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ABSTRACT. 

Biomarkers of biological age that predict the risk of disease and expected lifespan better than chronological 

age are key to efficient and cost-effective healthcare1–3. To advance a personalized approach to healthcare, 

such biomarkers must reliably and accurately capture individual biology, predict biological age, and provide 

scalable and cost-effective measurements. We developed a novel approach – image-based chromatin and 

epigenetic age (ImAge) that captures intrinsic progressions of biological age, which readily emerge as princi-

pal changes in the spatial organization of chromatin and epigenetic marks in single nuclei without regression 

on chronological age. ImAge captured the expected acceleration or deceleration of biological age in mice 

treated with chemotherapy or following a caloric restriction regimen, respectively. ImAge from chronologically 

identical mice inversely correlated with their locomotor activity (greater activity for younger ImAge), consistent 

with the widely accepted role of locomotion as an aging biomarker across species. Finally, we demonstrated 

that ImAge is reduced following transient expression of OSKM cassette in the liver and skeletal muscles and 

reveals heterogeneity of in vivo reprogramming. We propose that ImAge represents the first-in-class imaging-

based biomarker of aging with single-cell resolution. 

 

INTRODUCTION. 

With a steady increase in average lifespan and population aging4,5 measurement of the aging process is be-

coming increasingly important, underscoring the need for accelerated adoption of biomarkers of functional, 

also called biological, age6. Such biomarkers should quantitate disease and mortality risks better than chrono-

logical age, thus improving the efficacy and quality of geriatric care while reducing associated cost7–10. Bi-

omarkers of aging include grip strength and gait11, frailty indices12,13, frailty-based clocks14, metrics of the im-

mune system15,16, telomere length17, glycosylation readouts18, levels of cellular senescence19.  

 

The fascinating discoveries of Hannum20 and Horvath20,21 have identified CpG sites in human blood and other 

tissues with consistent age-dependent changes in DNA methylation (DNAm), enabling the development of 



   

 

   

 

DNAm clocks. This discovery represents a major step in the development of aging biomarkers rooted in epi-

genetics. Since the original discovery, many other clocks have been established22–26, often utilizing functional 

biomarkers alongside DNAm readouts, yielding biological clocks such as PhenoAge26 and DunedinPACE27 

tailored to specific cell types or pan tissues28–31. These biomarkers correlate with mortality32,33, may inform on 

the lifespan (GrimAge)24, and are sensitive to lifespan-altering interventions34,35. However, separating the bio-

logical components from the chronological components remains a chellenge28,36.  

 

One common characteristic of all DNAm clocks is the use of linear regression37 on chronological age and, for 

biological clocks, surrogate functional biomarkers (e.g. plasma protein levels). It often takes large cohorts to 

build DNAm clocks; that is, to extract the most informative CpGs and their regression coefficients. To use 

these clocks, additional individual DNAm levels are sequenced and the clock CpGs are multiplied by the re-

gression coefficients. Age acceleration/deceleration (biological age) is then calculated by comparing the posi-

tion of the new sample with respect to the clock’s average (regression line). Note that such an approach de 

facto excludes the biological components of newly tested samples, which do not participate in building 

DNAm clocks. This is important because comparing the biological functions of an individual, which is highly 

context-dependent, with a “golden mean” could be less informative for a particular individual38–40. 

 

Epigenetic alterations represent one of the primary characteristics of aging, as chromatin structure is inti-

mately related to gene expression and regulation and, thus, cellular function41. Likewise, the loss of epigenetic 

information has been proposed to be a cause of mammalian aging42–44, and transient expression of Yama-

naka’s OSKM factors45 is sufficient for shifting aged mice towards an apparently younger state in at least some 

organs an tissues43,46. Well-defined cell identities (defined by the global epigenetic state in a cell) ensure or-

ganismal homeostasis47,48. Although driven by master regulator transcription factors49–51, epigenetic changes 

may precede a global change of cell identity at the transcription or proteome level52; the new cell identity is 

associated with a new epigenetic state53–55. Unsurprisingly, the alteration of epigenetic states is generally as-

sociated with cellular functional and phenotypic changes52–56, including aging44,57. It is known that epigenetic 

changes during aging result in altered epigenome and chromatin accessibility, aberrant gene expression, re-

activation of transposable elements, and genomic instability58,59.  Which specific epigenetic marks best convey 

age-dependent alterations is unclear; however, several studies linked aging to the loss of heterochromatin 

and alterations in global and local levels of H3K9me3, H3K27me3, H4K20me3, and H3K4me358,60,61. The pat-

tern of active enhancers, marked with a combination of H3K27ac & H3K4me162, is also age-dependent63,64.  

 

Since these epigenetic modifications exist on the chromatin manifold, the information collectively encoded by 

their spatial arrangement will likely be relevant in determining the progress of epigenetic aging. Several years 

ago, we pioneered microscopic imaging of epigenetic landscapes rooted in the analysis of chromatin topog-

raphy in single cells65. We employed immunolabeling with antibodies specific for histone modifications (e.g. 

acetylation and methylation marks) and automated microscopy to capture cell-specific patterns using image 

texture analysis, resulting in multiparametric signatures of cellular states65. Here, we took advantage of this 

technique to develop image-based chromatin and epigenetic age (ImAge), an approach to studying aging 

that is fundamentally different from other methods, such as DNAm clocks.  

