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 155 

ABSTRACT 156 

Background: Somatic loss of the tumour suppressor RB1 is a common event in tubo-ovarian 157 

high-grade serous carcinoma (HGSC), which frequently co-occurs with alterations in 158 

homologous recombination DNA repair genes including BRCA1 and BRCA2 (BRCA). We 159 

examined whether tumour expression of RB1 was associated with survival across ovarian 160 

cancer histotypes (HGSC, endometrioid (ENOC), clear cell (CCOC), mucinous (MOC), low-161 

grade serous carcinoma (LGSC)), and how co-occurrence of germline BRCA pathogenic 162 

variants and RB1 loss influences long-term survival in a large series of HGSC. 163 

Patients and methods: RB1 protein expression patterns were classified by 164 

immunohistochemistry in epithelial ovarian carcinomas of 7436 patients from 20 studies 165 

participating in the Ovarian Tumor Tissue Analysis consortium and assessed for associations 166 

with overall survival (OS), accounting for patient age at diagnosis and FIGO stage. We 167 

examined RB1 expression and germline BRCA status in a subset of 1134 HGSC, and related 168 

genotype to survival, tumour infiltrating CD8+ lymphocyte counts and transcriptomic 169 

subtypes.  Using CRISPR-Cas9, we deleted RB1 in HGSC cell lines with and without BRCA1 170 

mutations to model co-loss with treatment response. We also performed genomic analyses on 171 

126 primary HGSC to explore the molecular characteristics of concurrent homologous 172 

recombination deficiency and RB1 loss. 173 
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Results: RB1 protein loss was most frequent in HGSC (16.4%) and was highly correlated with 174 

RB1 mRNA expression. RB1 loss was associated with longer OS in HGSC (hazard ratio [HR] 175 

0.74, 95% confidence interval [CI] 0.66-0.83, P = 6.8 x10-7), but with poorer prognosis in 176 

ENOC (HR 2.17, 95% CI 1.17-4.03, P = 0.0140). Germline BRCA mutations and RB1 loss co-177 

occurred in HGSC (P < 0.0001). Patients with both RB1 loss and germline BRCA mutations 178 

had a superior OS (HR 0.38, 95% CI 0.25-0.58, P = 5.2 x10-6) compared to patients with either 179 

alteration alone, and their median OS was three times longer than non-carriers whose tumours 180 

retained RB1 expression (9.3 years vs. 3.1 years). Enhanced sensitivity to cisplatin (P < 0.01) 181 

and paclitaxel (P < 0.05) was seen in BRCA1 mutated cell lines with RB1 knockout. Among 182 

126 patients with whole-genome and transcriptome sequence data, combined RB1 loss and 183 

genomic evidence of homologous recombination deficiency was correlated with transcriptional 184 

markers of enhanced interferon response, cell cycle deregulation, and reduced epithelial-185 

mesenchymal transition in primary HGSC. CD8+ lymphocytes were most prevalent in BRCA-186 

deficient HGSC with co-loss of RB1. 187 

Conclusions: Co-occurrence of RB1 loss and BRCA mutation was associated with 188 

exceptionally long survival in patients with HGSC, potentially due to better treatment response 189 

and immune stimulation. 190 

 191 

INTRODUCTION 192 

Despite a high response rate to primary treatment, the progressive development of acquired 193 

drug resistance is common in tubo-ovarian high-grade serous carcinoma (HGSC), a histotype 194 

that is associated with approximately 70% of ovarian cancer deaths1. The frequent acquisition 195 

of resistance-conferring alterations in HGSC2-4 suggests that the development of drug 196 

resistance may be inevitable when curative surgery is not achieved in these patients. Countering 197 

that view, however, is the observation that a small subset of patients with HGSC advanced 198 
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disease experience an exceptional response to treatment, survive well beyond a median of 3.4 199 

years5, and in some cases, remain disease free6,7. Interest in studying long-term cancer 200 

survivors is growing as they may assist the discovery of prognostic biomarkers, novel 201 

treatments, and approaches to limit the development of resistance8. 202 

Several clinical and molecular factors that influence treatment response and overall 203 

survival (OS) in HGSC have been described. Complete surgical debulking is associated with a 204 

more favourable outcome compared to patients left with residual disease9-11. Molecular 205 

subtypes defined by distinct gene expression patterns in primary HGSC are associated with 206 

different outcomes12, including the poor survival C1/mesenchymal subtype that is more often 207 

seen in patients where complete surgical tumour resection cannot be achieved13-15. By contrast, 208 

the C2/immunoreactive subtype is typified by extensive infiltration of intraepithelial T cells12, 209 

a feature known to be strongly associated with improved survival16,17. Tumours arising in 210 

individuals with germline or somatic alterations in BRCA1 or BRCA2 genes are typically more 211 

responsive to conventional chemotherapy and poly(ADP-ribose) polymerase (PARP) 212 

inhibitors, whereas those tumours with intact homologous recombination (HR) DNA repair are 213 

more often resistant to treatment18-20. Patients with germline BRCA1 or BRCA2 pathogenic 214 

variants show more favourable survival at five years post-diagnosis compared to non-carriers, 215 

with BRCA2 mutation carriers retaining a long-term (>10 year) survival advantage21-23. 216 

Although deleterious mutations in BRCA1, BRCA2 and other genes involved in HR DNA repair 217 

are associated with a favourable response to treatment, these are not sufficient alone to confer 218 

long-term survival and a large proportion of such patients experience a typical disease 219 

trajectory. A differential outcome in mutation carriers can in part be ascribed to alternative 220 

splicing24 or retention of the wild-type BRCA allele in tumours25, both of which appear to limit 221 

the effectiveness of chemotherapy. 222 
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We previously characterised a small series of HGSC exceptional survivors and found 223 

that co-occurring loss of function alterations in both BRCA and RB1 were associated with 224 

unusually favourable survival7,26. Disruption of the RB pathway is found in many cancer types 225 

but with variable impacts on patient outcome. For example, co-loss of RB1 and BRCA is 226 

associated with shorter survival in breast and prostate cancer, possibly due to lineage switching 227 

and resistance to hormonal therapy27-29. A transcriptomic signature of RB1 loss was recently 228 

described to be associated with poor outcomes across cancer types30. We have previously found 229 

that chromosomal breakage is the most common mechanism of RB1 inactivation in HGSC3, 230 

accounting for approximately 80% of all RB1 alterations. In addition to its crucial role in cell 231 

cycle regulation, RB1 is involved in non-canonical functions in a context- and tissue-dependent 232 

manner31-33, including HR mediated DNA repair. Loss of RB1 expression in HGSC has been 233 

associated with a survival benefit34, including in the context of abnormal block-like p16 234 

staining35. 235 

Factors underlying the association of RB1 loss with improved outcome in HGSC are 236 

unknown. Here, we contrast the pattern and clinical consequences of RB1 loss in HGSC with 237 

other epithelial ovarian cancer subtypes, investigate the relevance of co-occurring BRCA1 or 238 

BRCA2 mutations and RB1 loss in HGSC patients, and explore the functional effects of 239 

combined BRCA and RB1 impairment in HGSC cell lines. 240 

 241 

PATIENTS AND METHODS 242 

Patient cohorts 243 

The study population consisted of 7436 patients diagnosed with invasive epithelial ovarian, 244 

peritoneal or fallopian tube cancer from 20 studies or biobanks participating in the Ovarian 245 

Tumor Tissue Analysis (OTTA) consortium36 (Supplementary Fig. S1). Written informed 246 
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consent or IRB approved waiver of consent was obtained at each site for patient recruitment, 247 

sample collection, and study protocols (Supplementary Table S1). 248 

Whole-genome sequence and matched transcriptome sequence data of primary HGSC 249 

tumours were available from 126 patients from the Multidisciplinary Ovarian Cancer 250 

Outcomes Group (MOCOG) study26 (Supplementary Fig. S1). This cohort consisted of 34 251 

short-term survivors (OS <2 years), 32 moderate-term survivors (OS ≥2 and <10 years) and 60 252 

long-term survivors (OS ≥10 years) with advanced stage (IIIC/IV) disease, enrolled in the 253 

Australian Ovarian Cancer Study (AOCS), the Gynaecological Oncology Biobank at 254 

