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 2 

Abstract  45 

Currently, coronary artery disease (CAD) is the leading cause of death among adults worldwide. 46 
Accurate risk stratification can support optimal lifetime prevention. We designed a novel and 47 

general multistate model (MSGene) to estimate age-specific transitions across 10 48 
cardiometabolic states, dependent on clinical covariates and a CAD polygenic risk score. 49 

MSGene supports decision making about CAD prevention related to any of these states. We 50 
analyzed longitudinal data from 480,638 UK Biobank participants and compared predicted 51 

lifetime risk with the 30-year Framingham risk score. MSGene improved discrimination (C-index 52 
0.71 vs 0.66), age of high-risk detection (C-index 0.73 vs 0.52), and overall prediction (RMSE 53 

1.1% vs 10.9%), with external validation. We also used MSGene to refine estimates of lifetime 54 
absolute risk reduction from statin initiation. Our findings underscore the potential public health 55 

value of our novel multistate model for accurate lifetime CAD risk estimation using clinical 56 

factors and increasingly available genetics. 57 
  58 
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 3 

Introduction 59 
 60 
Coronary artery disease (CAD), remains the leading cause of morbidity and mortality 61 

worldwide.1 Estimating an individual's risk of developing CAD over the lifetime is essential for 62 
timely and effective prevention and intervention.2–5 Traditional risk prediction models, such as 63 

the Pooled Cohort Equations (PCE) 10-year risk score, have guided clinical decisions and 64 
preventive strategies; however, these models come with inherent limitations.6–8 A 30-year or 10-65 

year window provides only a fixed, albeit extended, snapshot of risk. It neither captures the 66 
entirety of an individual's lifetime risk nor provides dynamic, age-specific insights beyond these 67 

arbitrary periods. Most importantly, there is a growing need for models capable of both 68 
recognizing undertreated younger patients while reducing over-estimation in older patients.7,9,10 69 

Current guidelines9,11,12 recommend the consideration of primordial risk factors in risk-70 

stratifying patients, and call for better methods of estimating lifetime risk. Recent evidence 71 
suggests that lifetime risk assessment provides a more comprehensive picture of an individual's 72 

propensity for developing CAD across time.13,14 Traditional factors in combination with genomic 73 

risk can confer a disproportionately elevated risk for CAD in the long term.2,15–17 Focusing on 74 

lifetime risk allows for more effective patient counseling, tailored preventive measures, and 75 

earlier interventions that may delay or prevent the onset of CAD altogether.18,19  76 

Because of the multifactorial nature of CAD, there is an increasing need for continuously 77 

updated, dynamic and individualized CAD risk predictions that span a patient's entire life.2,14,20 78 
Such risk prediction models could improve the identification of undertreated younger patients 79 

while avoiding risk over-estimation in older patients.7,9,10 Understanding risk from this 80 
perspective allows for more informed and timely interventions, potentially even before the 81 

conventional risk windows are applicable.  82 
Here, we introduce the MSGene model — a multistate model designed to predict the 83 

lifetime risk of CAD, conditional on both time-fixed and time-dependent variables. Multistate 84 

models allow for the estimation of the risk of an individual transitioning between health states21–85 
25 through flexible estimation of conditional probabilities by modeling the transitions between 86 

states over time. By modeling the different health states simultaneously, they naturally account 87 
for competing risks.  88 

MSGene is capable of modeling the dynamic transitions from risk factor states to CAD 89 
with age-specific coefficients. Critically, our approach differs from a traditional Markov-based 90 

multistate model21,22 by extending our model to the time inhomogeneous case and allowing our 91 
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transitions to vary with age, and also from traditional Cox models by allowing for non-92 

proportional hazards. 93 
In the current study, we develop and validate the MSGene model. We evaluate the 94 

performance compared to the traditionally employed Framingham 30-year26 and PCE 10-year5,6 95 
models. We then estimate the potential ability of MSGene to reduce CAD events by guiding 96 

timely initiation of statin therapy and demonstrate the benefit of a multistate framework to 97 
incorporate dynamic changes in treatment decisions for unique patient profiles. 98 

Results 99 
Novel multistate model with time-dependent transitions  100 

We build a novel time-dependent multistate model in which age is the time scale.  101 
For each age and current state (Fig. 1), we model the one-year probability of transition from 102 

state to state as a logistic regression conditional on both time-fixed covariates (sex, CAD-PRS), 103 

and time-dependent covariates (smoking, use of anti-hypertensives or statins) (Methods). This 104 
methodology defines an inhomogenous Markov transition model which can be used to compute 105 

the probability of reaching any state of interest during one’s lifetime, among other quantities. 106 
Here, to compare our model to existing tools we focus on CAD.  107 

We use a limited set of covariates (Methods) as a result of the variable selection 108 
described in Supp. Table 1. To improve estimation efficiency, we smooth each set of state to 109 

state coefficients across ages using a flexible tricube distance weighted least square local 110 
regression27 with inverse variance weighting of raw estimate. This allows for the sharing of 111 

information across ages in instances in which the number of individuals at a particular transition 112 
may be small. We calculate risk under a statin-treated and statin-untreated strategies by 113 

imputing trial-imputed relative risk reduction of statin use on each annual age-specific transition 114 

(Methods). We develop this in the R programming language (4.3.0) and provide detailed code 115 
and an interactive application for users. 116 

Baseline characteristics 117 
We considered 480,638 individuals: 260653 (54.2%) were female with 43,855 (11.1%) incident 118 

coronary artery disease diagnoses (Table 1) with a median 29.9 years [22.4–35.1] years of 119 
follow-up and median age of first observation in EHR 24.3 [IQR: 18.0, 37.1] after excluding 120 
20,534 who lacked sufficient covariates or had CAD at baseline (Fig. 2). MSGene allows for 121 
visualization of the proportional representation by risk factor at each age (Fig. 1): approximately 122 
39.6% are ultimately diagnosed with hypertension, 23.6% with hyperlipidemia, and 9.9% with 123 
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Diabetes mellitus (1 or 2). Furthermore, 10.5% report currently smoking and 20.3% began 124 

antihypertensive use during the course of our study; 46.1% also contributed to the general 125 
practice cohort, and the distribution of risk factors was homogenous between subsets (Supp. 126 
Fig. 1). We use 80% of our data as training and 20% as testing (Fig. 2) for internal cross-127 

validation and to optimize model fit. Accordingly, this divides our data into a training set for 128 
model fitting using 384,510 samples and a testing data set of 79,117 unique individuals. We 129 

report. the lifetime risk remaining at any age as one minus the product of the complement of the 130 
interval age and state-specific transition to CAD probabilities. 131 

Modeling transitions 132 
Using our multistate approach, MSGene, we describe the overall state distribution across the 133 

lifespan in our cohort, normalizing to exclude censoring at each age (Fig. 1). At age 40 years, 134 