We discovered the emergence of age-associated trajectories as an intrinsic and principal property of the spa-

tial chromatin evolution with time. We observed that ImAge correlates with chronological age in mouse pe-

ripheral blood mononuclear cells (PBMCs) and several solid organs without linear regression. Encouragingly, 



   

 

   

 

we discovered ImAge measurements were consistent with expected perturbations to biological age: observ-

ing that calorie restriction decreased ImAge and chemotherapy treatment increased ImAge. Critically, ImAge 

of skeletal muscles from chronologically identical mice inversely correlated with their locomotor activity, sug-

gesting its utility as a biomarker that measures behavioral and functional differences. Finally, we demon-

strated that ImAge is reduced following transient expression of OSKM cassette in the liver and skeletal muscle 

and reveals heterogeneity of in vivo reprogramming. 

 

RESULTS. 

Microscopic imaging of epigenetic landscapes. We previously pioneered the technique of microscopic im-

aging of epigenetic landscapes, which captured patterns of nuclear immunostaining of epigenetic marks and 

derived multiparametric signatures in single cells65. Here, we applied this technique to investigate aging, with 

either freshly isolated primary cells or fixed isolated nuclei.  Fig. 1a presents the schematics of microscopic 

imaging of epigenetic landscapes. In short, we used different combinations of histone post-translational mod-

ifications with well-recognized roles in aging (H3K9me3, H3K4me1, H3K4me3, H3K27me3, H3K27ac, 

H4K20me3)58–63 to label epigenetic marks (multiplexing subjected the availability of compatible primary anti-

bodies). We used DAPI to label DNA/chromatin, which enables joint registration of all other epigenetic marks 

and provides chromatin pattern information. Acquired fluorescence images are processed using custom-built 

Python scripts, including nuclei segmentation with StarDist66, and feature extraction using threshold adjacency 

statistic (TAS)67,68 (Fig. 1a). It is important to note that, although the raw data are acquired from single cells 

(single nuclei), bootstrapped means (n=200 cells per bootstrap) were used to capture the properties of the 

single cell distribution while improving accuracy and equalizing the number of data points per sample. The 

size of the bootstraps was determined empirically by finding the lowest n while maximizing separation accu-

racy (Extended Data Figs. 1 and 3).  

 

The emergence of aging trajectories and construction of ImAge. We assayed mouse PBMCs from 

C57BL/6NJ males aged from 1.7 to 32.2 months (1.7, 2.2, 5.3, 8.7, 15.1, 21, 22.3, 32.2 months). Cells were 

labeled with anti-H3K4me1, anti-CD3, and DAPI; image features were computed using H3K4me1, anti-CD3 

and DAPI channels as described before65.  We employed Euclidean multi-dimensional scaling (EMDS), to em-

bed the data in a reduced 2-dimensional (2D) Euclidean space. EMDS revealed a clear separation of data 

points by cell type, CD3+ vs CD3-, mainly by the first dimension (EMDS1), and a clear age-related trajectory 

within each lineage, mainly by the second dimension (EMDS2) (Fig. 1b). The Kruskal’s stress169 quantifies dis-

tortion of relative distances between data points when mapping from high (i.e., original TAS features 504 di-

mensions) to low (i.e., EMDS, 2 dimensions) dimensional space. A relatively small (0.08) EMDS Kruskal’s stress 

(Fig. 1b) confirmed strong preservation of relative distances in the data distribution. This strong preservation 

of distances implies the cell-type and age-associated trajectories observed in the EMDS are intrinsic principal 

characteristics of the epigenetic image texture features.  

 

We sought out confirmation of the results observed above by using hyperbolic dimensionality reduction. Hy-

perbolic space has recently been shown to preserve properties of biological data distributions (i.e. relative 

distances between data points) in high-dimensional space better than Euclidean-based methods (e.g., 

EMDS)70–73. Thus, we sampled the CD3+/- single-cell data and embedded their relative distances into a 12-

dimensional hyperbolic space with curvature (𝜅 = 7.2) using hyperbolic multidimensional scaling (HMDS), opti-

mized as previously described70,74,75. HMDS). Notably, the distances among samples when embedded in 



   

 

   

 

hyperbolic space exhibit significantly reduced distortions and uncertainties when compared to a Euclidean 

space with an equivalent number of parameters (dimensions): 𝑅! = 0.99 for HMDS versus 𝑅! = 0.67 for EMDS 

(Extended Data Fig. 2c). This observation substantiates the hypothesis that our data inherently adheres to a 

hyperbolic structure. We visualized this embedding in a three-dimensional (3D) hyperbolic space. Within this 

hyperbolic space, the shortest path connecting two data points is commonly referred to as a geodesic, which 

is curved instead of a straight line like in the Euclidean space (Fig. 1c). We observed a clear separation be-

tween CD3+ and CD3- cells, as well as the emergence of age-related trajectories for both CD3+ and CD3- 

subsets of the PBMCs (Fig. 1c). These findings confirmed the emergence of intrinsic aging trajectories within 

epigenetic image features of mouse CD3+/- subsets of PBMCs in two different geometries. 

