Skip to main content
[Preprint]. 2024 Feb 12:2023.10.04.560604. Originally published 2023 Oct 6. [Version 3] doi: 10.1101/2023.10.04.560604

Table 1:

Performance of Several models trained using classical machine learning methods, and federated learning methods, where the number of participating clients in the federation is N=2, tested on the PPMI dataset. Data reported is mean and standard deviation across K=6 fold cross validation.

Algorithm Name ROC-AUC AUC-PR Balanced
Accuracy
Precision Recall F 0.5 F 1 F 2 Log Loss Matthews
Correlation
Coefficient
AdaBoost Classifier 0.865±0.033 0.939±0.01 0.736±0.069 0.844±0.043 0.89±0.047 0.897±0.017 0.885±0.027 0.942±0.013 0.632±0.007 0.499±0.122
Bagging Classifier 0.82±0.05 0.916±0.025 0.69±0.052 0.813±0.027 0.897±0.061 0.865±0.021 0.862±0.024 0.933±0.01 1.001±0.382 0.428±0.123
GradientBoosting Classifier 0.879±0.046 0.943±0.026 0.723±0.072 0.833±0.042 0.911±0.021 0.916±0.03 0.894±0.022 0.942±0.015 0.444±0.099 0.486±0.119
KNeighbors Classifier 0.61±0.099 0.806±0.065 0.533±0.029 0.729±0.014 0.937±0.046 0.782±0.023 0.837±0.007 0.927±0.004 2.836±0.617 0.111±0.104
LinearDiscriminantAnalysis Classifier 0.763±0.045 0.883±0.031 0.681±0.053 0.826±0.04 0.77±0.05 0.7±0.344 0.714±0.35 0.776±0.38 1.608±0.488 0.347±0.095
LogisticRegression Classifier 0.831±0.068 0.915±0.039 0.734±0.072 0.841±0.043 0.894±0.028 0.872±0.047 0.883±0.033 0.939±0.011 0.648±0.203 0.493±0.134
MLP Classifier 0.739±0.078 0.892±0.032 0.703±0.059 0.833±0.038 0.815±0.054 0.843±0.038 0.858±0.034 0.932±0.013 6.616±1.844 0.402±0.119
QuadraticDiscriminantAnalysis Classifier 0.504±0.057 0.774±0.029 0.504±0.057 0.725±0.055 0.385±0.081 0.757±0.008 0.833±0.006 0.926±0.003 19.674±1.492 0.009±0.105
RandomForest 0.816±0.076 0.917±0.027 0.552±0.034 0.736±0.016 0.993±0.017 0.857±0.043 0.874±0.032 0.942±0.014 0.508±0.029 0.249±0.121
SGD Classifier 0.755±0.065 0.907±0.025 0.735±0.062 0.846±0.032 0.857±0.068 0.857±0.037 0.876±0.036 0.936±0.015 7.525±2.282 0.481±0.143
SVC Classifier 0.838±0.069 0.924±0.032 0.711±0.071 0.827±0.041 0.883±0.042 0.872±0.042 0.886±0.024 0.941±0.008 0.44±0.082 0.447±0.145
XGBoost Classifier 0.89±0.046 0.953±0.018 0.765±0.097 0.86±0.062 0.911±0.03 0.915±0.03 0.900±0.033 0.942±0.014 0.461±0.135 0.557±0.167
XGBoost Random Forest Classifier 0.857±0.064 0.936±0.029 0.773±0.057 0.868±0.04 0.885±0.047 0.907±0.039 0.891±0.041 0.936±0.011 1.79±0.853 0.558±0.105
FedAvg LR 0.69±0.16 0.874±0.042 0.617±0.109 0.772±0.054 0.955±0.037 0.818±0.054 0.863±0.026 0.935±0.008 0.655±0.14 0.278±0.25
FedAvg MLP 0.76±0.102 0.872±0.072 0.671±0.087 0.817±0.051 0.768±0.089 0.708±0.35 0.728±0.358 0.779±0.382 0.767±0.308 0.334±0.179
FedAvg SGD 0.828±0.048 0.92±0.025 0.757±0.048 0.904±0.049 0.707±0.033 0.871±0.032 0.872±0.018 0.939±0.008 0.545±0.032 0.47±0.084
FedAvg XGBRF 0.829±0.023 0.924±0.015 0.739±0.058 0.848±0.043 0.883±0.036 0.886±0.02 0.875±0.012 0.929±0.005 0.691±0.0 0.497±0.089w
FedProx μ = 0.5 LR 0.755±0.142 0.887±0.041 0.653±0.088 0.791±0.042 0.941±0.031 0.704±0.349 0.729±0.358 0.784±0.384 0.609±0.155 0.362±0.198
FedProx μ = 0.5 MLP 0.757±0.096 0.872±0.061 0.695±0.088 0.829±0.048 0.808±0.075 0.843±0.042 0.868±0.028 0.937±0.004 0.976±0.314 0.387±0.182
FedProx μ = 2 LR 0.812±0.079 0.906±0.04 0.658±0.028 0.79±0.014 0.937±0.025 0.866±0.045 0.879±0.025 0.941±0.006 0.582±0.137 0.398±0.069
FedProx μ = 2 MLP 0.765±0.079 0.868±0.06 0.694±0.069 0.83±0.042 0.798±0.045 0.706±0.348 0.724±0.355 0.781±0.382 0.9±0.368 0.379±0.133