Table 2:
Algorithm Name | ROC-AUC | AUC-PR | Balanced Accuracy |
Precision | Recall | F 0.5 | F 1 | F 2 | Log Loss | Matthews Correlation Coefficient |
---|---|---|---|---|---|---|---|---|---|---|
AdaBoost Classifier | 0.834±0.021 | 0.891±0.015 | 0.697±0.026 | 0.757±0.023 | 0.917±0.033 | 0.835±0.016 | 0.834±0.009 | 0.905±0.004 | 0.639±0.005 | 0.456±0.029 |
Bagging | 0.812±0.01 | 0.871±0.01 | 0.696±0.019 | 0.753±0.015 | 0.932±0.015 | 0.828±0.007 | 0.84±0.004 | 0.903±0.003 | 1.291±0.226 | 0.463±0.027 |
GradientBoosting Classifier | 0.856±0.013 | 0.9±0.016 | 0.716±0.018 | 0.766±0.014 | 0.938±0.013 | 0.856±0.007 | 0.857±0.003 | 0.908±0.003 | 0.572±0.042 | 0.502±0.024 |
KNeighbors Classifier | 0.586±0.024 | 0.735±0.019 | 0.551±0.019 | 0.664±0.011 | 0.946±0.024 | 0.707±0.008 | 0.783±0.001 | 0.899±0.0 | 3.322±0.641 | 0.169±0.042 |
LinearDiscriminantAnalysis Classifier | 0.702±0.012 | 0.794±0.008 | 0.64±0.013 | 0.734±0.01 | 0.776±0.01 | 0.622±0.305 | 0.661±0.324 | 0.751±0.368 | 2.104±0.19 | 0.288±0.024 |
LogisticRegression Classifier | 0.771±0.011 | 0.842±0.009 | 0.657±0.008 | 0.73±0.005 | 0.901±0.01 | 0.791±0.004 | 0.81±0.005 | 0.901±0.001 | 0.996±0.039 | 0.368±0.02 |
MLP Classifier | 0.671±0.013 | 0.826±0.007 | 0.619±0.012 | 0.711±0.008 | 0.839±0.01 | 0.749±0.009 | 0.789±0.007 | 0.899±0.001 | 8.313±0.708 | 0.265±0.026 |
QuadraticDiscriminantAnalysis Classifier | 0.525±0.022 | 0.721±0.022 | 0.525±0.022 | 0.671±0.024 | 0.366±0.097 | 0.688±0.0 | 0.779±0.0 | 0.898±0.0 | 18.716±1.33 | 0.05±0.042 |
RandomForest | 0.736±0.006 | 0.825±0.005 | 0.524±0.005 | 0.649±0.003 | 0.985±0.005 | 0.764±0.007 | 0.792±0.005 | 0.899±0.0 | 0.596±0.004 | 0.132±0.025 |
SGD Classifier | 0.662±0.017 | 0.845±0.007 | 0.65±0.016 | 0.728±0.011 | 0.878±0.024 | 0.758±0.01 | 0.803±0.007 | 0.898±0.0 | 10.11±0.525 | 0.343±0.034 |
SVC Classifier | 0.701±0.007 | 0.808±0.004 | 0.593±0.011 | 0.693±0.006 | 0.844±0.02 | 0.742±0.004 | 0.793±0.002 | 0.901±0.001 | 0.65±0.019 | 0.214±0.029 |
XGBoost Classifier | 0.862±0.008 | 0.905±0.007 | 0.719±0.021 | 0.77±0.016 | 0.932±0.013 | 0.864±0.006 | 0.857±0.003 | 0.906±0.003 | 0.691±0.031 | 0.504±0.03 |
XGBoost Random Forest Classifier | 0.829±0.007 | 0.89±0.006 | 0.732±0.02 | 0.781±0.016 | 0.918±0.01 | 0.849±0.003 | 0.855±0.002 | 0.905±0.003 | 2.715±0.254 | 0.515±0.031 |
FedAvg LR | 0.665±0.128 | 0.826±0.011 | 0.565±0.052 | 0.673±0.028 | 0.96±0.032 | 0.745±0.045 | 0.794±0.012 | 0.899±0.002 | 0.829±0.108 | 0.187±0.147 |
FedAvg MLP | 0.69±0.018 | 0.78±0.012 | 0.629±0.01 | 0.719±0.007 | 0.828±0.022 | 0.744±0.008 | 0.791±0.007 | 0.899±0.001 | 1.038±0.239 | 0.282±0.024 |
FedAvg SGD | 0.775±0.011 | 0.847±0.008 | 0.689±0.011 | 0.77±0.008 | 0.8±0.01 | 0.794±0.005 | 0.809±0.004 | 0.902±0.002 | 0.559±0.013 | 0.385±0.023 |
FedAvg XGBRF | 0.794±0.007 | 0.876±0.009 | 0.695±0.023 | 0.754±0.017 | 0.919±0.012 | 0.825±0.007 | 0.838±0.008 | 0.902±0.003 | 0.691±0.0 | 0.451±0.035 |
FedProx μ = 0.5 LR | 0.704±0.101 | 0.823±0.015 | 0.584±0.042 | 0.683±0.022 | 0.943±0.03 | 0.762±0.038 | 0.795±0.009 | 0.9±0.002 | 0.866±0.092 | 0.232±0.115 |
FedProx μ = 0.5 MLP | 0.7±0.008 | 0.791±0.006 | 0.63±0.011 | 0.719±0.007 | 0.833±0.016 | 0.748±0.007 | 0.794±0.004 | 0.899±0.001 | 1.312±0.124 | 0.284±0.023 |
FedProx μ = 2 LR | 0.761±0.008 | 0.835±0.007 | 0.601±0.005 | 0.691±0.003 | 0.947±0.013 | 0.787±0.008 | 0.804±0.003 | 0.9±0.001 | 0.875±0.014 | 0.293±0.01 |
FedProx μ = 2 MLP | 0.695±0.022 | 0.785±0.015 | 0.631±0.02 | 0.722±0.013 | 0.818±0.02 | 0.747±0.014 | 0.791±0.005 | 0.899±0.001 | 1.231±0.285 | 0.282±0.044 |