 

We aimed to find the simplest method to extract the observed aging trajectories. We reasoned the geodesic 

(the shortest path) connecting the centroid (average position) of the youngest and oldest provided the sim-

plest solution. Measurement of epigenetic age can then be defined as the progression along this geodesic. 

We calculated the geodesic connecting the centroids of the youngest and the oldest mice in full dimensional 

space, which we will henceforth call the ImAge axis. We then calculated the progression along the ImAge axis 

via orthogonal projection, which we will henceforth call the ImAge (Fig. 1d, top graphics). Note that ImAge 

axes must be calculated separately for every experiment, as the relative distances of epigenetic image tex-

tures may vary between imaging conditions and tissues. Therefore, ImAge axes were constructed for CD3+ 

cells, CD3- cells, and PBMCS (all data) (Fig. 1d). In the Euclidean space, we observed a strong Pearson corre-

lation of the centroid based ImAge with chronological age for CD3+ cells (r = 0.92, p = 2.7´10-7), CD3- cells (r 

= 0.88, p = 4.8´10-6), and total PBMCs (r = 0.89, p = 3.9´10-6) (Fig. 1d, left). In hyperbolic space, centroid-

based ImAge provided notably stronger correlations with chronological age for all cell types: CD3+ cells 

(Pearson-R = 0.96, p = 3.9´10-9), CD3- cells (Pearson-R = 0.95, 1.6´10-8), and total PBMCs (Pearson-R = 0.97, 

7.8´10-10) (Fig. 1d, right). 

 

Critically, in both Euclidean and hyperbolic spaces, the distance between the youngest and the oldest mice 

along the ImAge axis was greater than the orthogonal distances to the axis (Extended Data Fig. 2). This indi-

cated that changes along the ImAge axis are a principal source of variance in the dataset. Indeed, the vari-

ance along the ImAge axis accounts for a significant majority of the total variance: 81.5% for CD3+ and 79.1% 

for CD3-. Note that no regression on chronological age was necessary to reveal the aging trajectory: the tra-

jectory is revealed as a principal feature of the dataset geometry, as seen in both Euclidean and hyperbolic 

embeddings (Fig. 1b and c). These properties indicated that the aging phenomenon is a principal source of 

chromatin and epigenetic texture variance in mouse PBMCs. For comparison, we analyzed a previously pub-

lished mouse DNAm clock76 and found that the variance captured by the axis of linear regression is 0.15% 

(0.01% - 0.15%; 1st-99th percentiles) of the total variance in the data (see Materials and Methods for details). 

 

While the centroid-based method provided strong correlations with age, the centroid can be significantly af-

fected by non-normal distributions in the reference groups (young and old) (Fig. 1d, top). This is not a desira-

ble property given the heterogeneity of single-cell measurements, which may be composed of many cell 

types in various proportions, potentially leading to skewed or multimodal distributions. Therefore, to improve 

the robustness of the technique, we reasoned a modified approach that accounts for non-normal data distri-

butions was in order. We utilized a linear support vector machine (SVM) to find the optimal geodesic regard-

less of the normality of the data distribution (Fig. 1e, top, see materials and methods). As before, all 



   

 

   

 

intermediate time points were projected onto the ImAge axis (Fig. 1d). The Pearson correlation of chronologi-

cal age and ImAge using SVM was superior to that obtained from the original Euclidean centroid-based Im-

Age for all cell types: CD3+ cells (r = 0.94, p = 5.1´10-6), CD3- cells (r = 0.91, p = 1.3´10-8), and total PBMCs 

(r = 0.91, p = 9.6´10-7) (Fig. 1e and Extended Data Fig. 1). The unanimous improvement of accuracy in all 

cases conclusively supported SVM as a robust method for obtaining the optimal ImAge axis in Euclidean 

space. 

 

Surprisingly, ImAge measurements from the SVM-based method were inferior to those obtained from the 

centroid-based hyperbolic ImAge. However, despite the higher accuracy, the computational cost of hyper-

bolic embedding limits the number of cells able to be embedded70. Therefore, we will use SVM to construct 

ImAge axes on all subsequent organs and tissues when operating in a Euclidean space, and when more pre-

cise measurements are required, we will use the original centroid-based method to construct the ImAge axis 

in hyperbolic space. 

 

Taken together, these results suggest a spontaneous emergence of chromatin and epigenetic trajectories of 

mouse PBMC aging in both Euclidean and hyperbolic space. Critically, we described the ImAge axis connect-

ing the youngest and oldest samples, which captures the principal (~80%) variance in the dataset.  

 

Comparative analysis of ImAge trajectories in solid organs. Recent studies suggested that organs and tis-

sues may age at a different pace in the same organism77,78. We investigated the distribution of ImAge 

readouts in 5 major organs, including brain, heart, kidney, liver, and skeletal muscles (quadriceps) in 3 cohorts 

of mice: young (2 months), middle age (15 months), and old (27 months). To directly compare ImAge trajecto-

ries in different organs and tissues, we developed a protocol to isolate nuclei from flash-frozen solid tissues 

(nuclei are PFA fixed immediately upon isolation to prevent any changes in chromatin state) and performed 

the imaging of chromatin and epigenetic landscape like that described for the freshly fixed cells (see Materials 

and Methods). We employed antibodies specific for H3K27me3, H3K27ac, H3K4me1 (+DAPI) to compute 

multiparametric image features as previously described65.  

