorithm applied at client sites. Federated Algorithms receive the training data set split across 
n=2 clients, using label stratified random sampling. Presented data is mean score and standard 
deviation resulting from cross validation. 
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Figure 4: Sample dispersion among client sites negatively impacts global model 
performance.  
For a fixed training dataset, the AUC-PR of Federated Algorithms as the quantity of client sites 
increases. Training data is split uniformly among each member of the federation using stratified 
random sampling. The PDBP and PPMI datasets are used for external and internal validation, 
respectively. Presented data is mean score and standard deviation resulting from cross validation. 
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Figure 5: Data heterogeneity at client sites does not deeply influence model performance. 
The AUC-PR for a federation of 2 clients, for several split methods. Uniform stratified sampling, 
representing the most homogenous data distribution method, while uniform random, and linear 
random represent increasingly heterogeneous client distributions. Presented data is mean score and 
standard deviation resulting from cross validation. 
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Figure 6. The mean runtime to train FL models using FedAvg and FedProx strategies. 

The mean total runtime in seconds to train FL models. FL models are trained on the PPMI training 
folds for 5 communication rounds. Algorithms are grouped by aggregation strategy. Results 
presented as mean and standard deviation over K=6 folds. 
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Algorithm Name ROC-AUC AUC-PR Balanced 
Accuracy 

Precision Recall F 0.5 F 1 F 2 Log Loss Matthews 
Correlation 
Coefficient 

AdaBoost Classifier 0.865±0.033 0.939±0.01 0.736±0.069 0.844±0.043 0.89±0.047 0.897±0.017 0.885±0.027 0.942±0.013 0.632±0.007 0.499±0.122 
Bagging Classifier 0.82±0.05 0.916±0.025 0.69±0.052 0.813±0.027 0.897±0.061 0.865±0.021 0.862±0.024 0.933±0.01 1.001±0.382 0.428±0.123 
GradientBoosting Classifier 0.879±0.046 0.943±0.026 0.723±0.072 0.833±0.042 0.911±0.021 0.916±0.03 0.894±0.022 0.942±0.015 0.444±0.099 0.486±0.119 
KNeighbors Classifier 0.61±0.099 0.806±0.065 0.533±0.029 0.729±0.014 0.937±0.046 0.782±0.023 0.837±0.007 0.927±0.004 2.836±0.617 0.111±0.104 
LinearDiscriminantAnalysis 
Classifier 

0.763±0.045 0.883±0.031 0.681±0.053 0.826±0.04 0.77±0.05 0.7±0.344 0.714±0.35 0.776±0.38 1.608±0.488 0.347±0.095 

LogisticRegression Classifier 0.831±0.068 0.915±0.039 0.734±0.072 0.841±0.043 0.894±0.028 0.872±0.047 0.883±0.033 0.939±0.011 0.648±0.203 0.493±0.134 
MLP Classifier 0.739±0.078 0.892±0.032 0.703±0.059 0.833±0.038 0.815±0.054 0.843±0.038 0.858±0.034 0.932±0.013 6.616±1.844 0.402±0.119 
QuadraticDiscriminantAnalysis 
Classifier 

0.504±0.057 0.774±0.029 0.504±0.057 0.725±0.055 0.385±0.081 0.757±0.008 0.833±0.006 0.926±0.003 19.674±1.492 0.009±0.105 

RandomForest 0.816±0.076 0.917±0.027 0.552±0.034 0.736±0.016 0.993±0.017 0.857±0.043 0.874±0.032 0.942±0.014 0.508±0.029 0.249±0.121 
SGD Classifier 0.755±0.065 0.907±0.025 0.735±0.062 0.846±0.032 0.857±0.068 0.857±0.037 0.876±0.036 0.936±0.015 7.525±2.282 0.481±0.143 
SVC Classifier 0.838±0.069 0.924±0.032 0.711±0.071 0.827±0.041 0.883±0.042 0.872±0.042 0.886±0.024 0.941±0.008 0.44±0.082 0.447±0.145 
XGBoost Classifier 0.89±0.046 0.953±0.018 0.765±0.097 0.86±0.062 0.911±0.03 0.915±0.03 0.900±0.033 0.942±0.014 0.461±0.135 0.557±0.167 
XGBoost Random Forest 
Classifier 

0.857±0.064 0.936±0.029 0.773±0.057 0.868±0.04 0.885±0.047 0.907±0.039 0.891±0.041 0.936±0.011 1.79±0.853 0.558±0.105 