94.4% of individuals are in the healthy category, with 4.1% in the hypertensive category and 135 
0.3% with a diagnosis of CAD. By age 76 years, CAD state occupancy peaks at 12.5% of 136 

uncensored individuals, and health is reduced to 27.6% of uncensored individuals. By age 80 137 
years, 7.4% have died. 138 

Improved detection of early events when compared to 10-year risk 139 
When compared to the PCE, a 10% lifetime threshold using MSGene uniquely identifies 5315 140 

(59.3%) cases versus 123 (1.3%) cases using the 10-year PCE (5% threshold) alone at age 40. 141 
This reduces to <1% of cases at age 68 (vs 81% with PCE) (Supp. Fig 2). At age 40, MSGene 142 

had substantially greater sensitivity for lifetime CAD events compared to PCE (event 143 
reclassification 58.2%, 95% CI 58.1–58.3%), at the cost of moderate inappropriate up-144 

classification of lifetime non-events (non-event reclassification –37.3%, 95% CI 37.2–37.4%). At 145 

age 70, MSGene had substantially greater specificity compared to PCE (non-event 146 
reclassification 32.1%, 95% CI 31.9–32.1%), at the cost of some inappropriate down 147 

classification of events (event reclassification –12.5%, 95% CI –12.4 to –12.6%). Overall, 148 
reclassification was consistently favorable (median NRI 0.12) over 40 years of consideration. 149 

Furthermore, 9.7% (95% CI 9.6–9.8%) of individuals in the top 20% of genetic risk are identified 150 
to have greater than 10% MSGene predicted lifetime risk, while only 3.1% (95% CI 2.9–3.2%) of 151 

those in the bottom 20% of genetic risk achieve this level of risk (Supp. Fig 2).  152 

Improved calibration when compared to 30-year risk score 153 

MSGene had improved results when compared to FRS30RC. We compared the average 154 
predicted risk by sex and genomic risk strata with empirical overall incidence rates. In healthy 155 
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individuals, the RMSE of MSGene is 1.06% (1.04% males, 1.09% females, SEM 0.06) while 156 

FRS30RC is 10.9% (12.1% males, 10.1% females, SEM 0.07, Supp. Fig. 3). FRS30RC 157 
increases monotonically across the lifespan. When restricting the analysis to ages 40 and 50 for 158 

whom 30 years of follow-up is available, the RMSE is 0.98% with MSGene when compared to 159 
5.68% for FRS30RC. We further compute the RMSE starting from additional single-risk factor 160 

phenotype states (hypertension, hyperlipidemia, and diabetes) across a grid of covariate 161 
choices (Supp. Table 1).  162 

Dynamic effects of 10-year, 30-year and remaining lifetime risk 163 
MSGene allows for the estimation of survival curves for an individual starting from a given age, 164 

and for updated remaining lifetime curves asked over a range of ages. We compute the 165 
remaining lifetime risk when compared with FRS30RC, as recalibrated for our population.28 166 

First, we depict the predicted survival curve for individuals of six different genetic and sex strata 167 

starting in health at age 40. Under this traditional analysis, CAD-free survival is projected to 168 
decline monotonically as a function of sex and genetic risk to 96.8% (95% CI 96.78–96.82) for a 169 

female in the lowest genetic strata and to 81.26% (95% CI 81.24–81.28) for a male in the 170 
highest genetic strata. However, a remaining lifetime risk curve reveals opposite behavior: for 171 

example, a high genetic-risk male has a 22.9% (95% CI 22.7–23.1%) risk without treatment at 172 
age 40, but the same high-risk male has only a 10.21% (95% CI 10.20–10.22%) risk of 173 

developing CAD if he remains CAD-free at age 70. This contradicts the 10-year risk prediction, 174 
in which 10-year risk rises from 2.84% at age 40 to 10.21% at age 70 (Fig. 3, Supp. Tables 2–175 

17). We compare this to FRS30RC projections26 and note that while remaining lifetime risk 176 
declines with age, the extended fixed-window (FRS30RC) approach shows monotonically 177 

increasing risk across genetic strata. In our cohort the FRS30RC risk for a high genetic-risk 178 

male rises from 13.4% at age 40 to 33.0% (Fig. 3) at age 70 using the recalibrated measure. 179 
When applying trial-estimated statin benefit via introducing a trial-estimated relative risk 180 

reduction to each annual transition probability29 (Methods, Eqn. 2) under MSGene lifetime 181 
projections, predicted absolute risk under treatment for the same high-genetic-risk male at age 182 

40 improves from 22.86% (95% CI 22.85–22.87%) to 18.70% (95% CI 18.69–18.71%) over the 183 
40-year span. This is compared to a smaller decline from 10.21% (95% CI 10.19–10.22%) to 184 

8.25% (95% CI 8.24–8.26%) at age 70.  185 

Dynamic prediction: Model assessment 186 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.08.23298229doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.08.23298229
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

An updated lifetime prediction, conditional on a patient’s current state, can be made per year, 187 

using age-specific coefficients. We use these updated predictions as covariates in a time-188 
dependent Cox model to evaluate the performance of our model on predicting time to event 189 

(Methods). We first consider the age distribution at which an individual first exceeded a lifetime 190 
risk threshold of 10% using MSGene or FRS30RC, or using a PCE-derived 10-year risk 191 

threshold of >5%. Using MSGene to assess lifetime risk, 44.8% percent of individuals exceed 192 
this threshold at age 40 while 38.9% never do. With FRS30RC, 44.1% exceed this threshold at 193 

age 40, but virtually all (99.8%) exceed this threshold by age 80. Using the first age exceeded 194 
under each model as a time-dependent predictor of CAD status, we find that MSGene improves 195 

model concordance by 21% (C-index 0.73 vs 0.52, p < 2 × 10–16) and of the 10-year index by 196 
17.4% (C-index 0.55, p < 2 × 10–16) (Fig. 4a-d).  197 

We then use the yearly time- and state-varying predictions as predictors in a time-198 

dependent Cox proportional hazard model in which one’s score is recorded annually in non-199 
overlapping intervals and estimate the concordance of this model. The concordance of this time-200 

dependent model using dynamic MSGene predictions exceeds that of the updated FRS30RC 201 
predictions by 0.71 vs 0.66, p < 2 × 10–16 (Fig. 4e-g ). We repeat these results using the subset 202 

with general practice (GP) records alone for both training (80%) and testing (20%) and the 203 
results hold for both the thresholding analysis (C-index 0.71 vs 0.53, p < 2 × 10–16) and 204 

continuous time-dependent analysis (C-index 0.73 vs 0.67, p < 2 × 10–16, Supp. Fig. 4-5).  205 

