Skip to main content
[Preprint]. 2024 Feb 12:2023.10.04.560604. Originally published 2023 Oct 6. [Version 3] doi: 10.1101/2023.10.04.560604

Table 5:

The total runtime in seconds to train central and federated models, averaged over K folds. Algorithms are grouped by aggregation strategy (Central, FedAvg, FedProx). The lowest training time for each group is bolded.

Algorithm Name Runtime (Seconds)
LogisticRegression 1.857e-02 ± 0.008
SGDClassifier 6.771e-03 ± 0.001
MLPClassifier 1.609e-01 ± 0.009
XGBRFClassifier 1.633e-01 ± 0.003
FedAvg SGDClassifier 1.513e+01 ± 1.497
FedAvg XGBRFClassifier 1.061e+01 ± 0.014
FedAvg LRClassifier 7.909e+00 ± 0.550
FedAvg MLPClassifier 8.755e+00 ± 0.141
FedProx μ = 0.5 LRClassifier 8.747e+00 ± 0.158
FedProx μ = 0.5 MLPClassifier 9.039e+00 ± 0.266
FedProx μ = 2 LRClassifier 8.905e+00 ± 0.130
FedProx μ = 2 MLPClassifier 9.260e+00 ± 0.163