Westmead Hospital (Sydney) or the Mayo Clinic Study. 255 

 256 

Molecular analyses 257 

RB1 protein expression was determined by immunohistochemistry (IHC) staining and scoring 258 

of tissue microarrays (TMAs) from formalin-fixed paraffin-embedded (FFPE) tumour samples, 259 

using our previously described protocol7 (RB1 antibody clone 13A10, Leica Biosystems; 260 

Supplementary Material). Subsets of HGSC patients had additional molecular or immune data 261 

available (Supplementary Fig. S1), including tumour p53 protein expression status previously 262 

classified37 as normal (wild-type) or abnormal (overexpression, complete absence, and 263 

cytoplasmic), germline BRCA1 and BRCA2 pathogenic variant status obtained from OTTA, 264 

RB1 mRNA tumour expression obtained using NanoString (ref34 and unpublished data), 265 

transcriptional subtypes of tumours using NanoString38 and CD8+ tumour infiltrating 266 

lymphocyte (TIL) density was previously classified39 based on the number of CD8+ TILs per 267 

high-powered field: negative (no TILs), low (<3 TILs), moderate (3-19 TILs) or high (≥20 268 

TILs). 269 

The MOCOG whole-genome and transcriptome sequencing dataset of 126 short-, 270 

moderate- and long-term survivors was uniformly processed as previously described26, and 271 
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included detailed characterisation of each tumour sample for inactivating alterations in RB1 272 

and HR pathway genes, including germline and/or somatic mutations in BRCA1, BRCA2, 273 

BRIP1, PALB2, RAD51C and RAD51D, or promoter methylation of BRCA1 and RAD51C. 274 

Homologous recombination deficiency (HRD) status was assessed using the CHORD 275 

(Classifier of Homologous Recombination Deficiency) method40, which uses specific base 276 

substitution, indel and structural rearrangement signatures detected in tumour genomes to 277 

generate BRCA1-type and BRCA2-type HRD scores. Primary tumours were classified as either 278 

BRCA1-HRD & RB1 altered; BRCA1-HRD & RB1 wild-type; BRCA2-HRD & RB1 altered; 279 

BRCA2-HRD & RB1 wild-type; homologous recombination proficient (HRP) & RB1 altered, 280 

or HRP & RB1 wild-type. For details on differential gene expression analyses, see 281 

Supplementary Material. 282 

 283 

Cell culture 284 

The AOCS patient-derived cell lines (AOCS1, AOCS3, AOCS7.2 AOCS9, AOCS11.2, 285 

AOCS14, AOCS16, AOCS22, AOCS30) were established from ascites drained from patients 286 

with HGSC, as previously described4. All AOCS cell lines were authenticated against matched 287 

patient germline DNA using short tandem repeat markers (STR, GenePrint10 System, 288 

Promega). Commercial cell lines OAW28 and CAOV3, categorised as likely HGSC41, were 289 

purchased from the American Type Culture Collection (ATCC), and JHOS2 and OVCAR4 290 

were obtained from the National Cancer Institute Repository. Commercial lines were 291 

authenticated by comparing STR profiles (GenePrint10 System, Promega) to those published 292 

by online repositories (Cancer Cell Line Encyclopaedia, The Cancer Genome Atlas) before use 293 

in experiments. Cell lines were confirmed to be free of Mycoplasma by PCR at each revival 294 

and after finishing experiments. For details on cell growth conditions, CRISPR-mediated gene 295 

knockout, and molecular and functional cell line characterisation, see Supplementary Material. 296 
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 297 

Statistical analyses 298 

Cox proportional hazards models were used to estimate hazard ratios (HRs) with 95% 299 

confidence intervals (CIs) using the ‘coxph’ function of the R package survival (v3.2-7). Final 300 

models were fitted using Cox regression adjusted for age at diagnosis and FIGO stage. A spline 301 

function was used for age at diagnosis with degree of freedom (df) 5 to account for the non-302 

linear effect of the continuous variable. Regression models were fitted separately by histotype. 303 

The HGSC regression models were also stratified by site of participant recruitment, and sites 304 

with fewer than 10 events within the study period were excluded. The ENOC regression model 305 

was not stratified by site due to the limited number of overall patients per site. The OTTA 306 

survival dataset was right censored at 10 years from diagnosis to reduce the number of non-307 

ovarian cancer related deaths. In the final Cox regression model, there was evidence for 308 

deviation from the proportional hazard assumption, but the degree of deviation was not 309 

substantial when considered alongside the large sample size and Schoenfeld residuals. The 310 

Kaplan–Meier method was used to estimate and plot progression-free and overall survival 311 

probabilities, and the log-rank (Mantel–Cox) test used to compare the survival duration 312 

between subgroups. In the Kaplan-Meier curves, the number of patients at risk on the date of 313 

diagnosis (time = 0) may be fewer than subsequent time intervals, owing to left truncation of 314 

follow-up resulting from delayed study enrolment at some OTTA sites. Differences in 315 

proportions of categorical features were assessed by either the chi-square or Fisher’s exact test 316 

as indicated. Differences in continuous variables were assessed by either a Wilcoxon Rank 317 

Sum Test or a Kruskal-Wallis test. All in vitro assays were performed across at least three 318 

independent experiments, and data are expressed as mean ± standard error of the mean (SEM) 319 

as indicated, from a minimum of three independent measurements. All statistical tests were 320 
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two-sided and considered significant when P < 0.05. Statistical analyses were performed using 321 

either Prism (v9.3.1) or R (v3.6.3). 322 

 323 

RESULTS 324 

Loss of RB1 expression is most frequent in HGSC 325 

RB1 protein expression was assessed by IHC in tumour samples from 7436 ovarian cancer 326 

patients using TMAs from 20 centres participating in the OTTA consortium (Supplementary 327 

Tables S1 and S2). RB1 tumour expression was classified as either retained or lost in 6564 328 

samples, with 872 samples excluded that had either subclonal loss (n = 66), cytoplasmic (n = 329 

17), or uninterpretable results (n = 789) due to either sample drop out or the absence of an 330 

internal positive control (Fig. 1A, Supplementary Material). 331 

RB1 loss was most frequent in HGSC (16.4%), followed by endometrioid ovarian 332 

cancer (ENOC; 4.1%, Chi-square P < 0.0001, Fig. 1B). Loss of RB1 expression was less 333 

frequent in all other histotypes (1.8% to 2.8%). RB1 mRNA expression was also assessed by 334 

NanoString in a subset of HGSC tumours (n = 2552) and was significantly associated with RB1 335 

protein expression (Fig. 1C, P < 0.0001). 336 

 337 

RB1 loss is associated with longer survival in HGSC 338 

Loss of RB1 protein expression was associated with longer OS in patients with HGSC (HR 339 

0.74, 95% CI 0.66-0.83, P = 6.8x10-7; Table 1) following multivariate analysis adjusting for 340 

stage and age at diagnosis and stratified by study. Patients with HGSC were comparable in 341 

terms of stage regardless of RB1 loss or retained expression (P = 0.9246), however those with 342 

RB1 loss had a younger age at diagnosis (median 59 years versus 61 years, P = 0.0003; 343 

Supplementary Table S3). Median OS was 4.7 years for patients with RB1 loss compared to 344 

3.6 years for those with retained RB1 expression (Fig. 1D). 345 
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In contrast to HGSC, loss of RB1 expression in tumours from patients with ENOC was 346 

associated with advanced stage (P = 0.0003) and poorer survival (HR 2.17, 95% CI 1.17-4.03, 347 

P = 0.0140; Table 1, Fig. 1E, Supplementary Table S4). RB1 loss and abnormal p53 protein 348 

expression, which is highly predictive of TP53 mutation42, were strongly correlated (chi-square 349 

P < 0.0001; Supplementary Fig. 2A). While TP53 mutation is known to be associated with 350 

inferior survival in patients with ENOC37,43, we note that combined RB1 loss and abnormal 351 

p53 expression were associated with the shortest patient survival (median OS 3.0 years; 352 

Supplementary Fig. 2B), suggesting that loss of RB1 and TP53 mutation have a compounding 353 

negative impact on survival in patients with ENOC. 354 

 355 

Combined RB1 loss and germline BRCA mutation is associated with exceptionally good 356 

survival 357 

We previously observed that co-occurrence of somatic RB1 protein loss and BRCA1 or BRCA2 358 

alteration (somatic or germline) was associated with longer progression-free survival (PFS) 359 

and OS in HGSC7. Here, germline BRCA1 and BRCA2 status was available for 1134 HGSC 360 

patients for which we had RB1 IHC data (Supplementary Fig. S1). Consistent with having a 361 

younger age of diagnosis, patients with RB1 loss were more likely to have concurrent germline 362 