Estimated benefit 206 

Our model incorporates the estimated benefit of a treatment strategy, assessed conditional on 207 
starting age and risk status. Using a randomized clinical trial (RCT)-imputed annual risk 208 

reduction of 20% for statins on statin-free individuals,30,31 we observe an inverse relationship 209 

between predicted 10-year risk and expected benefit. An individual with the highest genetic risk 210 
at age 40 has a predicted 10-year risk (4.2%, SD 0.01) roughly equivalent to the lowest genetic-211 

risk individual at age 70 (3.9%, SD 0.01), but an expected lifetime absolute risk reduction of 5% 212 
(SD 0.01) at age 40 versus only 0.8% (SD 5 × 10–2) at age 70 (Fig. 5). When we consider the 213 

distribution of all starting states, we see that the mean absolute risk reduction is the greatest for 214 
younger individuals (4.6–7.2%; SD 0.01) across risk states at age 40, to a mean absolute risk 215 

reduction of 0.3–3.5% (SD 0.01) at age 79. 216 

Improvement in discrimination over the cumulative horizon 217 
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When considering only the presence or absence of disease over observed time without regard 218 

to timing, the AUC–ROC of a model comparing the prediction of cumulative occurrence using 219 
updated MSGene lifetime score shows greater performance than that of either FRS30 or 220 

FRSRC early in the life course (Supp. Fig. 6) (0.69 vs. 0.65, p < 2 × 10–16 at age 40) and also 221 
based on precision-recall (0.20 vs 0.16 at age 40, p < 0.01). Both metrics exceeded the 222 

estimation of lifetime risk using genetics as a predictor alone. In general, when comparing 223 
individuals captured by MSGene but not by FRS30RC, MSGene identified more women and 224 

individuals at higher genetic risk. With time, these differences were more profound (Supp. Fig. 225 
7). 226 

External validation 227 
We then performed external validation of MSGene in the FOS cohort, using first measurements 228 

to ensure optimal follow-up duration. FOS is a community-based cohort recruited in 1971 with a 229 

median 39 years of follow-up [IQR 38–40], median age of enrollment 35 years [IQR 28–44] 230 
(Supp. Fig. 8). MSGene again had favorable discrimination (age 40: 0.75 [95% CI 0.69–0.82] 231 

vs. 0.73 [95% CI 0.66–0.80]; age 55: 0.63 [95% CI 0.42–0.84] vs. 0.53 [95% CI 0.29–0.76]) and 232 
calibration (RMSE 8.4% vs. 11.3%, p < 2 × 10–16) when compared to FRS30 (Supp. Fig. 9). 233 

Discussion 234 
This study introduces a novel method called MSGene, which aims to assess the risk of 235 

developing CAD and other health states over the lifespan. Our dynamic lifetime risk predictions 236 
improve considerably calibration and discrimination and improve the identification of younger 237 

individuals at high risk without overestimating risk in older adults, compared to previous models. 238 
Our projected benefit analysis shows large reduction in preventable CAD events if statin therapy 239 

is guided by MSGene. 240 

The technique utilizes generalized linear models (GLMs) to compute the transition 241 
probabilities between different states (e.g., from a healthy state or risk factor to CAD, death, or 242 

intermediate risk) for every age over the observed life span. The novelty derives from four 243 
features: 1) the provision of unique age-dependent models via GLMs that allow the relationship 244 

of each covariate on the outcome to vary freely with time; 2) the calculation of risk conditional on 245 
time-dependent states; 3) the assessment of a multistate model via time-dependent Cox 246 

modeling; and 4) the unique use of the UKB EHR as a comprehensive longitudinal data 247 
resource. The study follows individuals from adulthood through their enrollment in the linked 248 
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health record. By incorporating age and time dependence, this method provides annual risk 249 

estimates that include the entire lifespan.  250 
Over a lifetime horizon, the dynamic change in risk makes accurate lifetime risk 251 

estimations challenging.4,7,11 However, leveraging genetics in addition to multi-state 252 
modeling, MSGene enhances lifetime risk predictions, effectively identifying individuals 253 

previously deemed low-risk MSGene enhances lifetime risk predictions, effectively identifying 254 
individuals previously deemed low-risk. The model's age-dependent features, producing age-255 

sensitive coefficients, negate the need to rely on fixed parametric interactions between each 256 
covariate and time, a prevalent limitation in traditional models.6 We show that using updated 257 

estimates conditional on the dynamic state of an individual improves time-to-event prediction 258 
overall.  259 

Through the incorporation of treatment, we show that those individuals with the greatest 260 

and least expected absolute risk reduction from statin therapy actually have a similar 10-year 261 
risk. However, this short-term focus is what current clinical methods rely upon.7 Presented 262 

effects are conservative as statin effects may magnify with duration and on CAD PRS 263 
background.19,32–34 264 

Our approach facilitates accurate event prediction both for undercaptured young 265 
individuals and also lower-risk older individuals who might otherwise be included in a fixed-266 

window approach that extends the time horizon: our median global net reclassification when 267 
compared with a 10-year approach is 12.2% [IQR 5.5–18.6%] over 40 years. This in part 268 

explains the improvement in overall time-dependent performance when incorporated into a time-269 
to-event framework. Using a time-dependent evaluation, the distribution of the first age at which 270 

a lifetime threshold is exceeded demonstrates that MSGene optimally identifies at-risk 271 

individuals without indiscriminately calling all patients ‘at-risk’. However, future work is 272 

warranted to determine optimal thresholds of lifetime risk to maximize potential benefits among 273 
high-risk younger individuals while reducing unnecessary costs and harms to low-risk older 274 
individuals.  275 

One of the strengths of our method is the access to a significant history of electronic 276 
health records that allow us to derive estimates informed by a greater group of patients 277 

throughout the life course. Existing scores26,35 imply that the levels of covariates will stay fixed 278 
over the life course or require recalculation, which ignores the information within transitions 279 

through the life course. Here, our longitudinal outlooks ability allows for individuals to be 280 
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followed over a lifetime and quickly estimates what their updated risk trajectory would look like 281 

under an alternative profile.  282 
Estimation of remaining lifetime risk is conducted using age-specific predictions informed 283 

only by individuals in the at-risk set at a given age, thus making this a true lifetime estimate. In 284 
our work, we choose a conservatively estimated age of 80 as the maximum lifetime age given 285 

the density of age estimation with our set. This estimation is possible under the assumption that 286 
risk trajectory is similar across shifting windows of age at risk but falls apart with strong calendar 287 

time trends. Given that our cohort was required to be between 40 and 70 years old in 2006, we 288 
reduced the variation in calendar effects.5,36  289 

