Skip to main content
[Preprint]. 2024 Feb 12:2023.10.04.560604. Originally published 2023 Oct 6. [Version 3] doi: 10.1101/2023.10.04.560604

Table 2:

Performance of Several models trained using classical machine learning methods, and federated learning methods, where the number of participating clients in the federation is N=2, tested on the PDBP dataset. Data reported is mean and standard deviation across K=6 fold cross validation.

Algorithm Name ROC-AUC AUC-PR Balanced
Accuracy
Precision Recall F 0.5 F 1 F 2 Log Loss Matthews
Correlation
Coefficient
AdaBoost Classifier 0.834±0.021 0.891±0.015 0.697±0.026 0.757±0.023 0.917±0.033 0.835±0.016 0.834±0.009 0.905±0.004 0.639±0.005 0.456±0.029
Bagging 0.812±0.01 0.871±0.01 0.696±0.019 0.753±0.015 0.932±0.015 0.828±0.007 0.84±0.004 0.903±0.003 1.291±0.226 0.463±0.027
GradientBoosting Classifier 0.856±0.013 0.9±0.016 0.716±0.018 0.766±0.014 0.938±0.013 0.856±0.007 0.857±0.003 0.908±0.003 0.572±0.042 0.502±0.024
KNeighbors Classifier 0.586±0.024 0.735±0.019 0.551±0.019 0.664±0.011 0.946±0.024 0.707±0.008 0.783±0.001 0.899±0.0 3.322±0.641 0.169±0.042
LinearDiscriminantAnalysis Classifier 0.702±0.012 0.794±0.008 0.64±0.013 0.734±0.01 0.776±0.01 0.622±0.305 0.661±0.324 0.751±0.368 2.104±0.19 0.288±0.024
LogisticRegression Classifier 0.771±0.011 0.842±0.009 0.657±0.008 0.73±0.005 0.901±0.01 0.791±0.004 0.81±0.005 0.901±0.001 0.996±0.039 0.368±0.02
MLP Classifier 0.671±0.013 0.826±0.007 0.619±0.012 0.711±0.008 0.839±0.01 0.749±0.009 0.789±0.007 0.899±0.001 8.313±0.708 0.265±0.026
QuadraticDiscriminantAnalysis Classifier 0.525±0.022 0.721±0.022 0.525±0.022 0.671±0.024 0.366±0.097 0.688±0.0 0.779±0.0 0.898±0.0 18.716±1.33 0.05±0.042
RandomForest 0.736±0.006 0.825±0.005 0.524±0.005 0.649±0.003 0.985±0.005 0.764±0.007 0.792±0.005 0.899±0.0 0.596±0.004 0.132±0.025
SGD Classifier 0.662±0.017 0.845±0.007 0.65±0.016 0.728±0.011 0.878±0.024 0.758±0.01 0.803±0.007 0.898±0.0 10.11±0.525 0.343±0.034
SVC Classifier 0.701±0.007 0.808±0.004 0.593±0.011 0.693±0.006 0.844±0.02 0.742±0.004 0.793±0.002 0.901±0.001 0.65±0.019 0.214±0.029
XGBoost Classifier 0.862±0.008 0.905±0.007 0.719±0.021 0.77±0.016 0.932±0.013 0.864±0.006 0.857±0.003 0.906±0.003 0.691±0.031 0.504±0.03
XGBoost Random Forest Classifier 0.829±0.007 0.89±0.006 0.732±0.02 0.781±0.016 0.918±0.01 0.849±0.003 0.855±0.002 0.905±0.003 2.715±0.254 0.515±0.031
FedAvg LR 0.665±0.128 0.826±0.011 0.565±0.052 0.673±0.028 0.96±0.032 0.745±0.045 0.794±0.012 0.899±0.002 0.829±0.108 0.187±0.147
FedAvg MLP 0.69±0.018 0.78±0.012 0.629±0.01 0.719±0.007 0.828±0.022 0.744±0.008 0.791±0.007 0.899±0.001 1.038±0.239 0.282±0.024
FedAvg SGD 0.775±0.011 0.847±0.008 0.689±0.011 0.77±0.008 0.8±0.01 0.794±0.005 0.809±0.004 0.902±0.002 0.559±0.013 0.385±0.023
FedAvg XGBRF 0.794±0.007 0.876±0.009 0.695±0.023 0.754±0.017 0.919±0.012 0.825±0.007 0.838±0.008 0.902±0.003 0.691±0.0 0.451±0.035
FedProx μ = 0.5 LR 0.704±0.101 0.823±0.015 0.584±0.042 0.683±0.022 0.943±0.03 0.762±0.038 0.795±0.009 0.9±0.002 0.866±0.092 0.232±0.115
FedProx μ = 0.5 MLP 0.7±0.008 0.791±0.006 0.63±0.011 0.719±0.007 0.833±0.016 0.748±0.007 0.794±0.004 0.899±0.001 1.312±0.124 0.284±0.023
FedProx μ = 2 LR 0.761±0.008 0.835±0.007 0.601±0.005 0.691±0.003 0.947±0.013 0.787±0.008 0.804±0.003 0.9±0.001 0.875±0.014 0.293±0.01
FedProx μ = 2 MLP 0.695±0.022 0.785±0.015 0.631±0.02 0.722±0.013 0.818±0.02 0.747±0.014 0.791±0.005 0.899±0.001 1.231±0.285 0.282±0.044