 

A Euclidean ImAge axis was then constructed between the youngest (2 months) and oldest (27 months) sam-

ples for each organ separately. In all tissues and organs analyzed, we observed that ImAge was increased with 

chronological age (Fig. 2); however, the ImAge trajectories vary with epigenetic marks and organs tested (Fig. 

2a-e). Separation accuracy between young and old samples was calculated per channel and for all channels 

combined (Extended Data Fig. 3a-e). Interestingly, the statistical significance of separation appeared to be 

mark-dependent. Pearson correlation of ImAge with chronological age yielded strong and significant (all 

p<0.05) correlations for brain (r = 0.84 ± 0.05), heart (r = 0.88 ± 0.03), kidney (r = 0.88 ± 0.06), liver (r = 0.81 ± 

0.09), and skeletal muscles (r = 0.86 ± 0.04). Furthermore, among the 25 ImAge axes (4 epigenetic marks and 

all marks combined for 5 organs), 12 were most highly correlated with PC1, 10 for PC2 and 1 for PC3, with 

only 2 having no significant correlation with the first three PCs (heart-H3K27ac, kidney-all channels). Across 

the epigenetic marks (channels), taking the maximum Pearson correlation of ImAge and the first three PCs 

yielded strong correlations for skeletal muscle and kidney (r = 0.88 ± 0.08, 0.84 ± 0.10, respectively), moder-

ate correlations for heart and brain (r = 0.88 ± 0.15, 0.84 ± 0.04, respectively) and a weak correlation for liver (r 

= 0.58 ± 0.15). All correlation values above are presented as mean ± standard deviation across the channels 

(Supplementary Data Table 1). These results extend our observation in blood to 5 solid organs and suggest a 



   

 

   

 

broad utility of ImAge to quantitate age-associated changes in chromatin and epigenetic organization. The 

predominant correlation with the first principal components indicates that organ aging is a principal source of 

chromatin and epigenetic texture variance measured by ImAge. 

 

Next, we inquired about the relative pace of aging between the 5 different organs. Given the ubiquitous 

monotonic increase observed in all organs, we calculated the Spearman correlation between each pair of or-

gans. We discovered a strong and robust correlation of ImAge in the heart and quads across several epige-

netic marks and chronological age groups (Spearman-R: R=0.91, p=1.9´10-4, R=0.81, p=7.2´10-3 , R=0.93, 

p=3.0´10-5 for H3K27me3, H3K4me1, and all channels combined, respectively) (Fig. 2f). Other pairs corre-

lated when all marks were combined (liver & kidney, heart & brain), but were not consistent across individual 

marks (Fig. 2f). There are likely additional significant and robust correlations to be further substantiated with a 

larger dataset and sample size (Extended Data Fig. 4 and Supplementary Data Table 2).  

 

Taken together, the strong and robust correlation observed between heart and skeletal muscle suggests we 

have observed organ-level synchronicity in the aging of two organs related by cell type (myocytes). The corre-

lation observed between other pairs may indicate synchronicity that extends beyond cell type and will require 

further insights into the mechanisms. 

  

Age-related erosion of cellular epigenetic and information identity.  

From our lower-dimensional visualization of ImAge trajectories using MDS in both Euclidian and hyperbolic 

spaces, it visually appears that the separation between T cells (CD3+) and non-T cells (CD3-) is reduced with 

age (Fig. 1b and c). To quantify the age-related separation between CD3+ and CD3- we computed both in-

formation distances using two methods: the silhouette score (calculated across all features) and the Kolmogo-

rov-Smirnov distance (KS distance) (see materials and methods for details). Briefly, the silhouette score 

measures the amount of overlap between multiple clusters of points, and the KS distance measures the differ-

ence between two distributions: a large silhouette score means less overlap and more separation between 

clusters, and a large KS distance means less overlap. The silhouette score revealed an age-related decrease in 

information distance between the CD3+ (T cell) and CD3- cells within PBMC samples (Fig. 3a-c), validating 

the visual assessment of MDS embeddings (Fig. 1b). The KS distance revealed a prevailing negative correla-

tion between the separation of cell-type and age (127 out of 136 features), observed both for CD3+/CD3- 

cells (Pearson r < -0.85, p < 0.05) (Fig. 3d). These results indicate an age-related erosion of epigenetic iden-

tity in CD3+/- cell-types. 

 

Intrigued by this discovery, we inquired if this decrease in information distance translated from cell types to 

organs. As with the blood data, we computed the silhouette score and KS distance between 5 organs: brain, 

liver, kidney, skeletal muscles, and heart. Remarkably, we observed a similar age-related decrease in infor-

mation distance across the liver, kidney, heart, and quads (Fig. 3e), while the brain remained separated from 

the other organs (Extended Data Fig. 5a). Likewise, the KS distance measurements again revealed a prevail-

ing negative correlation with age in liver, kidney, heart, and quads (Pearson r < -0.95, p < 0.05) (Fig. 3h) for 

the majority of significant features (17 out of 17 features). However, for the tissue samples, the number of sig-

nificant features is comparatively fewer than in the blood (136 for blood vs 17 for tissue). This is likely due to 

the presence of only three distinct chronological age groups available for calculating the correlation between 

KS distance and age.  