When combined with genetic information, an emphasis on dynamically updated lifetime 290 
risk projections can uncover latent risks in seemingly healthy individuals. Determining an 291 

appropriate lifetime risk threshold is a laudable goal.2,7 Indeed, current guidelines12,36 note that 292 

genetic risk scores can identify individuals at birth with a high propensity to develop disease, but 293 
few approaches have coupled this information with realized risk stages dynamically. As age 294 

increases, short-term risk increases, and the remaining lifetime risk is reduced, meaning that a 295 
metric focusing on short-term risk will preferentially focus on disease in older individuals, 296 

thwarting the efforts of true prevention. It is not enough to increase the lifetime threshold to 297 
account for younger individuals as proposed in European Society of Cardiology guidelines; 298 

additional years add additional uncertainty, and thus, having tools capable of dynamically 299 
incorporating new information over the life course in combination with more comprehensive time 300 

assessments is critical to moving prevention forward. We provide an application for individuals 301 
to assess risk in real-time for patients and clinicians (Supp. Fig. 10; 302 

https://surbut.shinyapps.io/risk/) 303 

In this study, we use a composite of phenotypic codes to define our risk factor states. 304 
One of the challenges of developing a lifetime assessment tool surrounds the availability of 305 

continuously updated laboratory data. Using EHR data, an unbiased ascertainment of updated 306 
biometric variables at uniform intervals is challenging. We added baseline continuous laboratory 307 

data from the age of enrollment to our grid search, and this added little to our model (Supp. Fig. 308 
11). 309 

A second limitation surrounds the heterogeneity of phenotyping. We define 310 
hyperlipidemia and hypertension according to validated diagnostic codes.37 However, there 311 

exists heterogeneity in the severity and duration of these conditions. The potential benefit of 312 
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adding additional states must be balanced with the uncertainty imposed and the reduction in 313 

sample size caused by dispersion across grades of each condition. Our model resolves the loss 314 
in underlying latent risk that is often erroneously captured in EHR data when an individual’s 315 

nominal laboratory value falls secondary to medication use.  316 
One of the advantages of heterogenous data collection is a wealth of available 317 

phenotyping modalities: the UKBB has access through linkages to routinely available national 318 
health systems enhanced by self-report and previous records.38 Although not all individuals 319 

included had GP data, we demonstrate that the age and prevalence of conditions is 320 
homogenous between individuals in the GP subset and otherwise (Supp. Figs. 1) and that 321 

analysis on this subset alone results in similar model discrimination. 322 
Third, the generalizability of our findings may be impacted by study design and sample 323 

specificity. The UK Biobank included healthier and less socioeconomically deprived individuals 324 

who were predominantly White Europeans living in the United Kingdom.39 Furthermore, given 325 
that the minimum age for genotyping was 40 years old, we began our inference for risk 326 

modeling at age 40, provided they were captured in the EHR before then. Although individuals 327 
who reached age 40 prior to enrollment were appropriately at risk for the primary CAD outcome 328 

given their capture in the longitudinal EHR, they were protected from death until the time of 329 

enrollment, which may affect estimates related to the competing risk of death. For time-330 

dependent evaluation of our prediction, we conservatively left-censored at age of enrollment 331 

to eliminate years protected from death and found that the improvements in discrimination 332 

over FRS30RC remained unchanged. We note consistent performance in external validation 333 
in the FOS cohort, where all death and CAD events occurred exclusively after enrollment. 334 
Finally, our dynamic logistic regression approach can readily be adapted to any population with 335 

minimal computational resources, and we provide code to do so. 336 

Leveraging a unique resource of genetic and longitudinal clinical data spanning over 80 337 

years in nearly 500,000 participants of the UK Biobank prospective cohort study, we develop 338 
MSGene, a multistate model for dynamic transitions throughout the life course to estimate 339 

lifetime risk of CAD. MSGene is well-calibrated and discriminates early and late events both in 340 

the UK Biobank and an external validation sample. We anticipate that by providing interpretable 341 
and dynamic estimates of CAD lifetime risk, MSGene may inform future therapeutic decisions to 342 

enable more efficient and effective CAD prevention throughout the life course. 343 
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Figure Legends 579 
 580 

Figure 1. Multistate transitions over time.  581 
A. We depict the potential one-step transitions in our multistate framework. Per year, an 582 

individual can progress from health to single risk factor states, CAD or death. Similarly, an 583 
individual can progress from single risk factor states, to double risk factor states, to CAD or 584 

death; from double risk factor states, to triple risk factor, CAD or death. B. We display the 585 
proportional occupancy excluding censored individuals at each state.  586 

CAD: coronary artery disease, Ht: hypertension, HyperLip: hyperlipidemia, Dm: Type 2 587 
diabetes mellitus. 588 

 589 
Figure 2. Study overview. 590 

A. Using the UK Biobank data on half a million participants (54% female) with access to health 591 
record from 1940, we harmonize hospitalization, prescription and primary care records from the 592 
EHR and train our model on individuals free of CAD at age 40. The UKB required participants to 593 
be between ages 40–69 between 2006–2010 for genotyping. In our model, individuals join 594 
disease-free in the ‘health’ state and progress to additional states upon censoring. We use 80% 595 
of the eligible data for training and the remaining 20% for testing. For the testing subset we 596 
require that individuals have variables necessary for computation of FRS30 (and FRS30RC) 597 
and the pooled cohort equations, which require laboratory (HDL, TC) and biometric (SBP) 598 
measurements. B. For a sample patient, we document the construction of our cohort. This 599 

individual is first observed in the health record at age 25; he is diagnosed with hypertension at 600 

age 39, and begins informing our risk estimation for CAD at age 40 in the hypertensive 601 
category. He transitions to the hypertension and hyperlipidemia category at age 50, 25 years 602 

after first encounter and 10 years after entering our risk estimation, thus contributing 10 years of 603 
data.  604 
TC: total cholesterol, SBP: systolic blood pressure, HDL: high-density lipoprotein, CAD: 605 
coronary artery disease, FRS30: Framingham 30 year, FRS30RC: Framingham 30 year 606 
recalibrated, PCE: Pooled cohort equation 10-year risk; EHR: electronic health record. 607 
 608 

 609 

Figure 3. Survival, 10-year and lifetime risk curves. 610 
In A., we demonstrate the singular projected survival curve by MSGene for an individual at age 611 

40 of low, medium or high genomic risk. In B. we demonstrate the MSGene predicted 10-year 612 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.08.23298229doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.08.23298229
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

risk for individuals at each age along the x-axis, showing that, in general, for fixed window 613 

approaches, 10-year risk is monotonically increasing. In C, we demonstrate the MSGene 614 
predicted lifetime risk curve for individuals at each age featured along the x-axis under an 615 

untreated (dashed) or treated (solid) strategy. The conditional remaining lifetime risk declines 616 
with age, from 24% for a high genomic risk individual in our cohort to <5% for an individual at 617 

the same risk level by age 70. In D, using the FRS30RC equation, like 10-year risk and unlike 618 
the remaining lifetime risk approach, 30-year risk calculation is monotonically increasing, from 619 