FedAvg LR 0.69±0.16 0.874±0.042 0.617±0.109 0.772±0.054 0.955±0.037 0.818±0.054 0.863±0.026 0.935±0.008 0.655±0.14 0.278±0.25 
FedAvg MLP 0.76±0.102 0.872±0.072 0.671±0.087 0.817±0.051 0.768±0.089 0.708±0.35 0.728±0.358 0.779±0.382 0.767±0.308 0.334±0.179 
FedAvg SGD 0.828±0.048 0.92±0.025 0.757±0.048 0.904±0.049 0.707±0.033 0.871±0.032 0.872±0.018 0.939±0.008 0.545±0.032 0.47±0.084 
FedAvg XGBRF 0.829±0.023 0.924±0.015 0.739±0.058 0.848±0.043 0.883±0.036 0.886±0.02 0.875±0.012 0.929±0.005 0.691±0.0 0.497±0.089w 
FedProx μ = 0.5 LR 0.755±0.142 0.887±0.041 0.653±0.088 0.791±0.042 0.941±0.031 0.704±0.349 0.729±0.358 0.784±0.384 0.609±0.155 0.362±0.198 
FedProx μ = 0.5 MLP 0.757±0.096 0.872±0.061 0.695±0.088 0.829±0.048 0.808±0.075 0.843±0.042 0.868±0.028 0.937±0.004 0.976±0.314 0.387±0.182 
FedProx μ = 2 LR 0.812±0.079 0.906±0.04 0.658±0.028 0.79±0.014 0.937±0.025 0.866±0.045 0.879±0.025 0.941±0.006 0.582±0.137 0.398±0.069 
FedProx μ = 2 MLP 0.765±0.079 0.868±0.06 0.694±0.069 0.83±0.042 0.798±0.045 0.706±0.348 0.724±0.355 0.781±0.382 0.9±0.368 0.379±0.133 

 
Table 1: Performance of Several models trained using classical machine learning methods, and federated learning methods, where the 
number of participating clients in the federation is N=2, tested on the PPMI dataset. Data reported is mean and standard deviation 
across K=6 fold cross validation. 
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Algorithm Name ROC-AUC AUC-PR Balanced 
Accuracy 

Precision Recall F 0.5 F 1 F 2 Log Loss Matthews 
Correlation 
Coefficient 

AdaBoost Classifier 0.834±0.021 0.891±0.015 0.697±0.026 0.757±0.023 0.917±0.033 0.835±0.016 0.834±0.009 0.905±0.004 0.639±0.005 0.456±0.029 
Bagging 0.812±0.01 0.871±0.01 0.696±0.019 0.753±0.015 0.932±0.015 0.828±0.007 0.84±0.004 0.903±0.003 1.291±0.226 0.463±0.027 
GradientBoosting Classifier 0.856±0.013 0.9±0.016 0.716±0.018 0.766±0.014 0.938±0.013 0.856±0.007 0.857±0.003 0.908±0.003 0.572±0.042 0.502±0.024 
KNeighbors Classifier 0.586±0.024 0.735±0.019 0.551±0.019 0.664±0.011 0.946±0.024 0.707±0.008 0.783±0.001 0.899±0.0 3.322±0.641 0.169±0.042 
LinearDiscriminantAnalysis 
Classifier 

0.702±0.012 0.794±0.008 0.64±0.013 0.734±0.01 0.776±0.01 0.622±0.305 0.661±0.324 0.751±0.368 2.104±0.19 0.288±0.024 

LogisticRegression Classifier 0.771±0.011 0.842±0.009 0.657±0.008 0.73±0.005 0.901±0.01 0.791±0.004 0.81±0.005 0.901±0.001 0.996±0.039 0.368±0.02 
MLP Classifier 0.671±0.013 0.826±0.007 0.619±0.012 0.711±0.008 0.839±0.01 0.749±0.009 0.789±0.007 0.899±0.001 8.313±0.708 0.265±0.026 
QuadraticDiscriminantAnalysis 
Classifier 

0.525±0.022 0.721±0.022 0.525±0.022 0.671±0.024 0.366±0.097 0.688±0.0 0.779±0.0 0.898±0.0 18.716±1.33 0.05±0.042 

RandomForest 0.736±0.006 0.825±0.005 0.524±0.005 0.649±0.003 0.985±0.005 0.764±0.007 0.792±0.005 0.899±0.0 0.596±0.004 0.132±0.025 
SGD Classifier 0.662±0.017 0.845±0.007 0.65±0.016 0.728±0.011 0.878±0.024 0.758±0.01 0.803±0.007 0.898±0.0 10.11±0.525 0.343±0.034 
SVC Classifier 0.701±0.007 0.808±0.004 0.593±0.011 0.693±0.006 0.844±0.02 0.742±0.004 0.793±0.002 0.901±0.001 0.65±0.019 0.214±0.029 
XGBoost Classifier 0.862±0.008 0.905±0.007 0.719±0.021 0.77±0.016 0.932±0.013 0.864±0.006 0.857±0.003 0.906±0.003 0.691±0.031 0.504±0.03 
XGBoost Random Forest 
Classifier 