BRCA1 or BRCA2 mutations than those with retained RB1 expression (Fig. 1F, Chi-square P 363 

< 0.0001). Patients with both RB1 loss and a germline BRCA mutation had a 62% reduced risk 364 

of death compared with non-carriers with retained RB1 (HR 0.38, 95% CI 0.25-0.58, P = 365 

5.2x10-6; Table 1). The median OS of BRCA germline carriers with RB1 loss was three times 366 

longer than non-carriers with RB1 retained tumours (median OS 9.3 years vs. 3.1 years, 367 

respectively), while median OS was 5.2 years for BRCA carriers with retained RB1 expression 368 

and 4.5 years for non-carriers with RB1 loss (Fig. 1G; Supplementary Table S5). 369 

 370 
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Enhanced response to chemotherapy in cells with impaired BRCA and RB1 function 371 

To investigate whether co-occurrence of RB1 and BRCA alterations enhances sensitivity to 372 

standard-of-care ovarian cancer drugs, nine patient-derived HGSC cell lines with confirmed 373 

pathogenic TP53 mutation and known RB1 and BRCA status were treated with cisplatin, 374 

paclitaxel and olaparib (Supplementary Fig. S3A-C). AOCS14, the only cell line with a 375 

germline BRCA1 mutation and concomitant loss of RB1 expression, showed the best response 376 

to cisplatin and olaparib, and was the second most sensitive cell line to paclitaxel. In contrast 377 

AOCS11.2, a line with BRCA1 promoter methylation and loss of RB1 expression, was 378 

relatively resistant to paclitaxel and olaparib. Among cell lines with intact RB1 protein 379 

expression and BRCA wildtype background, AOCS3 was resistant to cisplatin, paclitaxel and 380 

olaparib.  381 

Except for the chemo-naïve cell lines AOCS30 and AOCS14, all other lines were 382 

derived from patients previously treated with chemotherapy. Since the evaluation of HGSC 383 

cell lines with existing RB1 mutations may have been confounded by their prior, differential 384 

exposure to chemotherapy we therefore characterised responses in isogenically matched lines 385 

deleted of RB1 and/or BRCA1. We first inactivated RB1 in two BRCA1-mutant (AOCS7.2, 386 

AOCS16) and one wild-type line (AOCS1) using CRISPR-Cas9 (Fig. 2A, Supplementary Fig. 387 

S4A). RB1 knockout clones of the BRCA1-mutant cell line AOCS7.2 had enhanced sensitivity 388 

to cisplatin and paclitaxel compared to RB1 wild-type clones, which was observed both in 389 

short-term drug assays (72 hours, Fig. 2B) and longer-term clonogenic survival assays (12 390 

days, Fig. 2C). In this cell line, sensitivity to paclitaxel and olaparib was increased after RB1 391 

knockout (paclitaxel IC50 92.0 nM versus 11.8 nM, P < 0.0001; olaparib IC50 6.1 versus 1.1 392 

nM, P < 0.0001). Further, significantly fewer colonies grew in this BRCA1-mutant cell line 393 

after RB1 knockout upon treatment with cisplatin (P = 0.01), paclitaxel (P = 0.02) or a 394 

combination of both drugs (P = 0.067) in a clonogenic survival assay (n = 3). This effect was 395 
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not apparent in the BRCA-wild-type line (AOCS1) or the other BRCA1-mutant line (AOCS16). 396 

Western blot and IHC analysis (Supplementary Fig. S4A) found that AOCS16 lacked 397 

expression of p16, which may functionally disrupt the RB1 pathway irrespective of an RB1 398 

knockout44. 399 

Given that RB1 plays a central role in the negative control of the cell cycle44,45, we 400 

tested whether the enhanced chemosensitivity of RB1 knockout AOCS 7.2 cells was associated 401 

with increased cell division. Live cell imaging showed similar growth rates of RB1 wildtype 402 

and knockout clones of all three isogenically matched HGSC cell lines (Supplementary Fig. 403 

S4B). In both BRCA wild-type and BRCA1 mutant cell lines, RB1 knockout did not alter cell 404 

cycle distribution at baseline or after 24 hours of cisplatin treatment (Supplementary Fig. S4C). 405 

Paclitaxel treatment resulted in a larger proportion of cells with a tetraploid DNA content in 406 

RB1 knockout cells compared to RB1 wild-type cells, indicating arrest in the G2 or M phase of 407 

the cell cycle. This effect was observed in all cell lines independent of BRCA or p16 status, 408 

however the arrest was more profound in the AOCS7.2 cell line (AOCS1, G2/M difference 409 

8.59% ± 4.73%, P = 0.144; AOCS16, G2/M difference 8.13% ± 4.45%, P = 0.142; AOCS7.2: 410 

G2/M difference 14.49% ± 3.99%, P = 0.022; Supplementary Fig. S4C). 411 

We extended our analysis of isogenically matched pairs by inactivating BRCA1 and/or 412 

RB1 in the chemo-naïve cell line AOCS30. While we were readily able to establish RB1 413 

knockout lines, all BRCA1 targeted clones were hemizygous for BRCA1 deletion and retained 414 

BRCA1 expression (Supplementary Table S6), suggesting that engineered homozygous loss of 415 

BRCA1 was cell lethal, even in a tumour type where BRCA1 loss is frequently observed46. 416 

 417 

Genomic and transcriptional landscape of HGSC with combined inactivation of BRCA and 418 

RB1 419 
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To further understand how RB1 loss may impact the biology of HGSC with co-loss of BRCA1 420 

or BRCA2, we explored matched whole-genome and transcriptome data of primary HGSC 421 

tumours in the MOCOG cohort26 of 126 short- (OS <2 years), moderate- (OS ≥2 to <10 years) 422 

and long-term (OS ≥10 years) survivor patients (Supplementary Fig. S1). Each tumour genome 423 

was classified according to their HRD and RB1 status, resulting in 6 groups: BRCA1-HRD & 424 

RB1 altered (n = 13); BRCA1-HRD & RB1 wild-type (n = 36); BRCA2-HRD & RB1 altered (n 425 

= 8); BRCA2-HRD & RB1 wild-type (n = 20); HRP & RB1 altered (n = 4), or HRP & RB1 426 

wild-type (n = 45; Fig. 3A). 427 

The cohort had been selected for a long-term survivor study26 and hence was enriched 428 

for patients with very long survival. Among BRCA2-HRD patients, those with RB1 alterations 429 

had longer OS (median OS 17.0 years) compared with those without RB1 alterations (median 430 

OS 11.7 years, P = 0.0004; Fig. 3B). Similarly, BRCA1-HRD patients with RB1 alterations 431 

survived longer (median OS 10.4 years) than those with an intact RB1 gene (median OS 7.1 432 

years). There were few HRP tumours with RB1 alterations, however these patients had a worse 433 

survival (median OS 1.4 years) compared to the HRP group with no RB1 alteration (median 434 

OS 2.4 years). 435 

Examination of genomic features revealed relatively similar patterns within BRCA1-436 

HRD and BRCA2-HRD groups, although there were a few discriminatory features identified 437 

between those with and without RB1 alterations (Supplementary Figs. S5 and S6). For example, 438 

the BRCA1-associated rearrangement signature Ovary_G47 was more enriched in BRCA1-HRD 439 

tumours with RB1 alterations compared to those without (P = 0.039). Among BRCA2-HRD 440 

tumours, the mutational signatures DBS6 (unknown etiology) and SBS3 (associated with 441 

HRD)48 were higher in RB1-altered tumours compared to non-altered tumours, although this 442 

was not significant (P = 0.082 and P = 0.1 respectively). Concordantly, the average BRCA1-443 

type and BRCA2-type CHORD scores40 were highest in BRCA1- and BRCA2-HRD tumours 444 
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with RB1 alterations respectively, indicating a higher probability of HRD. As described 445 

previously49, CCNE1 gene amplifications were absent in tumours with both HRD and RB1 446 

alterations (P = 0.0006; Supplementary Fig. S7). 447 

We hypothesised that tumours with combined HRD and RB1 loss may have unique 448 

transcriptional profiles. To explore this, we compared gene expression profiles between each 449 

HRD/RB1 group and the reference set of tumours that were HRP and RB1 wild-type 450 

(Supplementary Table S7, Supplementary Fig. S8). There was significant enrichment of 451 