13.4 (13.2–13.6%) at age 40 to 32.9% at age 70 for an individual of the highest genomic risk. 620 
FRS30RC: Framingham 30 year recalibrated.  621 

 622 
Figure 4: Time-dependent threshold analysis. 623 

We consider the distribution of the first age at which an individual exceeds the PCE-derived 10-624 

year threshold of 5% (A), or lifetime threshold or 10% using FRS30RC (B) or the MSGene 625 
lifetime prediction (C). We then use this age as a time-dependent predictor of time-to-event in a 626 

time-dependent Cox PH (Supp. methods) in which an individual’s time followed is stratified by 627 
start time and periods in which a threshold is passed, and final censoring time with an indicator 628 

variable demarcating whether or not each threshold has been surpassed. We left censor these 629 
intervals at age of enrollment conservatively to exclude time protected from death. We report 630 

Harrell’s C-index (p < 2 × 10–16) for discrimination on how well a model predicts events that tend 631 
to occur earlier versus later. Left-facing indicate individuals who surpass the threshold at first 632 

prediction, and right-facing arrow indicates individuals who never surpass a threshold for a 633 
given metric. FRS30RC is shown here with C-index 0.52 (original FRS30 C-index 0.50) vs. 634 

MSGene 0.72, p < 2 × 10–16) (D). We compute the lifetime prediction at each age under one of 635 

eight potential risk starting states, with bootstrapped confidence intervals for a sample individual 636 
(E). Using the electronic health record, we extract state position for each individual per year. We 637 

then use MSGene to compute predicted risk for each individual at each state in time, displayed 638 
here for a sample individuals (F). We use these as predictors in a time-dependent Cox model in 639 

which we expand the data set into non-overlapping intervals for each individual (Supp. 640 
methods; Supp. Fig. 17) and conservatively left censor before enrollment to avoid time 641 

protected from death. We evaluate the concordance when compared to FRS30RC and PCE-642 
derived 10-year, p < 2.2 × 10–16 (G).  643 

FRS30RC: Framingham 30-year recalibrated, PCE: pooled cohort equations, Cox PH: Cox 644 

proportional hazards model 645 
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 646 

Figure 5: Absolute risk reduction: Short-term and lifetime risk. 647 
We display the relationship between remaining lifetime and 10-year risk. Each ray represents an 648 

age group, in which individuals are parameterized by their short- (10-year) and long-term 649 
(lifetime) risk, and colored by genomic risk in SD from mean. We display the lifetime absolute 650 

risk reduction as computed in Equation RR and stratified by age rays, and colored by genetic 651 
risk. (A) For an individual at the top genetic risk at age 40, MSGene predicted 10-year risk is 652 

roughly equivalent to an individual at the lowest genetic risk at age 70 (3.8% vs 4.2%, SE 0.01). 653 
However, the MSGene projected lifetime benefit is directly proportional to lifetime risk (B), and 654 

more than twice that of a high risk individual at age 70 (5.0 vs 2.3%, SEM 0.02). (C) 655 
Marginalized across starting states and covariate profiles, we project absolute risk difference 656 

(%) under a treated and untreated setting. At age 40, this ranges from a median of 5.8% (SD 657 

0.01) to 0.8% (SD 0.01) at age 79. 658 
SEM: standard error of mean, RR: relative risk, SD: CAD-PRS SD.  659 
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Low 

(N=96235) 
Intermediate 
(N=288563) 

High 
(N=95840) 

Overall 
(N=480638) 

Sex 
    

Female 51958 (54.0%) 156570 
(54.3%) 

52125 (54.4%) 260653 
(54.2%) 

Male 44277 (46.0%) 131993 
(45.7%) 

43715 (45.6%) 219985 
(45.8%) 

Birthdate 
    

Median [Min, Max] 1950 [1940, 
1970] 

1950 [1930, 
1970] 

1950 [1940, 
1970] 

1950 [1930, 
1970] 

Age First Enrolled in NHS 
    

Mean (SD) 29.2 (13.2) 29.2 (13.2) 29.1 (13.2) 29.2 (13.2) 
Median [Min, Max] 24.5 [18.0, 

78.6] 
24.3 [18.0, 

78.3] 
24.2 [18.0, 

79.1] 
24.3 [18.0, 

79.1] 
Years Followed 

    

Mean (SD) 29.5 (8.05) 29.5 (8.03) 29.3 (8.01) 29.4 (8.03) 
Median [Min, Max] 30.6 [0.375, 

45.5] 
30.6 [0.843, 

47.6] 
30.3 [1.36, 

44.8] 
30.5 [0.375, 

47.6] 
Develop Hypertension 

    

No 63687 (66.2%) 174497 
(60.5%) 

52002 (54.3%) 290186 
(60.4%) 

Yes 32548 (33.8%) 114066 
(39.5%) 

43838 (45.7%) 190452 
(39.6%) 

Develop Coronary Disease 
    

No 89929 (93.4%) 258215 
(89.5%) 

79034 (82.5%) 427178 
(88.9%) 

Yes 6306 (6.6%) 30348 (10.5%) 16806 (17.5%) 53460 (11.1%) 
Develop Hyperlipidemia 

    

No 79046 (82.1%) 221300 
(76.7%) 

66698 (69.6%) 367044 
(76.4%) 

Yes 17189 (17.9%) 67263 (23.3%) 29142 (30.4%) 113594 
(23.6%) 

Current Smoker 
    

No 86517 (89.9%) 258134 
(89.5%) 

85315 (89.0%) 429966 
(89.5%) 

Yes 9718 (10.1%) 30429 (10.5%) 10525 (11.0%) 50672 (10.5%) 
Proportion White 

    

Yes 82842 (86.1%) 251780 
(87.3%) 

82479 (86.1%) 417101 
(86.8%) 

General Practice Registry 
Members 

    

Not Member 52539 (54.6%) 155429 
(53.9%) 

51319 (53.5%) 259287 
(53.9%) 

Member 43696 (45.4%) 133134 
(46.1%) 

44521 (46.5%) 221351 
(46.1%) 

 660 
Table 1. Distribution of overall cohort. We use approximately 80% (385,541) individuals in 661 
the training, and 79,119 in the testing set, of which approximately 45% represent members of 662 
the general practice primary care data. Of note, low genomic risk connotes individuals in the 663 
lowest (<20%) of genomic risk by PRS percentile, intermediate (20–80%) PRS percentile, and 664 
high denotes >80% PRS percentile. 665 
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 666 
Figure 1.  667 
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 668 

 669 
Figure 2. 670 

  671 
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 672 

 673 
Figure 3. 674 
 675 
 676 
 677 
 678 
 679 
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 680 
 681 
Figure 4. 682 
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 683 
 684 
Figure 5. 685 
  686 
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Methods 687 