   

 

   

 

 

In sum, our analysis suggests an age-related erosion of cellular epigenetic identity and a loss of cell- and tis-

sue type-specific information with the variable trajectories that depend on particular epigenetic marks and are 

organ and tissue-specific. 

 

ImAge tracks with the expected change in biological age. 

As a biomarker for aging, ImAge must not just correlate with chronological age, but distinguish perturbations 

to biological age. Therefore, we tested the capability of ImAge to measure several expected perturbations to 

biological age. Multiple studies suggest that calorie restriction (CR) slows aging in various species 79–81. We 

compared the effect of CR on ImAge of liver hepatocytes. C57BL/6J males were fed ad libitum (control) or 

75% of ad libitum (25% CR diet) from 2 months of age. Nuclei were purified from frozen liver tissues as previ-

ously described 82, distributed in 384 well plates, fixed, and immunolabelled with anti-H3K9me3 and anti-

H3K27ac (+DAPI). Images and multiparametric epigenetic image features were acquired as before and a Eu-

clidean ImAge axis was constructed as described above. We observed that CR treatment shifts the ImAge 

readouts in liver hepatocytes towards that of a younger age (Fig. 4a). Statistical significance was driven by 

H3K9me3; with non-significant trends for H3K27ac and DAPI.  

 

Previous work demonstrated the age-accelerating effect of widely used chemotherapeutic agents. We fol-

lowed Demaria et al., 2017 protocol for doxorubicin treatment (10 mg/kg, i.p.; controls received PBS). Live 

hepatocytes were isolated 21 days post injection, to avoid acute stress response to DNA damage. Purified 

hepatocytes (2-step perfusion method) were plated in 384 well plates, fixed, immunolabelled with anti-

H3K9me3 and anti-H3K27ac (+DAPI), imaged, multiparametric image features were computed as before and 

a Euclidean ImAge axis was constructed as described above. We observed that doxorubicin treatment shifted 

the ImAge readouts from freshly isolated liver hepatocytes toward that of an older age (Fig. 4b). Statistical 

significance was again driven by H3K9me3; trend for H3K27ac and DAPI. Given that neither DAPI nor 

H3K27ac alone significantly separated either perturbation from controls, these data suggest the age-associ-

ated changes lie in differences in specific epigenetic modifications (H3K9me3) rather than in the overall chro-

matin structure.  

 

Taken together these results suggest that ImAge, specifically, its H3K9me3-based component, tracks with the 

expected change of biological age in the liver cells following longevity interventions.  

 

ImAge of liver tumors and adjacent normal tissue. 

We compared ImAge of liver tumors induced by diethylnitrosamine injection (postnatal day15) with normal 

tissues from the same livers in 8 months old C57BL/6NJ mice using immunolabeling for H3K27me3, H3K27ac, 

H3K4me1, and DAPI. No difference in ImAge was observed using DAPI or H3K27ac, whereas tumors ap-

peared significantly younger with H3K27me3 (p <= 0.0001, Tukey’s HSD), and a trend was observed for 

H3K4me1(Fig. 4c and Extended Data Fig. 6). This suggests that the tumor state may appear as a return to a 

younger state for some specific epigenetic marks. However, these relationships do not dominate when all epi-

genetic marks are considered. In sum, these results that tumors may appear younger with respect to some 

epigenetic marks. The significance of this observation will need to be further elucidated.   

 

 



   

 

   

 

ImAge correlates with age-related behaviors in chronologically identical mice.  

Next we investigated whether or not ImAge readouts map to functionally meaningful organismal readouts 

(which is to say, biological age) in chronologically identical samples. To this end, we conducted metabolic, 

cognitive, and motor behavioral tests in chronologically identical C57BL/6 males (25 months old, n=18) and 

acquired image features from the skeletal muscles. We used young (2 months old, n=5) and old (27 months 

old, n=5) mice to derive the ImAge axis of chronological young and old controls. We focused on skeletal mus-

cles (quadriceps), which bear the functional load of motor behavior and mediate systemic metabolism83. Nu-

clei were isolated from flash-frozen tissues, immunolabeled with H3K27ac + H3K27me3 antibodies (+DAPI), 

imaged, and multiparametric epigenetic image features were acquired as previously described65.  

 

We embedded the data points, which are bootstrap means of 200 samples, into a significantly reduced 9-di-

mensional hyperbolic space using information distance as the metric. The performance in preservation of data 

structure using the HMDS (𝑅! = 0.87) evaluated with the shepherd diagram (Extended Data Fig. 7a) was sig-

nificantly better than the EMDS (𝑅! = 0.35) using the same number of parameters (dimensions), supporting 

the notion that our data exhibits inherent hyperbolic structure. The curvature of this hyperbolic space was de-

termined to be -8.4 (see materials and methods). The dimensionality and curvature were optimized as previ-

ously described63,69
. We computed the geodesic between the centroids of young and old reference mice in 

the hyperbolic space and projected the coordinates of all mice onto this geodesic, resulting in a distribution 

of ImAge readouts.  As with the other tissues, we observed a robust separation between the ImAge from 

young and old reference mice, and the ImAge readouts of experimental mice were distributed in between 

