Skip to main content
[Preprint]. 2024 Feb 12:2023.10.04.560604. Originally published 2023 Oct 6. [Version 3] doi: 10.1101/2023.10.04.560604

Table 4:

AUC-PR score of models trained using Federated Learning as the quantity of client sites increased, tested on the PDBP dataset. Data reported is mean and standard deviation across K=6 fold cross validation.

Number of Clients
2 4 6 8 10 12 14 16 18
Algorithm Name FedAvg LR 0.826 ± 0.011 0.811 ± 0.011 0.805 ± 0.01 0.8 ± 0.016 0.797 ± 0.017 0.799 ± 0.016 0.804 ± 0.018 0.799 ± 0.022 0.794 ± 0.021
FedAvg MLP 0.78 ± 0.012 0.801 ± 0.014 0.79 ± 0.013 0.791 ± 0.015 0.803 ± 0.008 0.782 ± 0.017 0.793 ± 0.006 0.778 ± 0.005 0.781 ± 0.009
FedAvg SGD 0.847 ± 0.008 0.823 ± 0.009 0.821 ± 0.009 0.822 ± 0.009 0.806 ± 0.016 0.81 ± 0.006 0.804 ± 0.013 0.805 ± 0.009 0.798 ± 0.014
FedAvg XGBRF 0.876 ± 0.009 0.858 ± 0.016 0.856 ± 0.019 0.834 ± 0.02 0.824 ± 0.018 0.821 ± 0.018 0.807 ± 0.034 0.775 ± 0.051 0.752 ± 0.054
FedProx μ = 0 LR 0.823 ± 0.015 0.825 ± 0.005 0.807 ± 0.012 0.801 ± 0.016 0.797 ± 0.018 0.803 ± 0.018 0.793 ± 0.021 0.802 ± 0.019 0.8 ± 0.022
FedProx μ = 0 MLP 0.791 ± 0.006 0.803 ± 0.012 0.795 ± 0.014 0.789 ± 0.011 0.796 ± 0.011 0.794 ± 0.009 0.787 ± 0.007 0.79 ± 0.008 0.778 ± 0.011
FedProx μ = 2 LR 0.835 ± 0.007 0.812 ± 0.007 0.809 ± 0.006 0.8 ± 0.013 0.796 ± 0.018 0.796 ± 0.018 0.793 ± 0.02 0.802 ± 0.019 0.789 ± 0.023
FedProx μ = 2 MLP 0.785 ± 0.015 0.8 ± 0.012 0.788 ± 0.01 0.792 ± 0.01 0.797 ± 0.007 0.791 ± 0.01 0.793 ± 0.008 0.784 ± 0.009 0.791 ± 0.011