Data source 688 
The UK Biobank (UKB) is a prospective UK population-based study that enrolled approximately 689 

half a million adults aged 40–70 between 2006 and 2010 designed to investigate the genetic 690 
and lifestyle determinants for a wide range of diseases. Participants underwent genome-wide 691 

genotyping, with linkage to longitudinal hospitalization, primary care (GP), and self-report data 692 
dating back to 1940 (Fig. 2; Supp. Figs. 12-13).37 Using the ukbpheno package (version 1.0),37 693 

we assembled detailed longitudinal data from the various sources documenting events from 694 
1940 until December 2021 for 481,927 individuals after excluding 20,534 who lacked quality 695 

control genotyping or risk factor information (Fig. 2; Supp. Fig. 12-14). At the time of analysis, 696 
linkage to the United Kingdom General Practice (GP) Registry was available for a subset of 697 

221,351 individuals. This assembly across data-sources generated phenotypes for hypertension 698 

(Htn), diabetes mellitus (DM) (type 1 or 2), hyperlipidemia (Hld), or coronary artery disease 699 
(CAD) based on validated collections of hospitalization (HESIN), diagnostic, operation, general 700 

practice (GP) clinical and script as well as death information.37 We found high overlap between 701 
these phenotypes and our own lab’s previously generated HESIN-restricted phenotypes32,40 702 

(Supp. Fig. 14). These phenotypes subsequently became the risk factor states in our model. 703 
Informed consent was obtained from all participants, and secondary data analyses were 704 

approved by the Mass General Brigham Institutional Review Board 2021P002228. Secondary 705 
data analysis of UKB was performed under application number 7089. 706 

Because of the longitudinal nature of this cohort, every individual is observed at first 707 
encounter with the electronic health record (EHR) in early adulthood (median age 24.2 years). 708 

We selected UKB participants free of CAD at age 40 and followed until the occurrence of CAD, 709 

death, or loss to follow-up (median follow-up 29.9 years). We categorize individuals by their 710 
condition at entry into our cohort at age 40 provided they have been observed in the EHR (Fig. 711 

2). We then re-evaluate at each age the risk set as those individuals who have 1) been 712 
observed and 2) have not been censored for a given phenotype. We demonstrate the diversity 713 

of data sources and the corresponding availability of each data source over time for all 714 
considered phenotypes (Supp. Fig. 13). In general, our model allows for the progression from 715 

CAD to death, but we report here the risk of progression to CAD on CAD-frr individuals at 716 
baseline. 717 

Polygenic risk 718 
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An additional novelty of our model is the incorporation of the dynamic effects of genetics over 719 

time. We use CAD polygenic risk score (PRS) as released through the UKB resource41 and 720 
compute on individuals with adequate genotype information after quality control and after 721 

controlling for the principal component axes obtained from the common genotype data in the 722 
1000 Genomes reference data set using standard methods41. Data supporting these scores 723 

were entirely from external GWAS data (the Standard PRS set) as conducted by Genomics PLC 724 
(Oxford, UK) under UKB project 9659.41 We demonstrate that the distribution of PRS is similar 725 

across entry age (Supplementary Figure 15). 726 

Statistical analysis 727 

Detailed Equations 728 
Let 𝜋!"#$	represent the annual transition probability from state j to state k for individual i during 729 

year a. We let the states j and k represent time-dependent phenotypes ascertained from the 730 

electronic health record such that every individual is in the at-risk 'healthy' set until first 731 
censoring. For p-covariates for a given individual transitioning from state j to k we refer to the 732 

following equation. ‘From’ states J include Health; single risk factor states: Hypertension (Ht), 733 

Hyperlipidemia (Hld), Diabetes Mellitus Type 1 and Type 2 (DM), double risk factor states: Ht & 734 
Hld, Ht & Dm, Dm & Hld; Triple risk factor states: Dm & Hld & Ht; and Coronary Artery Disease 735 

(CAD). States K include all of the ‘From’ states and Death. For our purposes, we report the 736 
progression to CAD or death from any of the starting states included in J.  737 

 738 

𝑙𝑜𝑔
𝜋!"#$

1 − 𝜋!"#$
= 𝛽*!"$&+𝛽*!"$'x' +⋯𝛽*!"$(x( 739 

Equation 1.  740 

 741 
Taking the inverse logit of the estimate returns the absolute risk for any individual i is a function 742 

of the age-specific coefficients and his p covariates, such that the annual risk estimate from 743 
state j to state k satisfies:  744 

  745 

𝜋!"#$ =
𝑒𝑥𝑝𝑿𝒊𝒂𝑩𝒋𝒌𝒂

1 + 𝑒𝑥𝑝𝑿𝒊𝑩𝒋𝒌𝒂
 746 

Equation 2. 747 

 748 
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Here we let 𝑿 represent the N x P matrix of individuals and covariate profiles at a given age and 749 

𝜷 represents the P x 1 vector of age and state-state specific smoothed coefficients.  750 
 751 

In equation 2, state j represents the ‘from’ state and state k represents the ‘to’ state. To account 752 
for censoring, an individual exits the ‘at risk’ group for transition inference when they are lost to 753 

follow-up. We use a one-year interval over which to discretize age intervals and independently 754 
estimate the 𝜋!"#$ age-dependent-state to state transitions. We use a limited number of time-755 

fixed covariates: that is sex and polygenic risk score (PRS) and estimate time-dependent 756 

effects. We assess current smoker at enrollment in the UK Biobank and use as a time fixed 757 
effect for model estimation – that is, individuals reporting ‘current smoker’ at enrollment in the 758 

UKBB are considered as smokers in each age-specific logistic regression. For inference of time-759 
dependent covariates, we treat both anti-hypertensive and statin use as individual time-760 

dependent covariate which is reevaluated at each year of model estimation using prescription 761 
data from the UKB.42 Our final prediction model allows for continuous updates of smoking and 762 

medication usage in estimating age-specific transition probabilities.  We use 80% of our data as 763 

training and 20% as testing (Fig. 2) for internal cross-validation and to optimize model fit. 764 
Accordingly, this divides our data into a training set for model fitting using 384,510 samples and 765 

a testing data set of 79,117 unique individuals.  766 
Predicted Interval Risk 767 

Predicted risk over a given time interval for a given individual i of progressing to state k from 768 
state j over any Y-year period ranging from age A1 to A2 is where a indexes the current age:  769 

 770 

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙	𝑅𝑖𝑠𝑘 = 1 −>	?1 − 𝜋!"#$@
+%

+&

 771 

Equation 3. 772 

Accordingly, risk for an individual i of progressing to state k from state j where L is the 773 
maximum age of life and a is the currently observed age. For our purposes, we choose L = 80 774 

in line with the available data by age in the UK Biobank. 775 

    776 

𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔	𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒	𝑅𝑖𝑠𝑘 = 1 −>	?1 − 𝜋!"#$@
,