MSigDB hallmark gene sets among genes differentially expressed in BRCA1-HRD tumours 452 

with RB1 alterations, the most prominent being interferon gamma response (up), interferon 453 

alpha response (up), oxidative phosphorylation (up), and E2F targets (up; adjusted P < 0.0001; 454 

Fig. 4A). The differentially expressed genes identified between BRCA2-HRD / RB1 altered 455 

tumours and the reference set were significantly enriched for the MSigDB hallmark gene sets: 456 

E2F targets (up), epithelial mesenchymal transition (down), G2M checkpoint (up), and TNF 457 

alpha signalling via NF-kB (up; adjusted P < 0.0001).  458 

Since enhanced tumour cell proliferation has been associated with long-term survival 459 

in HGSC7,26, and loss of RB1 might accelerate proliferation31, we evaluated the expression of 460 

proliferation markers across the RB1 and BRCA subgroups. BRCA1-HRD tumours with RB1 461 

alterations had significantly higher mRNA levels of the cell proliferation related genes PCNA 462 

(proliferating cell nuclear antigen) and MCM3 (minichromosome maintenance complex 463 

component 3) compared to BRCA1-HRD tumours without RB1 alterations (P < 0.0001, 464 

Supplementary Fig. S6). However, there were no significant differences in the proportion of 465 

Ki-67 positive cancer cell nuclei (P = 0.3297) across the subgroups (Supplementary Fig. S6), 466 

which was previously quantified by immunohistochemistry7 in a subset of primary tumours (n 467 

= 59). 468 

 469 
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Germline BRCA mutation carriers with somatic loss of RB1 tumour expression show 470 

elevated immune activity 471 

Having observed that HGSC with combined RB1 loss and HRD have enrichment of 472 

transcriptional signatures associated with an enhanced immune response, we accessed existing 473 

immunohistochemical data39 to determine the prevalence of CD8+ TILs in HGSC samples that 474 

also had RB1 protein expression and BRCA germline mutation status (n = 868). BRCA carriers 475 

with RB1 loss had a significantly higher proportion of tumours (79.6%) with moderate and 476 

high densities of CD8+ TILs, compared to BRCA carriers with retained RB1 (64.9%), non-477 

carriers with RB1 loss (72.4%) and non-carriers with retained RB1 (63.6%, P = 0.0264; Fig. 478 

4B). Tumours with complete absence of CD8+ TILs were the least frequent in BRCA carriers 479 

with RB1 loss (4.1%) compared to the other groups (13.8 % of BRCA carriers with retained 480 

RB1 tumour expression, 14.6% of non-carriers with RB1 tumour loss, 18.8% of non-carriers 481 

with retained RB1 tumour expression). 482 

Gene expression-based molecular subtypes12,38 also differed by RB1 and BRCA status 483 

(P = 0.0271, n = 601; Fig. 4C). As expected, there was enrichment for the C2/immunoreactive 484 

subtype, a subtype characterised by the presence of intratumoural CD8+ T cells and good 485 

survival, in germline BRCA carriers with RB1 loss (32.4%) compared to the other subgroups 486 

(between 19.8% and 23.4%). Additionally, tumours with RB1 loss were enriched for the 487 

C4/differentiated molecular subtype, a subtype characterised by cytokine expression and good 488 

survival, regardless of BRCA status (45.9% in BRCA carriers with RB1 loss, 50.0% in non-489 

carriers with RB1 loss, 39.5% in BRCA carriers with retained RB1, 32.1% of non-carriers with 490 

retained RB1). BRCA carriers with RB1 loss also had the lowest proportion of the 491 

C5/proliferative molecular subtype (2.7% versus 17.2% to 20.3% in the other groups), a 492 

subtype associated with diminished immune cell infiltration and poor survival12,19. 493 

 494 
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DISCUSSION 495 

Identifying the determinants of long-term patient survival, particularly in cancers with a 496 

generally unfavourable prognosis such as HGSC, may reveal novel therapeutic targets and 497 

inform personalised treatment strategies8. Improved survival associated with RB1 loss has been 498 

described previously in HGSC7,34,35,50 but the underlying factors contributing to this survival 499 

benefit have not been studied to date. We assessed tumour samples from a cohort of more than 500 

7,000 women with ovarian cancer, including a subset with high resolution genomic data, to 501 

understand how RB1 loss may impact on therapeutic response and patient survival. 502 

Alteration of the RB1 pathway is a frequent event in tumourigenesis, including loss of 503 

regulators such as p16, activation of D- and E-type cyclins and their associated cyclin 504 

dependent kinases, and loss of RB1 itself (reviewed in 51). Our study showed that RB1 loss is 505 

associated with longer survival in patients with advanced stage HGSC, but by contrast, loss of 506 

RB1 in ENOC was associated with a shorter survival, particularly in combination with p53 507 

mutation. Similar to ENOC, in endocrine-driven breast and prostate cancer, RB1 loss is 508 

associated with poorer survival: early co-loss of BRCA2 and RB1 is associated with an 509 

aggressive, castration-resistant prostate cancer subtype (CRPC) characterised by epithelial-to-510 

mesenchymal transition and shorter survival29. RB1 loss facilitates lineage plasticity and, with 511 

p53-comutation, leads to an androgen-independent phenotype52,53 and consequently resistance 512 

to anti-androgen therapy. In estrogen-receptor (ER) positive breast cancer, CDK4/6 inhibitor 513 

resistance is associated with RB1 loss and cyclin E2 activation54,55. 514 

Triple negative breast cancer (TNBC) provides an important contrast to the findings for 515 

RB1 loss in ER-positive breast cancer. In TNBC, RB1 loss is most common in the basal-like 516 

subtype, where BRCA1 mutation and promoter hypermethylation is associated with frequent 517 

RB1 gene disruption and RB1 loss28. RB1 loss alone, as well as co-occurrence with BRCA1 518 

promoter hypermethylation, is associated with a favourable chemotherapy response and 519 
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outcome27,56-58. Notably, TNBC and HGSC are more similar than the cancers that they are 520 

grouped with anatomically, sharing gene expression patterns, genetic drivers including BRCA1 521 

and BRCA2, ubiquitous loss of TP53, extensive copy number variation, and susceptibility to 522 

platinum-based chemotherapy59,60. Taken together, the relationship between RB1 loss and 523 

patient survival appears to be dependent on cancer type and molecular context61. 524 

Some, but not all TNBC and early metastatic prostate cancers are associated with 525 

germline variants in BRCA1, BRCA2 and other genes involved in HR DNA repair. However, 526 

previous tumour studies of RB1 expression have not also defined the HRD status of individual 527 

samples. A strength of this study was the known BRCA germline status of 1134 of the HGSC 528 

patients for which we also had RB1 protein expression, and this revealed the strong association 529 

of co-mutation in either BRCA1 or BRCA2 and RB1 with survival. In addition to germline 530 

mutations in BRCA1 or BRCA2, germline or somatic mutations, and promoter methylation of 531 

other genes involved in HR DNA repair, such as RAD51C, can result in a similar molecular 532 

phenotype, characterised by distinct genomic scarring26. Using whole-genome sequence data, 533 

we determined the likely tumour HRD status in a subset of 126 tumours using an algorithm 534 

that recognises genomic scarring associated with HRD (Fig. 3A), rather than simply 535 

designating BRCA mutation status, which does not account for all mechanisms of HR repair 536 

inactivation. Although the number of samples with RB1 loss and HR proficiency was small, 537 

the very poor outcome we observed with this group indicated that for RB1 to impart a survival 538 

benefit in HGSC, it must occur in an HRD background. Validation of this finding in a larger 539 

cohort may further inform how RB1 loss could favourably influence survival in certain 540 

histological and molecular contexts.  541 

We have previously noted that enhanced proliferation in HGSC is associated with long-542 

term survival7,26 and it is reasonable to suggest that RB1 loss may be imparting an effect 543 

through deregulating the cell cycle. However, data on the effect of RB1 loss on proliferation in 544 
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HGSC tumours and cancer cell lines is inconsistent. RB1 knockout in our HGSC cell lines did 545 

not cause cell cycle alterations in the absence of treatment, and despite differences in 546 

proliferative markers at the mRNA level, there was no significant difference in the proportion 547 

of Ki-67 positive nuclei between tumours with or without RB1 protein expression. In a recent 548 