0.829±0.007 0.89±0.006 0.732±0.02 0.781±0.016 0.918±0.01 0.849±0.003 0.855±0.002 0.905±0.003 2.715±0.254 0.515±0.031 

FedAvg LR 0.665±0.128 0.826±0.011 0.565±0.052 0.673±0.028 0.96±0.032 0.745±0.045 0.794±0.012 0.899±0.002 0.829±0.108 0.187±0.147 
FedAvg MLP 0.69±0.018 0.78±0.012 0.629±0.01 0.719±0.007 0.828±0.022 0.744±0.008 0.791±0.007 0.899±0.001 1.038±0.239 0.282±0.024 
FedAvg SGD 0.775±0.011 0.847±0.008 0.689±0.011 0.77±0.008 0.8±0.01 0.794±0.005 0.809±0.004 0.902±0.002 0.559±0.013 0.385±0.023 
FedAvg XGBRF 0.794±0.007 0.876±0.009 0.695±0.023 0.754±0.017 0.919±0.012 0.825±0.007 0.838±0.008 0.902±0.003 0.691±0.0 0.451±0.035 
FedProx μ = 0.5 LR 0.704±0.101 0.823±0.015 0.584±0.042 0.683±0.022 0.943±0.03 0.762±0.038 0.795±0.009 0.9±0.002 0.866±0.092 0.232±0.115 
FedProx μ = 0.5 MLP 0.7±0.008 0.791±0.006 0.63±0.011 0.719±0.007 0.833±0.016 0.748±0.007 0.794±0.004 0.899±0.001 1.312±0.124 0.284±0.023 
FedProx μ = 2 LR 0.761±0.008 0.835±0.007 0.601±0.005 0.691±0.003 0.947±0.013 0.787±0.008 0.804±0.003 0.9±0.001 0.875±0.014 0.293±0.01 
FedProx μ = 2 MLP 0.695±0.022 0.785±0.015 0.631±0.02 0.722±0.013 0.818±0.02 0.747±0.014 0.791±0.005 0.899±0.001 1.231±0.285 0.282±0.044 

Table 2: Performance of Several models trained using classical machine learning methods, and federated learning methods, where the 
number of participating clients in the federation is N=2, tested on the PDBP dataset. Data reported is mean and standard deviation 
across K=6 fold cross validation.  
 

 

 

 

 

 

 

 

 

 

 

105 and is also m
ade available for use under a C

C
0 license. 

(w
hich w

as not certified by peer review
) is the author/funder. T

his article is a U
S

 G
overnm

ent w
ork. It is not subject to copyright under 17 U

S
C

 
T

he copyright holder for this preprint
this version posted F

ebruary 12, 2024. 
; 

https://doi.org/10.1101/2023.10.04.560604
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/2023.10.04.560604


 
 Number of Clients 

2 4 6 8 10 12 14 16 18 
Algorithm 

Name 
FedAvg LR 0.874 ± 0.042 0.876 ± 0.041 0.872 ± 0.053 0.858 ± 0.046 0.861 ± 0.048 0.859 ± 0.051 0.855 ± 0.044 0.851 ± 0.045 0.855 ± 0.05 

FedAvg MLP 0.872 ± 0.072 0.876 ± 0.069 0.871 ± 0.074 0.877 ± 0.057 0.888 ± 0.061 0.879 ± 0.061 0.88 ± 0.059 0.867 ± 0.075 0.876 ± 0.06 

FedAvg SGD 0.92 ± 0.025 0.898 ± 0.044 0.898 ± 0.049 0.891 ± 0.057 0.895 ± 0.056 0.893 ± 0.057 0.893 ± 0.051 0.88 ± 0.06 0.886 ± 0.055 

FedAvg XGBRF 0.924 ± 0.015 0.902 ± 0.051 0.929 ± 0.02 0.907 ± 0.02 0.882 ± 0.036 0.901 ± 0.028 0.878 ± 0.048 0.845 ± 0.05 0.861 ± 0.043 

FedProx μ = 0 LR 0.887 ± 0.041 0.885 ± 0.04 0.869 ± 0.048 0.866 ± 0.04 0.855 ± 0.048 0.854 ± 0.045 0.856 ± 0.054 0.853 ± 0.046 0.849 ± 0.047 