+&

 777 

Equation 4.  778 
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 779 

 780 
The remaining lifetime risk can be modified to account for treatments by applying a constant 781 

relative risk reduction to the age-specific transition probabilities in expression 4. Then the 782 
interval risk under treatment can be calculated using the per-year risk reduction RR of 783 

progressing to state k from state j over an interval from age A1 to A2 is:  784 
 785 

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙	𝑅𝑖𝑠𝑘	𝑢𝑛𝑑𝑒𝑟	𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 = 	1 −>?1 − (1 − 𝑅𝑅)	× 𝜋!"#$@
+%

+&

 786 

Equation 5. 787 
 788 

For the purposes of this manuscript, we are interested in state k = CAD. We impute the relative 789 
risk reduction of 0.20 from 24 trials of statin therapy.29 Within our model, we constrain each 790 

individual’s predicted probabilities across states per year to sum to one such that for each age 791 

a, the probability of staying within the given state is the complement of the sum of transitions 792 
over K to the alternative states: 793 

 𝜋!!#$ = 	1 − ∑ 𝜋!"#$"-!  794 

Equation 6. 795 
It is somewhat arbitrary to choose j as the "to" state whose probability is determined as the 796 

complement of the others. We choose j because it is mostly above 50% and the constraint in 6 797 

will guarantee that for a given age the probabilities for an individual of a particular covariate 798 
profile sum to 1. The alternative of fitting a polytomous regression is computationally much more 799 

demanding and gives approximately the same answer. 800 
 801 

Flexible Smoothing Across Ages 802 

We extract the unsmoothed coefficients 𝛽*!"$ for each age and state transition from the logistic 803 

regressions in (2). To borrow information across ages, we fit a smoothed locally estimated 804 

polynomial regression in which for each state to state transition and each covariate, we fit a 805 

locally estimated weighted regression27,43 (LOESS) (Supplemental Figure 16). The loess 806 
weights are proportional to the product of the inverse variance of each estimated coefficient and 807 

the tricube distance function of nearby ages to smooth adjacent ages more closely together 808 
proportional to the cube of their distance d from the age in question: 809 
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𝐷 = 	𝑎𝑏𝑠(𝑎𝑔𝑒 − 𝑎𝑔𝑒#) 810 
We consider the neighboring unsmoothed coefficients as those within an adjusted window 811 
length, and if the age in question is within 5 years of the minimum or maximum age, we extend 812 

the adjusted window by 5 years. 813 

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 = 𝑤ℎ𝑖𝑐ℎ?𝐷# ≤ 	𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑.#/01.'()*+@ 814 

𝑤𝑒𝑖𝑔ℎ𝑡𝑠23#4567 = 	1	– Q
𝐷/7#89613:
𝑤𝑖𝑛𝑑𝑜𝑤.#029

R
;

	815 

𝑤𝑒𝑖𝑔ℎ𝑡𝑠	 < −	𝑤𝑒𝑖𝑔ℎ𝑡𝑠23#4567 ∗
1
𝜎<
.	816 

We then use weighted least square regression to adjust the coefficient as the weighted sum of 817 
neighboring coefficients where the design matrix X is the ‘N’ neighbor’ by degree +1 matrix X 818 

and y is the N x 1 vector of unsmoothed coefficients. 819 

𝑊𝑋	 = 	Y𝑤𝑒𝑖𝑔ℎ𝑡𝑠	𝑋 820 

𝑊𝑦 =	Y(𝑤𝑒𝑖𝑔ℎ𝑡𝑠) ∗ 	𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠[𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠] 821 

𝛽 < −(𝑊𝑋=𝑊𝑋)>'𝑊𝑋=𝑊𝑦 822 

𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑417??#4#7/2:( = ∑𝛽 + 𝛽 ∗ 𝐴𝑔𝑒{#}…𝛽 ∗ 𝐴𝑔𝑒#0 		 823 

 824 

A vignette showing this process on a sample calculation is shown here 825 
https://surbut.github.io/MSGene/vignette.html. Furthermore, flexible window choices and 826 

polynomial degrees can be found here: https://surbut.shinyapps.io/testapp/. All analyses were 827 
performed with R (version 4.3.1) and our software is written as R code with implementation and 828 

vignettes at https://github.com/surbut/MSGene. 829 
 830 

Standard Error of Projection 831 
We bootstrap our training data 50 times and extract the corresponding means and 832 

standard errors of each projection across bootstrapping iterations. We compute the remaining 833 
lifetime risk setting the maximum age considered as 80 according to the density of observations 834 

in our training data, and impute a relative risk (RR) of CAD from statins of 0.2030,44,45; notably, 835 

the RR may be larger for some groups, such as those with elevated CAD PRS32,46, and for 836 
longer periods of time and thus this reflects a conservative estimate47. We apply this benefit only 837 

to individuals not previously on statins.  838 
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For the RMSE, we report the standard error of the mean across strata. For proportions, 839 

we report the standard error of the sample proportion as √(𝑝̂𝑞/𝑛) where 𝑝̂ represents the 840 
sample proportion. 841 

Precision and Discrimination analysis 842 

For each age, we compare the average predicted score by genomic (<20%, 20–80%, 843 
and >80%) and sex strata, and report the root mean squared error (RMSE) as the difference in 844 

the average empirical and predicted cumulative incidence rate for each PRS and sex group as 845 
detailed in the Supplementary Methods. 846 

 847 

 𝑅𝑀𝑆𝐸 = 𝑠𝑞𝑟𝑡(Y𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙	𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 −𝑚𝑒𝑎𝑛(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑅𝑎𝑡𝑒BCD	×:7F). 848 

 849 

For the area under the receiver operator curve (AUC-ROC) and precision-recall analysis, we 850 

compute the area under each curve using each score as a predictor of cumulative case or 851 
control status computed using values for individuals at each year plotted. 852 

 853 

States and competing risk 854 

The unique nature of our multistate model features eight mutually exclusive states and restricts 855 
one-year transitions as follows (Fig. 1), with death as the final absorbing state from which one 856 

cannot exit. At any age across the life course, cumulative one-step transitions can be assessed 857 
(Fig. 1). Possible transitions are as follows: 858 

1. Health to a single risk factor (Htn, Hld, Dm), CAD or death; 859 
2. Single risk factor to corresponding double risk factor, CAD or death; 860 

3. Double risk factor to triple risk factor, CAD or death; 861 

4. Triple risk factor to CAD or death; 862 
5. CAD to death. 863 

 864 
Predictions with age as the time scale 865 

Our model inferences are made per-year using the individuals who are in a particular risk state 866 
at a given age (Fig. 2, Supp. Fig. 12). Predictions can, therefore, be made over a requested 867 

time interval using the product of age-specific risks for which coefficients were estimated from 868 
individuals who were in the at-risk subset during a given period. While enrollment in the UK 869 
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Biobank required that an individual be alive at age 40 to enroll for genotyping, it did not require 870 

that the individual be risk factor-free, and therefore we use this information to assign individuals 871 
into risk categories for inference from age 40 onward. We exclude individuals with CAD at 872 

baseline from our predictions. 873 

Comparison to 10-year PCE and 30-year Framingham CAD risks 874 

For comparison of time-dependent 10-year risk, we use the 2018 PCE with baseline covariates 875 
(total cholesterol, HDL-cholesterol and systolic blood pressure, current smoking) obtained from 876 