OTTA study, Ki-67 expression was not associated with survival in HGSC; however, there was 549 

strong correlation between loss of RB1 and the proliferative marker MCM362, which may 550 

provide a more accurate measure of tumour cell proliferation than Ki-6763. 551 

In addition to its role in driving progression through the G1 stage of the cell cycle, RB1 552 

has non-canonical functions. RB1 has been shown to participate in HR DNA repair through 553 

interactions with BRG1 and ATM64. A recent pan-cancer study65 found that combined loss of 554 

TP53 and RB1 was associated with a particularly high genome-wide loss-of-heterozygosity 555 

score, one of the key elements of genomic scarring associated with HRD. In our whole-genome 556 

analysis, HGSC tumours with dual loss of HRD and RB1 did not exhibit overall higher 557 

mutation burden; however, we did observe elevated levels of mutational signatures associated 558 

with HRD, which may be evidence of compounding DNA repair defects. It remains possible 559 

that the combined inactivation of RB1 and HR genes contribute to enhanced chemotherapy 560 

response and/or an impaired ability for tumour cells to develop therapy resistance. 561 

When we evaluated a set of patient derived HGSC lines, those with germline BRCA1 562 

mutation and RB1 alteration were most sensitive to cisplatin and olaparib. Knockout of RB1 in 563 

the AOCS 7.2 cell line which had a pre-existing BRCA1 mutation, resulted in an increase in 564 

chemosensitivity, consistent with the notion that co-mutation enhances chemotherapy 565 

response7. Unfortunately, despite considerable efforts, we were unable to generate a larger 566 

series of isogenically matched cell lines with combinations of conditional knockouts of RB1 567 

and BRCA1 as all surviving clones retained at least one BRCA1 allele. BRCA1 loss is embryonic 568 
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lethal and engineered loss in cell lines has been reported as lethal elsewhere including in the 569 

human haploid cell line, HAP146. 570 

Our data provides evidence of an enhanced immunogenicity in HGSC with RB1 loss, 571 

with higher CD8+ TIL counts and upregulated expression of IFN-γ signalling pathways. RB1 572 

has been shown to inhibit innate IFN-β production in immunocompetent mice66 and RB1 573 

deficiency triggered an increased IFN-β and IFN-α secretion. Co-mutation of RB1 and TP53 574 

was recently found to be associated with an enhanced response to the immune checkpoint 575 

inhibitor atezolizumab in metastatic urothelial bladder cancer67. Similarly, a case report 576 

described a complete response to atezolizumab in heavily pre-treated, RB1-negative TNBC68. 577 

This generates the hypothesis that RB1 loss could predict response to such therapies in HGSC, 578 

since this tumour type ubiquitously harbours TP53 mutations69. However, a recent biomarker 579 

study in ovarian cancer patients treated with atezolizumab or placebo and standard 580 

chemotherapy found that deleterious mutations in RB1 were prognostic for a better PFS, 581 

regardless of the addition of atezolizumab70. While it appears RB1 loss alone may not be 582 

predictive of response to the PD-L1 inhibitor atezolizumab, response rates to PD-1/PD-L1 583 

pathway checkpoint inhibitors are generally quite low in HGSC, with the best objective 584 

response rates between 8% and 15%71. Our study has identified a subset of patients with 585 

combined RB1 and BRCA inactivation who demonstrate exceptional immune responses and 586 

may provide clues for the development of new immunotherapeutic strategies for HGSC that 587 

extend beyond targeting PD-L1/PD-1. 588 

Our work highlights the importance of RB1 loss to treatment response and survival and 589 

focuses attention on other therapeutic opportunities in this subset of HGSC patients. 590 

Approximately 20 percent of HGSC patients have somatic loss of RB1 assessed using genomic 591 

data3,26, a figure that is consistent with the immunohistochemical results obtained in the large 592 

patient cohort described here. Both approaches indicate that RB1 loss is generally clonal, 593 
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enhancing its value as a therapeutic target if selective inhibitors can be identified. Casein kinase 594 

2 (CK2) inhibitors have been reported to enhance the sensitivity of RB1-deficient TNBC and 595 

HGSC cells to carboplatin and niraparib72. In addition, Aurora kinase A and B inhibition is 596 

synthetically lethal in combination with RB1 loss in breast and lung cancer cells73-75. 597 

Irrespective of HRD status, RB1 mutations correlate with sensitivity to WEE1 inhibition in 598 

TP53 mutant TNBC and HGSC patient-derived xenografts76, indicating additional treatment 599 

options that exploit RB1 inactivation in these tumours. In this study, the BRCA1-mutant cell 600 

line AOCS7.2 with induced RB1 knockout was more sensitive to olaparib suggesting that RB1 601 

loss may also predict responses to PARP inhibitors in HGSC. RB1 staining of tumour tissue 602 

by IHC is a relatively low-cost pathology-based assay that could be used in prospective studies 603 

to test whether RB1 expression is predictive of responses to PARP inhibitors, either alone or 604 

in combination with approved HRD tests. 605 
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Figure 1. Expression of RB1 and survival associations across ovarian cancer histotypes.  669 

(A) Representative images of immunohistochemical detection of RB1 expression in ovarian 670 

carcinoma tissues, showing examples of the three most common expression patterns: retained, 671 

lost and subclonal loss. (B) Proportion of patients with loss or retention of RB1 protein 672 

expression in tumour samples by ovarian cancer histotypes. Chi-square P value reported for 673 

difference in proportions across all histotypes. HGSC, tubo-ovarian high-grade serous 674 

carcinoma; LGSC, low-grade serous carcinoma; MOC, mucinous ovarian cancer; ENOC, 675 

endometrioid ovarian cancer; CCOC, clear cell ovarian cancer. (C) Boxplots show RB1 mRNA 676 

expression (NanoString) by RB1 protein expression status; lines indicate median and whiskers 677 

show range (Mann-Whitney test P value reported). Kaplan-Meier analysis of overall survival 678 

in patients diagnosed with HGSC (D) and ENOC (E) stratified by tumour RB1 expression. (F) 679 

Loss of RB1 tumour expression is more common in germline BRCA1 and BRCA2 mutation 680 

carriers than retained RB1 expression. Chi-square P value is reported. (G) Kaplan-Meier 681 

estimates of overall survival in HGSC patients by combined germline BRCA and tumour RB1 682 

expression status. 683 

 684 

Figure 2. Sensitivity to therapeutic agents in BRCA1-mutant cell lines with RB1 knockout.  685 

(A) RB1 was knocked out using CRISPR/Cas9 in 3 patient-derived Australian Ovarian Cancer 686 

Study (AOCS) HGSC cell lines with either wild-type or mutant BRCA1 background. 687 

Representative Western Blots show protein levels of RB1 and phosphorylated RB1 (pRB1) 688 

compared to GAPDH loading control in single cell cloned, homozygous RB1 wildtype (WT) 689 

and knockout (KO) colonies in comparison to heterogeneous populations with a scramble 690 

single guide RNA (sgRNA). Independent blots were used for RB1 and pRB1. (B) Cell viability 691 

was compared between RB1 WT and KO clones following treatment with cisplatin (72 hours), 692 

paclitaxel (72 hours) or olaparib (120 hours). Nonlinear regression drug curves are shown; P 693 
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values of a curve fit, extra sum-of squares F test (ns, not significant; ** P < 0.01; **** P < 694 

0.0001; n = 3). Error bars indicate ± SEM; for some values error bars are shorter than the 695 

symbols and thus are not visible. (C) Proportion of surviving colonies following 16 days of 696 

treatment with cisplatin, paclitaxel or a combination of both (with half of the IC50 determined 697 

per drug and cell line respectively) relative to DMF vehicle control (n = 3 replicates). Data are 698 

presented as mean ± SEM. Mean values were compared by student's t-test (ns, not significant; 699 

*P < 0.05; **P < 0.01). Representative scans of the fixed cell colonies stained with crystal 700 

violet are shown for each condition. 701 

 702 

Figure 3. Genomic landscape of high-grade serous ovarian tumours with co-occurring 703 

BRCA and RB1 alterations.  704 

(A) Pathogenic germline and somatic alterations in homologous recombination (HR) and DNA 705 

repair genes detected by whole-genome sequencing and DNA methylation analysis of 126 706 

primary HGSC samples26 are shown, as well as alterations in immune genes and CCNE1. 707 