(Fig. 5a and b). The ImAge distribution on the aging geodesic effectively captures the substantial portion of 

data variance, accounting for 82% in the case of the chronologically identical mouse utilized for assessing be-

havioral performance (Extended Data Fig. 7b). This finding underscores the prominence of aging as the prin-

cipal axis of variation within our dataset. Note that a 3-dimensional space in Fig. 5a is an imperfect visualiza-

tion of a 9-dimensional hyperbolic space used for actual embedding. To extract relationships between ImAge 

readouts and behavioral readouts, we used linear regression. To ensure extracting the most stable relation-

ships, we excluded non-significant, highly variable behavioral readouts (see materials and methods). To re-

duce collinearity in the regression analysis, we clustered correlated behaviors (Extended data Fig. 7c and d), 

thus deriving regression coefficients for 9 orthogonal clusters (Fig. 5c, see materials and method for details). 

The linear coefficient 𝛼" is proportional to the contribution, positive or negative, of each cluster to ImAge. Be-

cause individual readouts are normalized and colinear within each cluster, we consider each of individual 

readouts within the cluster contribute to ImAge with the same coefficient 𝛼". Such computations enabled us 

to identify key metabolic readouts and behaviors with positive or negative contributions to ImAge (Fig. 5c). 

 

The linear combination of the 9 orthogonal clusters of metabolic and behavioral readouts provided excellent 

(Pearson r=-0.93 p=2.7´10-8) correlation with ImAge (Fig. 5d, top). This strong and highly significant correla-

tion of ImAge with a relatively small number of whole organism metabolic and behavioral readouts under-

scores the potential utility of ImAge as a single biomarker of functional or biological age in skeletal muscles 

and, possibly, other tissues and organs. This linear combination of behavioral parameters can be conceptually 

framed as a weighted metric of behavioral performance. Notably, it reveals a substantial negative correlation 



   

 

   

 

with ImAge, signifying a discernible decline in behavioral performance with increased ImAge. Individually, 

clusters 2 and 3 significantly correlate with ImAge (Extended data Fig. 7e). Consistent with numerous previ-

ous studies, several forms of locomotor activity (cluster 1, 3, 4, 7) were negatively correlated with ImAge 

(greater activity for younger ImAge). Taken together these 4 major clusters provided strong (Pearson r=-0.62 

p=6.3´10-3) correlation with ImAge (Fig. 5d, bottom). Respiratory Exchange Ratio (RER) during the dark phase 

(lights off) was positively correlated with ImAge (greater RER for older ImAge), in agreement with a recent 

cross-sectional study84.  

  

We demonstrated the high efficiency of ImAge to capture the aging progression along the geodesic in the 9-

dimensional hyperbolic space. We discovered that the variance along the geodesic (ImAge axis) accounts for 

82% of the variance in this dataset. This is in line with the previously observed properties of hyperbolic space 

that appear to reduce the noise and better represent complex biological data70,71,73.  

 

Taken together, these findings suggest that ImAge faithfully captures salient behavioral/functional readouts, 

such as locomotor activity, in chronologically identical animals, meaning that ImAge captures salient determi-

nants of biological age. 

 

ImAge reveals heterogeneity of in vivo reprogramming with OSKM factors. 

We inquired whether ImAge reports the reversion of the aging process using OSKM-driven partial reprogram-

ming in vivo43,46.  We analyzed liver, heart, and skeletal muscle tissues from 13.8 month old i4F and littermate 

control mice treated for one week with a low dose of doxycycline (0.2 mg/ml)46. Nuclei were isolated from the 

frozen samples of young (3.2 months), old (13.8 months), and old treated with doxycycline to overexpress 

OSKM factors (old-OSKM) (Fig. 6a and Extended Data Fig. 8a, see ref. 46 for details of mouse samples and 

Materials and Methods for sample preparation). Nuclei were immunolabelled with H3K9ac, H3K27ac, 

H3K27me3, and DAPI, and confocal images were acquired with Opera Phenix (PerkinElmer). There were sig-

nificant differences (Mann-Whitney U-test, p < 0.05) between the median ImAge of young and old samples in 

both tissues (Fig. 6b and c, and Extended Data Fig. 8b and c). We observed that the median ImAge in the 

old-OSKM group was significantly decreased compared to that in the old group, but was significantly higher 

than that of the young samples. These results suggest liver and muscle cells in old-OSKM mice are partially 

reprogrammed on average. 

 

Mouse sample-wise heterogeneity in response to the reprogramming was observed in the comparison of age 

group-wise variance and sample-wise ImAge readout distributions. At age group comparison, the variance of 

ImAge in the old-OSKM group was significantly higher than that of young and old groups (Fig. 6b and c, and 

Extended Data Fig. 8b and c, Levene’s test, p < 0.05). In the liver sample, there were significant differences 

(Mann-Whitney U-test, p < 0.05) between the median ImAge of two (#3 and #4) among the five old-OSKM 

mice samples as compared to the mouse with the lowest median ImAge in the old group (old #5) (Fig. 6d). In 

the skeletal muscle, we observe significant changes of ImAge in three old-OSKM mice (#3, 4 and 5) (Fig. 6e). 

Almost no changes were detected in the heart consistent with the phenotypic observations46 (Extended Data 

Fig. 8d). These findings suggest that ImAge detects cellular rejuvenation and reports variable reprogramming 

efficiency, at least in the liver and muscle, between individual organisms. 