UKB enrollment data and update each prediction26 with time-varying age, diabetes, and 877 
medication use according to available records. This technique was used in the Framingham 30-878 

year risk development to validate new longer window estimates in which age was iteratively 879 
updated with all other risk factors at their baseline values.26  880 

For comparison of calibration to 30-year risk, we used the 2009 complete (non-BMI) 881 

Framingham 30-year equation (FRS30) and update each prediction26 with time-varying age, 882 
diabetes, and anti-hypertensive use according to available records, consistent with detailed 883 

formulae within the FRS30 . Given the differing populations, we recalibrated48 according to the 884 
mean levels of each covariate and baseline hazard in the UKB sample (FRS30RC). For fair 885 

comparison, we report our results against FRS30RC given its improved calibration in our cohort 886 
(Supp. Fig. 17). Precision and discrimination analysis described as follows. We compute and 887 

display the predicted 30-year risk for individuals from ages 40–70 according to this model. 888 

Time-dependent model assessment 889 

We first use the age and state-specific predicted risk scores for each individual - which 890 
arise from our MSGene system of smoothed logistic regressions - as covariates in a time-891 

dependent Cox model, in which an individual is featured in non-overlapping intervals with their 892 

respective score and event status. In the evaluation stage, we conservatively left censor 893 
individuals until enrollment. We also calculate the minimum age at which an individual would 894 

exceed pre-specified risk thresholds for MSGene, PCE, and FRS30. We divide every 895 
individual’s observed trajectory into non-overlapping intervals, indicating when one or all 896 

thresholds are achieved and when an event occurs. For example, if an individual is observed 897 
from ages 40-70 and exceeds one risk score at age 45 and the other at age 52 and has an 898 

event at age 68, his period of study will be divided into 4 intervals: the period from age 40 to 44 899 
in which he exceeds the threshold with neither score, the period from 45-51 in which he 900 

exceeds the threshold only with score 1, the period from 52 to 67 in which exceeds with both 901 
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scores, and the period from 68 to 80 in which he has had an event and exceeded in both score. 902 

We left censor in this analysis at age of enrollment. We fit independent time-dependent Cox 903 
models49 to this expanded data set, and again conservatively left censor until enrollment. For 904 

both analyses, we report the concordance index (Harrell's-C) with confidence intervals derived 905 
from bootstrapping iterations.50 906 

Internal and external model assessment 907 
We internally assess the calibration (RMSE) (Supp. Table 1) of models using a finite number of 908 

covariates for eight state-specific transitions built on a training set and independently assess on 909 
our testing set. External validation was performed by comparing the model fits estimated in the 910 

UKB with 10-year and lifetime risk estimates from young adults in the Framingham Heart Study 911 
Offspring cohort (FOS)51 (Supp. Fig. 8) for whom genetic data are available. This is a 912 

community-based Northeastern United States cohort that was recruited in 1971, median age 913 

[IQR] 33.0 years [27.0, 41.0] and followed through 2013. Clinical data and incident disease for 914 
3836 participants, and genetic data for a subset (2611), were available through the database of 915 

Genotypes and Phenotypes (dbGaP; accession phs000007.v33.p14). We compare these with 916 
the PCE and FRS30 (original score, calibrated for this population) estimates calculated at Exam 917 

1 and compute the RMSE and AUC over the 30-year follow-up period. Informed consent was 918 
obtained from all participants, and secondary data analyses of dbGAP based FOS and UKB 919 

were approved by the Mass General Brigham Institutional Review Board applications 920 
2016P002395 and 2021P002228. 921 

Calculating Net Reclassification  922 
 923 
For net reclassification indices, at each age of consideration, we defined NRIevent as the net 924 

proportion of cases correctly reclassified by MSGene Lifetime (MSGeneLT >10%) as compared 925 

to a ten-year PCE: 926 

 927 

𝑁𝑅𝐼7G7/2 :	
𝑀𝑆𝐺𝑒𝑛𝑒,H > 10%	 ∩ 𝑃𝐶𝐸 < 5% ∩ 𝐶𝐴𝐷 −𝑀𝑆𝐺𝑒𝑛𝑒,H < 5%	 ∩ 𝑃𝐶𝐸 > 5% ∩ 𝐶𝐴𝐷

𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑠	𝐶𝐴𝐷
 928 

We defined NRInon-event as the net proportion of controls correctly reclassified by MSGene lifetime 929 

risk <10%: 930 

𝑁𝑅𝐼/1/>7G7/2 931 
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𝑀𝑆𝐺𝑒𝑛𝑒,H < 10%	 ∩ 𝑃𝐶𝐸 > 5% ∩ 𝑁𝑜	𝐶𝐴𝐷 −𝑀𝑆𝐺𝑒𝑛𝑒,H > 10%	 ∩ 𝑃𝐶𝐸 < 5% ∩ 𝑁𝑜	𝐶𝐴𝐷
𝐷𝑜𝑒𝑠	𝑛𝑜𝑡	𝑑𝑒𝑣𝑒𝑙𝑜𝑝	𝐶𝐴𝐷

 932 

Marginal Calculation 933 
 934 
We also allow, for the absorbing states of CAD and death, the possibility of computing the 935 

probability of progressing through any out (‘marginal’) to CAD. The calculation of progressing to 936 

state K from state J through any path over N years is the product of N transition matrices T in 937 

which the j,k element for matrix Tia is the probability of progressing from state j to k at age a for 938 

individual of covariate profile i: 939 

𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙	𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙	𝑟𝑖𝑠𝑘 = 	>𝑇#$!"

+<

+'

 940 

For every individual, we constrain the row sums to sum to 1 so that the marginal probability 941 
across states cannot exceed 1. For absorbing states, the k,k probability is 1. This vignette is 942 
available at https://surbut.github.io/MSGene/usingMarginal.html. 943 
 944 

Data Availability 945 
 946 
All code for running the MSGene model is available at https://github.com/surbut/MSGene. 947 
Vignettes for running the analyses are available at  948 
https://surbut.github.io/MSGene/vignette.html and 949 
https://surbut.github.io/MSGene/usingMarginal.html. Shiny app for calculating interval risk is 950 
available at https://surbut.shinyapps.io/risk/. UK Biobank data is available upon application 951 
through the UKB Showcase https://www.ukbiobank.ac.uk. Framingham Offspring Data is 952 
available through dbGap access by investigator application.  953 
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