Samples are grouped by HRD and RB1 status (wt, wild-type; mut, mutation). Bars at the top 708 

indicate the number of alterations in each listed gene per patient. Patients are annotated with 709 

survival group (LTS, long-term survivor, OS >10 years; MTS, mid-term survivor, OS 2-10 710 

years; STS, short-term survivor, OS <2 years), tumour CHORD40 scores, and the proportion of 711 

structural variant (SV) type (DUP, duplication; DEL, deletion; INV, inversion; ITX, intra-712 

chromosomal translocation). (B) Kaplan-Meier estimates of progression-free and overall 713 

survival of patients with according to HR status (BRCA1-type HRD, BRCA2-type HRD or 714 

homologous recombination proficient tumours) and RB1 status (mut, mutation; wt, wild-type). 715 

 716 

Figure 4. Characterisation of HGSC with co-loss of RB1 and BRCA.  717 
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(A) Gene set enrichment analysis indicating up- and downregulated pathways in tumours 718 

according to BRCA and RB1 status. HRP, homologous recombination proficient; HRD, 719 

homologous recombination deficient; RB1wt, RB1 wild-type; RB1m, RB1 altered. (B) 720 

Proportion of tumour infiltrating lymphocytes (TILs) in HGSC tumours grouped by RB1 721 

expression and BRCA germline mutation status (Chi-square P value is indicated). (C) 722 

Proportion of tumours classified as each HGSC molecular subtype12 grouped by RB1 723 

expression and BRCA germline mutation status (Chi-square P value is indicated; C5.PRO, 724 

C5/proliferative subtype; C4.DIF, C4/differentiated subtype; C2.IMM, C2/immunoreactive 725 

subtype; C1.MES, C1/mesenchymal subtype). 726 

 727 

Supplementary Figure S1. Patients and tumour samples analysed in this study. 728 

Number of patients included in each molecular analysis. HGSC, tubo-ovarian high-grade 729 

serous ovarian carcinoma; ENOC, endometrioid ovarian carcinoma; OS, overall survival.  730 

 731 

Supplementary Figure S2. Combined p53 and RB1 protein expression in ENOC. 732 

(A) Correlation between RB1 and p53 tumour expression in patients with endometrioid ovarian 733 

carcinoma (ENOC). Chi-square P value is reported. (B) Kaplan-Meier estimates of overall 734 

survival in patients with ENOC by combined RB1 and p53 tumour expression status. 735 

 736 

Supplementary Figure S3. Drug sensitivity in HGSC cell lines with innate RB1 and/or 737 

BRCA1 alterations.  738 

(A) Summary of the molecular features of innate HGSC cell models, including mutations in 739 

key genes (TP53, CDKN2A, BRCA1, BRCA2), copy number alterations in CCNE1, and protein 740 

expression of RB1 and p16. (B) IC50 of high grade serous ovarian cancer cell lines after 741 

treatment with cisplatin (72 hours), paclitaxel (72 hours), or olaparib (120 hours). ND, Not 742 
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determined. (C) Viability of high-grade serous ovarian cancer cell lines after treatment with 743 

cisplatin (72 hours), paclitaxel (72 hours), or olaparib (120 hours). Data are expressed as mean 744 

(n = 3 replicates) ± standard error of the mean (SEM). For some points, error bars are shorter 745 

than the height of the symbol and are not visible.  746 

 747 

Supplementary Figure S4. Cell proliferation and cell cycle distribution of HGSC cell lines 748 

with RB1 knockout. 749 

(A) CRISPR/Cas9 knockout of RB1 in 3 patient-derived ovarian cancer cell lines with different 750 

BRCA1/2 and p16 backgrounds. The bar graph indicates RB1 mRNA expression levels 751 

determined by RT-PCR (n = 3) in single-cell clones confirming RB1 wildtype (WT) and 752 

knockout (KO) compared to heterozygous colonies without gene editing (Scramble). 753 

Representative Western Blots show p16 protein levels compared to GAPDH loading controls 754 

in each cell line and clone. Images of p16 IHC in AOCS parental cell lines are included 755 

confirming the respective p16 status. (B) Proliferative capacity of 3 patient-derived HGSC cell 756 

lines (RB1 wild-type, WT and RB1 knockout, KO clones) measured by IncuCyte Zoom live-757 

cell imaging. Data represent mean ± SEM confluency after 20-25% starting confluency from 758 

three to six independent experiments. Dashed line denotes 75% confluency. (C) Cell cycle 759 

distribution following RB1 CRISPR knockout. Proportion of cells in G0G1, S or G2/M phase 760 

24 hours after treatment with DMF, cisplatin or paclitaxel at half the IC50 determined per cell 761 

line and drug, analysed by flow cytometry. Mean proportion ± SEM of three independently 762 

performed experiments are shown. Distribution was compared between RB1 WT and KO 763 

clones using unpaired t test (ns, not significant; *P < 0.05). 764 

 765 

Supplementary Figure S5. Mutational signatures in homologous recombination 766 

deficiency and RB1 subgroups. 767 
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Boxplots show the relative proportion (y-axis) of genome-wide mutational signatures26 768 

according to homologous recombination deficiency (HRD) and RB1 status. Boxes show the 769 

interquartile range (25-75th percentiles), central lines indicate the median, dots represent each 770 

sample, whiskers show the smallest and largest values within 1.5 times the interquartile range, 771 

red triangles indicate the mean, and dotted lines join the mean of each subgroup to visualise 772 

the trend. The Kruskal–Wallis test P values displayed are Benjamini-Hochberg adjusted and 773 

the signatures are ordered by their significance. Pair-wise Mann-Whitney-Wilcoxon test 774 

adjusted P values are also reported. HRP, homologous recombination proficient. 775 

 776 

Supplementary Figure S6. Genomic and clinical characteristics by combined homologous 777 

recombination deficiency and RB1 status. 778 

Boxplots show numerical clinical and genomic features (y-axis) according to homologous 779 

recombination deficiency (HRD) and RB1 status. Boxes show the interquartile range (25-75th 780 

percentiles), central lines indicate the median, dots represent each sample, whiskers show the 781 

smallest and largest values within 1.5 times the interquartile range, red triangles indicate the 782 

mean, and dotted lines join the mean of each subgroup to visualise the trend. The Kruskal–783 

Wallis test P values displayed are Benjamini-Hochberg adjusted and the features are ordered 784 

by their significance. Pair-wise Mann-Whitney-Wilcoxon test adjusted P values are also 785 

reported. Features include BRCA1- and BRCA2-type CHORD (Classifier of HOmologous 786 

Recombination Deficiency) scores; mean HRD scores (scarHRD); absolute numbers of 787 

structural variants (SVs), including deletions (DEL), duplications (DUP), intrachromosomal 788 

rearrangements (ITX), and inversions (INV); relative expression levels of PCNA and MCM3; 789 

proportion of whole-genome loss-of-heterozygosity (LOH); number of predicted neoantigens 790 

and variants per megabase (Mb); age of patients at diagnosis; progression-free and overall 791 

survival; cancer cell purity and ploidy; absolute CIBERSORTx scores; proportion of Ki-67 792 
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positive tumour cells were available for n = 59 primary tumours as previously measured by 793 

immunohistochemistry7. HRP, homologous recombination proficient. 794 

 795 

Supplementary Figure S7. Gene alterations across BRCA and RB1 altered subgroups. 796 

Proportion of tumours with alterations in genes of interest for each subgroup. WT, wild-type; 797 

MUT, mutation; HRP, homologous recombination proficient. Genes are ordered by 798 

significance using Fisher's exact test; Benjamini-Hochberg adjusted P values are reported. 799 

 800 

Supplementary Figure S8. Differentially expressed genes. 801 

Bars indicate the number of differentially expressed genes (Benjamini-Hochberg adjusted P 802 

value < 0.05) between HGSC tumours grouped by HRD and/or RB1 status as 803 

shown. Differential gene expression analysis was performed using DESeq2 to determine fold 804 

change of gene expression between groups (see Supplementary Table 7 for full DESeq2 805 

results). HRP, homologous recombination proficient; HRD, homologous recombination 806 

deficient; RB1wt, RB1 wild-type; RB1m, RB1 altered. 807 

 808 

Supplementary Table captions: 809 

Supplementary Table S1. 810 

Details of participating Ovarian Tumor Tissue Analysis (OTTA) consortium studies and ethics 811 

approval. 812 

Supplementary Table S2. 813 

Number of patients by study and histotype. 814 

Supplementary Table S3. 815 

Clinical characteristics of patients diagnosed with high-grade serous ovarian cancer. 816 

Supplementary Table S4. 817 
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Clinical features of patients with endometrioid ovarian cancer 818 