 



   

 

   

 

We observed different degrees of partial reprogramming per epigenetic marks/channels. To evaluate the 

channel-wise difference, the ImAge axis was constructed in the same way as described above for each chan-

nel (H3K9ac, H3K27ac, H3K27me3, and DAPI). In the liver, strong partial reprogramming was observed using 

DAPI and H3K9ac (Extended Data Fig. 9a, left), where OSKM-old #1-4 showed a significant decrease in Im-

Age. In H3K27me3, OSKM-old mice #1, #3, and #4 were found to be significantly reprogrammed. H3K27ac 

showed the weakest impact; only one significantly reprogrammed mouse was found (OSKM-old #4). In the 

muscle, all channels showed almost equal strength of reprogramming with significant decreases of ImAge ob-

served in two mice (OSKM-old #5 and #3/#4), except for H3K9ac, which showed a significant decrease in 

three mice (OSKM-old #3-5). DAPI and H3K27me3 had the same mice pair significantly reprogrammed (#3 

and 5) (Extended Data Fig. 9a, right).  

 

We leveraged single-cell-nature of imaging to get insights into the heterogeneity of reprogramming, which is 

of critical importance for rejuvenation85. We defined signature single-cells of the young and old groups and 

assessed the changes in the proportion of signatures in the old-OSKM group. We obtained ImAge readouts 

for single cells by measuring the location of single-cell features along with the ImAge axis constructed on 

binned data points from 200 cells (the ImAge axis used above). The signature cells for each age group (young 

or old) were defined by single cells, whose ImAge readout was hardly observed in the other group. For in-

stance, young signature cells were cells with an ImAge readout lower than the 5th percentile of old ImAge, 

meaning young cells can only be observed at a maximum of 5 percent in the old group (Fig. 6f). Conversely, 

the old signature cells were determined by ImAge readouts higher than the 95th percentile of the young 

group (Fig. 6f, see Materials and Methods for details in determining the signature cells). We observed a sig-

nificant increase in young signature cells and a decrease in old signature cells in the old-OSKM group on av-

erage (Extended data Fig. 9b) in the liver and a significant decrease of the old signatures in the muscle (Ex-

tended data Fig. 9c). We observed three different patterns of significant changes in the proportion of signa-

ture cells; an increase of young signature cells, a decrease of old signature cells and both of them. Particularly 

in the old-OSKM#4 in the liver, #3 and #5, which were three of the most reprogrammed mice, showed a sig-

nificant increment of young signature and decrement of old signature (Fig. 6g and h). Because ImAge is 

rooted in the single-cell image analysis, cell nuclei with corresponding ImAge signatures can be identified 

(Fig. 6i and Extended data Fig. 10).  

 

Taken together, these results suggest that ImAge is decreased in some of old-OSKM samples compared to 

old samples in liver and skeletal muscles, confirming the heterogeneity of in vivo reprogramming46,86,87. Fur-

ther dissecting this phenomenon, ImAge uncovered reprogramming-associated changes of individual epige-

netic marks and provided first insights into the dynamics of epigenetic-based cellular age in the repro-

grammed samples. 

 

DISCUSSION. 

Several major categories, including molecular, measuring specific molecules of omics, physiological, measur-

ing physical performance and physical characteristics, and digital health, measuring wearable and non-weara-

ble, biomarkers of aging have recently been proposed6. In addition, existing histologic, capturing tissue and 

organ morphology, biomarkers are less popular in aging research due to the measurement difficulties, tissue 

specificity, and scarcity of computational methods6. Here we describe novel class of biomarkers of aging, Im-

Age, based on imaging of chromatin and epigenetic patterns in single cells. 



   

 

   

 

 

One of our most surprising findings is the discovery of intrinsic aging trajectories formed by multiparametric 

epigenetic image features that could be rendered and visualized using Euclidian and hyperbolic metrics. Re-

markably, no regression was required for ImAge axis construction, yet all intermediate age groups were natu-

rally arranged in a highly ordered manner. Serendipitously, the ImAge axis emerged as a principal source of 

information in the image data manifold. Given no prior expectation, this is a compelling property of ImAge, 

which indicates that we have extracted information proximal to an aspect of the aging phenomenon. We rea-

son this aspect is related to the robust spatial organization of chromatin topography in individual nuclei in 

each organism and their evolution with time. 

 

As an imaging-based approach, ImAge is complementary to previous aging biomarkers, such as DNAm 

clocks, which utilize a fundamentally different technique (sequencing). While ImAge is intimately linked with 

chromatin and epigenetic organization and is blind to sequence-level modifications, DNAm presents a se-

quence-level approach that is largely blind to the 3-dimensional organization of chromatin. Another notable 

difference between ImAge and DNAm clocks is the utilization of linear regression: DNAm clocks universally 

regress CpG methylation levels against chronological age (i.e. building DNAm clock) to construct robust pop-

ulation average useful for numerous applications23,37. DNAm clocks are based on a small subset of all CpGs in 

the genome (up to 1000 out of over 28M, or less than 0.01%). Although the actual variance of genome-wide 

DNAm is difficult to capture due to sample-wise variations in bisulfate sequencing, we estimated that rodent 

DNAm clocks extract from 0.15% (our estimate from publicly available mouse data) to 4.7%88 (rat DNAm 

clock) of the total variance in the DNAm dataset. In contrast, ImAge captures the data manifold's major 

(~80%) characteristics, including in the case of chronologically identical mice (see below). We posit that the 

highly ordered nature of the image feature space results in our ability to perform direct and precise measure-

ments of the relative distances between individual samples. 