FedProx μ = 0 MLP 0.872 ± 0.061 0.876 ± 0.063 0.874 ± 0.058 0.884 ± 0.052 0.882 ± 0.061 0.888 ± 0.067 0.882 ± 0.061 0.874 ± 0.067 0.87 ± 0.071 

FedProx μ = 2 LR 0.906 ± 0.04 0.879 ± 0.042 0.891 ± 0.067 0.871 ± 0.05 0.857 ± 0.046 0.856 ± 0.047 0.856 ± 0.054 0.851 ± 0.05 0.858 ± 0.049 

FedProx μ = 2 MLP 0.868 ± 0.06 0.866 ± 0.072 0.876 ± 0.072 0.881 ± 0.066 0.881 ± 0.066 0.882 ± 0.059 0.884 ± 0.053 0.874 ± 0.064 0.877 ± 0.056 

Table 3: AUC-PR score of models trained using Federated Learning as the quantity of client sites increased, tested on the PPMI 
dataset. Data reported is mean and standard deviation across K=6 fold cross validation. 
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 Number of Clients 

2 4 6 8 10 12 14 16 18 
Algorithm 

Name 
FedAvg LR 0.826 ± 0.011 0.811 ± 0.011 0.805 ± 0.01 0.8 ± 0.016 0.797 ± 0.017 0.799 ± 0.016 0.804 ± 0.018 0.799 ± 0.022 0.794 ± 0.021 

FedAvg MLP 0.78 ± 0.012 0.801 ± 0.014 0.79 ± 0.013 0.791 ± 0.015 0.803 ± 0.008 0.782 ± 0.017 0.793 ± 0.006 0.778 ± 0.005 0.781 ± 0.009 

FedAvg SGD 0.847 ± 0.008 0.823 ± 0.009 0.821 ± 0.009 0.822 ± 0.009 0.806 ± 0.016 0.81 ± 0.006 0.804 ± 0.013 0.805 ± 0.009 0.798 ± 0.014 

FedAvg XGBRF 0.876 ± 0.009 0.858 ± 0.016 0.856 ± 0.019 0.834 ± 0.02 0.824 ± 0.018 0.821 ± 0.018 0.807 ± 0.034 0.775 ± 0.051 0.752 ± 0.054 

FedProx μ = 0 LR 0.823 ± 0.015 0.825 ± 0.005 0.807 ± 0.012 0.801 ± 0.016 0.797 ± 0.018 0.803 ± 0.018 0.793 ± 0.021 0.802 ± 0.019 0.8 ± 0.022 

FedProx μ = 0 MLP 0.791 ± 0.006 0.803 ± 0.012 0.795 ± 0.014 0.789 ± 0.011 0.796 ± 0.011 0.794 ± 0.009 0.787 ± 0.007 0.79 ± 0.008 0.778 ± 0.011 

FedProx μ = 2 LR 0.835 ± 0.007 0.812 ± 0.007 0.809 ± 0.006 0.8 ± 0.013 0.796 ± 0.018 0.796 ± 0.018 0.793 ± 0.02 0.802 ± 0.019 0.789 ± 0.023 

FedProx μ = 2 MLP 0.785 ± 0.015 0.8 ± 0.012 0.788 ± 0.01 0.792 ± 0.01 0.797 ± 0.007 0.791 ± 0.01 0.793 ± 0.008 0.784 ± 0.009 0.791 ± 0.011 

Table 4: AUC-PR score of models trained using Federated Learning as the quantity of client sites increased, tested on the PDBP 
dataset. Data reported is mean and standard deviation across K=6 fold cross validation. 
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Algorithm Name Runtime (Seconds) 
LogisticRegression 1.857e-02 ± 0.008 
SGDClassifier 6.771e-03 ± 0.001 
MLPClassifier 1.609e-01 ± 0.009 
XGBRFClassifier 1.633e-01 ± 0.003 
FedAvg SGDClassifier 1.513e+01 ± 1.497 
FedAvg XGBRFClassifier 1.061e+01 ± 0.014 
FedAvg LRClassifier 7.909e+00 ± 0.550 
FedAvg MLPClassifier 8.755e+00 ± 0.141 
FedProx μ = 0.5 LRClassifier 8.747e+00 ± 0.158 
FedProx μ = 0.5 MLPClassifier 9.039e+00 ± 0.266 
FedProx μ = 2 LRClassifier 8.905e+00 ± 0.130 
FedProx μ = 2 MLPClassifier 9.260e+00 ± 0.163 
 
Table 5: The total runtime in seconds to train central and federated models, averaged over K folds. Algorithms are grouped by 
aggregation strategy (Central, FedAvg, FedProx). The lowest training time for each group is bolded.  
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