Supplementary Table S5. 819 

Clinical characteristics of patients with high-grade serous ovarian cancer according to BRCA 820 

and RB1 status. 821 

Supplementary Table S6. 822 

Relative expression of BRCA1 and RB1 by qPCR in AOCS30 CRISPR knockout model. 823 

Supplementary Table S7. 824 

Differential gene expression analysis comparing transcriptomes of tumours based on BRCA 825 

and RB1 alteration status. 826 

Supplementary Table S8. 827 

Summary of cell lines used in this study. 828 

Supplementary Table S9. 829 

Summary of gene alterations and expression found in cell lines. 830 

Supplementary Table S10. 831 

Sequence of single guide RNA used for CRISPR gene knockout. 832 

Supplementary Table S11. 833 

Antibodies and reagents used for this project. 834 

Supplementary Table S12. 835 

List of primer sequences used in the study. 836 
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Table 1. Multivariate analysis of molecular alterations and overall survival in patients with HGSC and ENOC

Histotype Feature Category No. patients (events, %) HR (95% CI) P P  for interaction
HGSCa,b RB1 Retained 3453 (71.3) 1 [Reference]

Loss 686 (61.1) 0.74 (0.66-0.83) 6.8 x 10-7

ENOCa RB1 Retained 649 (22.7) 1 [Reference]

Loss 28 (39.3) 2.17 (1.17-4.03) 0.014

HGSCa,b RB1 and BRCA status RB1 retained & non-carrier 714 (76.3) 1 [Reference] 0.24

RB1 loss & non-carrier 135 (60.7) 0.74 (0.57-0.96) 0.023

RB1 retained & BRCA  carrier 159 (67.9) 0.69 (0.55-0.86) 0.001

RB1 loss & BRCA  carrier 70 (42.9) 0.38 (0.25-0.58) 5.2 x 10-6

ENOCa RB1 and p53 RB1 retained & p53 normal 492 (17.5) 1 [Reference] 0.698

RB1 retained & p53 abnormal 58 (36.2) 2.26 (1.38-3.71) 0.001

RB1 loss & p53 normal 11 (27.3) 1.77 (0.56-5.65) 0.332

RB1 loss & p53 abnormal 12 (58.3) 5.34 (2.43-11.8) <0.001

aAdjusted for stage and age at diagnosis. bStratified by study. 
HR, hazard ratio, CI, confidence interval; HGSC, tubo-ovarian high-grade serous carcinoma; ENOC, endometrioid ovarian cancer.

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 10, 2023. ; https://doi.org/10.1101/2023.11.09.23298321doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.09.23298321
http://creativecommons.org/licenses/by/4.0/


C

Figure 2.

A B

RB1
WT

RB1
KO

RB1
WT

RB1
KO

RB1 
WT

RB1
KO

DMF Cisplatin Paclitaxel Cis/Pac

-6 -4 -2 0
0.0

0.5

1.0

Log[Cisplatin], µM

Vi
ab

ili
ty

AOCS1 (BRCA1/2 WT, p16 normal)

-6 -4 -2 0
0.0

0.5

1.0

Log[Cisplatin], µM

Vi
ab

ili
ty

AOCS16 (BRCA1 mut, p16 absent)

-6 -4 -2 0
0.0

0.5

1.0

Log[Cisplatin], µM

Vi
ab

ili
ty

AOCS7.2 (BRCA1 mut, p16 normal)

-8 -6 -4 -2 0
0.0

0.5

1.0

1.5

Log[Paclitaxel], µM

Vi
ab

ili
ty

-8 -6 -4 -2 0
0.0

0.5

1.0

1.5

Log[Paclitaxel], µM

Vi
ab

ili
ty

-8 -6 -4 -2 0
0.0

0.5

1.0

1.5

Log[Paclitaxel], µM

Vi
ab

ili
ty

ns

**

ns

ns

**** ****

-6 -4 -2 0
0.0

0.5

1.0

Log[Olaparib], µM

Vi
ab

ili
ty

RB1 WT

RB1 KO

-6 -4 -2 0
0.0

0.5

1.0

Log[Olaparib], µM

Vi
ab

ili
ty

RB1 WT

RB1 KO

-6 -4 -2 0
0.0

0.5

1.0

Log[Olaparib], µM

Vi
ab

ili
ty

RB1 WT

RB1 KO

ns

****

**

DMF

Cisp
lat

in

Pac
lita

xe
l

Cis/
Pac

0

50

100

%
 C

lo
no

ge
ni

c 
Su

rv
iv

al

DMF

Cisp
lat

in

Pac
lita

xe
l

Cis/
Pac

0

50

100

%
 C

lo
no

ge
ni

c 
Su

rv
iv

al

DMF

Cisp
lat

in

Pac
lita

xe
l

Cis/
Pac

0

50

100

%
 C

lo
no

ge
ni

c 
Su

rv
iv

al

AOCS1 
BRCA1/2 WT, p16 normal

AOCS7.2 
BRCA1 mut, p16 normal

AOCS16 
BRCA1 mut, p16 absent

✱✱ ✱ ns

ns ns ns

ns ns ns

RB1 WT
RB1 KO

RB1

GAPDH

Sc
ra

m
bl

e

R
B1

 W
T

R
B1

 K
O

AOCS1
(BRCA1/2 WT
p16 normal) pRB1

Sc
ra

m
bl

e

R
B1

 W
T

R
B1

 K
O

AOCS7.2
(BRCA1 mut
p16 normal)

Sc
ra

m
bl

e

R
B1

 W
T

R
B1

 K
O

AOCS16
(BRCA1 mut
p16 absent)

RB1

GAPDH

pRB1

RB1

GAPDH

pRB1

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 10, 2023. ; https://doi.org/10.1101/2023.11.09.23298321doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.09.23298321
http://creativecommons.org/licenses/by/4.0/


HRP & 
RB1wild−type (n=45)

HRP & 
RB1altered (n=4)

BRCA1−HRD & 
RB1wild−type (n=36)

BRCA1−HRD & 
RB1altered (n=13)

BRCA2−HRD & 
RB1wild−type (n=20)

BRCA2−HRD & 
RB1altered (n=8)

2

4

6

Survival group

CHORD score

SV %

0.25
0.5
0.75
1

25
50
75
100

41%
14%
12%
6%
5%
4%
3%
2%
2%
2%
2%
2%
2%
1%
1%
1%
1%
1%
1%
1%

20%
17%
11%
5%
3%
3%
2%
2%

BRCA1
BRCA2
RAD51B
RAD51C
BRIP1
ATM
PALB2
BLM
FANCD2
ATR
BARD1
FANCI
FANCM
CHEK2
FANCA
FANCE
MSH2
MSH6
PMS1
RAD51D
RB1
CCNE1
PTEN
CDK12
CXCL9
CXCL10
CXCL11
IFNG

0 25 50 0 50 100

Alteration
Germline duplication
Germline deletion
Germline inversion
Somatic duplication
Somatic deletion
Somatic inversion

Somatic interchromosomal translocation
Somatic amplification
Germline frameshift indel
Germline nonsense
Germline missense
Somatic nonsense

Somatic frameshift indel
Somatic in−frame indel
Somatic splice site
Promoter methylation

Survival group
LTS
MTS
STS

CHORD
None
BRCA2−type
BRCA1−type

SV %
DUP
DEL
INV
ITX

Alteration
count

Alteration
%

Figure 3.

A

B

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 10, 2023. ; https://doi.org/10.1101/2023.11.09.23298321doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.09.23298321
http://creativecommons.org/licenses/by/4.0/


E2f Targets
G2m Checkpoint

Interferon Gamma Response
Interferon Alpha Response
Oxidative Phosphorylation
Estrogen Response Early
Estrogen Response Late

Tnfa Signaling Via Nfkb
Reactive Oxygen Species Pathway

Adipogenesis
Myc Targets V1

P53 Pathway
Fatty Acid Metabolism

Mtorc1 Signaling
Allograft Rejection

Inflammatory Response
Complement

Il6 Jak Stat3 Signaling
Epithelial Mesenchymal Transition

Protein Secretion
Mitotic Spindle

Spermatogenesis
Coagulation
Peroxisome

Il2 Stat5 Signaling
Xenobiotic Metabolism

Apoptosis
Pi3k Akt Mtor Signaling

Cholesterol Homeostasis
Myc Targets V2

Uv Response Up
Dna Repair

Glycolysis
Kras Signaling Dn

Bile Acid Metabolism
Hypoxia

Uv Response Dn
Kras Signaling Up

Wnt Beta Catenin Signaling
Myogenesis

Apical Junction
Heme Metabolism

H
R

D
/H

R
P 

(s
an

s 
R

B1
 s

ig
)

BR
C

A2
/H

R
P 

(s
an

s 
R

B1
 s

ig
)

BR
C

A1
/H

R
P 

(s
an

s 
R

B1
 s

ig
)

BR
C

A2
.R

B1
w

/H
R

P.
R

B1
w

t

BR
C

A1
.R

B1
w

/H
R

P.
R

B1
w

t

BR
C

A2
.R

B1
m

/H
R

P.
R

B1
w

t

BR
C

A1
.R

B1
m

/H
R

P.
R

B1
w

t

R
B1

m
/R

B1
w

t (
sa

ns
 H

R
D

 ty
pe

)

−log10(padj)
10

20

30

40

−4

−2

0

2

4
NES

Direction
Up

Down

MSigDB HALLMARK fGSEA Results (P.adj <= 0.05)
A

Figure 4.

B

E2f Targets
G2m Checkpoint

Interferon Gamma Response
Interferon Alpha Response
Oxidative Phosphorylation
Estrogen Response Early
Estrogen Response Late

Tnfa Signaling Via Nfkb
Reactive Oxygen Species Pathway

Adipogenesis
Myc Targets V1

P53 Pathway
Fatty Acid Metabolism

Mtorc1 Signaling
Allograft Rejection

Inflammatory Response
Complement

Il6 Jak Stat3 Signaling
Epithelial Mesenchymal Transition

Protein Secretion
Mitotic Spindle

Spermatogenesis
Coagulation
Peroxisome

Il2 Stat5 Signaling
Xenobiotic Metabolism

Apoptosis
Pi3k Akt Mtor Signaling

Cholesterol Homeostasis
Myc Targets V2

Uv Response Up
Dna Repair

Glycolysis
Kras Signaling Dn

Bile Acid Metabolism
Hypoxia

Uv Response Dn
Kras Signaling Up

Wnt Beta Catenin Signaling
Myogenesis

Apical Junction
Heme Metabolism

H
R

D
/H

R
P 

(s
an

s 
R

B1
 s

ig
)

BR
C

A2
/H

R
P 

(s
an

s 
R

B1
 s

ig
)

BR
C

A1
/H

R
P 

(s
an

s 
R

B1
 s

ig
)

BR
C

A2
.R

B1
w

/H
R

P.
R

B1
w

t

BR
C

A1
.R

B1
w

/H
R

P.
R

B1
w

t

BR
C

A2
.R

B1
m

/H
R

P.
R

B1
w

t

BR
C

A1
.R

B1
m

/H
R

P.
R

B1
w

t

R
B1

m
/R

B1
w

t (
sa

ns
 H

R
D

 ty
pe

)

−log10(padj)
10

20

30

40

−4

−2

0

2

4
NES

Direction
Up

Down

MSigDB HALLMARK fGSEA Results (P.adj <= 0.05)

E2f Targets
G2m Checkpoint

Interferon Gamma Response
Interferon Alpha Response
Oxidative Phosphorylation
Estrogen Response Early
Estrogen Response Late

Tnfa Signaling Via Nfkb
Reactive Oxygen Species Pathway

Adipogenesis
Myc Targets V1

P53 Pathway
Fatty Acid Metabolism

Mtorc1 Signaling
Allograft Rejection

Inflammatory Response
Complement

Il6 Jak Stat3 Signaling
Epithelial Mesenchymal Transition

Protein Secretion
Mitotic Spindle

Spermatogenesis
Coagulation
Peroxisome

Il2 Stat5 Signaling
Xenobiotic Metabolism

Apoptosis
Pi3k Akt Mtor Signaling

Cholesterol Homeostasis
Myc Targets V2

Uv Response Up
Dna Repair

Glycolysis
Kras Signaling Dn

Bile Acid Metabolism
Hypoxia

Uv Response Dn
Kras Signaling Up

Wnt Beta Catenin Signaling
Myogenesis

Apical Junction
Heme Metabolism

H
R

D
/H

R
P 

(s
an

s 
R

B1
 s

ig
)

BR
C

A2
/H

R
P 

(s
an

s 
R

B1
 s

ig
)

BR
C

A1
/H

R
P 

(s
an

s 
R

B1
 s

ig
)

BR
C

A2
.R

B1
w

/H
R

P.
R

B1
w

t

BR
C

A1
.R

B1
w

/H
R

P.
R

B1
w

t

BR
C

A2
.R

B1
m

/H
R

P.
R

B1
w

t

BR
C

A1
.R

B1
m

/H
R

P.
R

B1
w

t

R
B1

m
/R

B1
w

t (
sa

ns
 H

R
D

 ty
pe

)

−log10(padj)
10

20

30

40

−4

−2

0

2

4
NES

Direction
Up

Down

MSigDB HALLMARK fGSEA Results (P.adj <= 0.05)

E2f Targets
G2m Checkpoint

Interferon Gamma Response
Interferon Alpha Response
Oxidative Phosphorylation
Estrogen Response Early
Estrogen Response Late

Tnfa Signaling Via Nfkb
Reactive Oxygen Species Pathway

Adipogenesis
Myc Targets V1

P53 Pathway
Fatty Acid Metabolism

Mtorc1 Signaling
Allograft Rejection

Inflammatory Response
Complement

Il6 Jak Stat3 Signaling
Epithelial Mesenchymal Transition

Protein Secretion
Mitotic Spindle

Spermatogenesis
Coagulation
Peroxisome

Il2 Stat5 Signaling
Xenobiotic Metabolism

Apoptosis
Pi3k Akt Mtor Signaling

Cholesterol Homeostasis
Myc Targets V2

Uv Response Up
Dna Repair

Glycolysis
Kras Signaling Dn

Bile Acid Metabolism
Hypoxia

Uv Response Dn
Kras Signaling Up

Wnt Beta Catenin Signaling
Myogenesis

Apical Junction
Heme Metabolism

H
R

D
/H

R
P 

(s
an

s 
R

B1
 s

ig
)

BR
C

A2
/H

R
P 

(s
an

s 
R

B1
 s

ig
)

BR
C

A1
/H

R
P 

(s
an

s 
R

B1
 s

ig
)

BR
C

A2
.R

B1
w

/H
R

P.
R

B1
w

t

BR
C

A1
.R

B1
w

/H
R

P.
R

B1
w

t

BR
C

A2
.R

B1
m

/H
R

P.
R

B1
w

t

BR
C

A1
.R

B1
m

/H
R

P.
R

B1
w

t

R
B1

m
/R

B1
w

t (
sa

ns
 H

R
D

 ty
pe

)

−log10(padj)
10

20

30

40

−4

−2

0

2

4
NES

Direction
Up

Down

MSigDB HALLMARK fGSEA Results (P.adj <= 0.05)

C

RB1 r
eta

ine
d &

 no
n-c

arr
ier

 (n
 = 

60
2)

RB1 r
eta

ine
d &

 B
RC
A 

ca
rrie

r (
n =

 94
)

RB1 l
os

s &
 no

n-c
arr

ier
 (n

 = 
12

3)

RB1 l
os

s &
 B
RC
A 

ca
rrie

r (
n =

 49
)

0

20

40

60

80

100

Pr
op

or
tio

n

Negative
Low
Moderate
High

Chi-square
P = 0.0264

Number of TILs

RB1 r
eta

ine
d &

 no
n-c

arr
ier

 (n
 = 

41
4)

RB1 r
eta

ine
d &

 B
RC
A 

ca
rrie

r (
n =

 86
)

RB1 l
os

s &
 no

n-c
arr

ier
 (n

 = 
64

)

RB1 l
os

s &
 B
RC
A 

ca
rrie

r (
n =

 37
)

0

20

40

60

80

100

Pr
op

or
tio

n

C1.MES
C2.IMM
C4.DIF
C5.PRO

Chi-square
P = 0.0271 

Molecular subtype

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 10, 2023. ; https://doi.org/10.1101/2023.11.09.23298321doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.09.23298321
http://creativecommons.org/licenses/by/4.0/


Supplementary Figure S1.
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Supplementary Figure S2.
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Supplementary Figure S5.
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Supplementary Figure S6.
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Supplementary Figure S7.
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Supplementary Figure S8.
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