 

However, ImAge's advantages do not come without limitation. DNAm clocks have become the gold standard 

for aging biomarkers, in part because they enable individual measurements to be easily compared against the 

population without reconstruction of entire model. A key part of the universality of these clocks is the stability 

of both DNAm itself and the biochemical technique to sequence CpGs. However, imaging is quite the oppo-

site: image features are sensitive to imaging conditions (such as microscope setup and labeling procedures), 

leading to many opportunities for instability of feature values between experiments. Currently, this limitation 

demands that ImAge axes must be computed for each new sample combination. However, it is worth noting 

that the spatial organization of chromatin, the imaging substrate, although fundamentally variable at single 

cell level89 is likely not the issue. Rather the pixel values per channel and their relative intensities (from differ-

ences in antibodies, lasers intensities, detectors setup, etc). Future work should investigate the stability of the 

image-feature manifold across imaging conditions to separate biological variability at the single cell level from 

technical limitations. Fiduciary samples applied across multiple experiments and computational developments 

in deep learning provide the empirical path to addressing these questions. 

 

Current single-cell DNAm analysis has been relying on statistical imputation due to sparsity of the methylation 

readouts for single cells90, limiting its practical applicability. For instance, exploration of intrinsic geometry us-

ing Euclidean and hyperbolic embedding could be challenging because it requires the same set of features to 

be compared for all single cells. While the image analysis presented here (mainly 20X magnification, 2-



   

 

   

 

dimensional maximum projection, TAS features) struggles to fully resolve age-related chromatin changes at 

the single-cell level, we have only scratched  the surface of the available imaging capabilities: high resolution 

confocal microscopy and advanced colocalization features present clear path towards extracting significantly 

more information from nuclear images and, potentially, highly structured single-cell resolution. Indeed, our 

accuracy measurements show near perfect separation accuracy at a single-cell resolution is not far away (Ex-

tended data Figs. 1 and 3). Thus, ImAge, being in its nescient stages of development, promises significant 

room for improvement on both imaging and computational fronts. 

 

Imputing organ aging from plasma protein suggested different rates of organs and systems aging within the 

same organism (aging ageotypes)78 while the Tabula Muris Senis studies demonstrated a similar yet asynchro-

nous inter-organ progression of aging91. Some degree of organ connectivity is plausible so that the decline of 

one organ can promote the dysfunction of other organs, accelerating organismal aging92. We observed an 

overall monotonic progression of ImAge along chronological age for all epigenetic marks and 5 organs 

tested. Together with our observations in PBMCs, it suggests that a monotonic correlation of ImAge and 

chronological age is universal. We observed a strong correlation of ImAge between the heart and skeletal 

muscles (quads) for all epigenetic marks (and DAPI) as well as the heart and kidney for all mark combinations. 

ImAge of the liver also correlated with the brain and kidney. Note that ImAge correlation between organs 

doesn’t mean that the pace of ImAge progression is the same in those organs. Incidentally, a metabolic im-

balance of lipids accelerates inflammation and leads to lipotoxicity, mostly afflicting the kidney, heart, and 

skeletal muscle93, and lipotoxic insults precipitate aging94. Immobilization and atrazine induce oxidative stress 

in the liver, kidney, and brain, with curcumin and quercetin exhibiting a protective effect95,96. 

 

Cellular epigenetic identity is integral to governing cell functionality and maintaining tissue homeostasis. We 

observed an age-related juxtaposition of cellular states and a diminished separation of cellular identity among 

diverse tissues or cells, suggesting an erosion of cellular chromatin and epigenetic identity. Although we doc-

umented this effect for CD3+ and CD3- cells in the blood and between 5 different organs, this is likely a gen-

eral phenomenon. This could be explained by the age-related erosion of epigenetic and chromatin land-

scape44 which increases the noise in part through cell-to-cell variation in gene expression97, loss of lineage fi-

delity with age, and activation of lineage-inappropriate genes during aging98–102. Reactivation of human en-

dogenous retroviruses during aging could also contribute to this process103,104. Our observations are con-

sistent with the information theory of aging, which proposes that aging in eukaryotes is associated with loss of 

epigenetic information over time105–107 and that loss could be causative44.  

 

DNA damage is known to induce cancer and accelerate aging 108–110 and chemotherapy treatments have dam-

aging effects on the entire organism and accelerate the aging process 111–114 including increased frailty, 

chronic organ dysfunction, increase in cardiovascular diseases, cognitive impairment, and secondary cancers 
115–119. We observed a shift of ImAge towards old age in mice treated with doxorubicin, resembling the obser-

vations in humans 120. The changes were driven by H3K9me3, suggesting possible changes in heterochroma-

tin. If ImAge could faithfully report the effects of other chemotherapy drugs and in different organs, it will be 

useful to design interventions that increase the resilience to chemotherapy 121, and to reduce the aging effects 

of chemotherapy. 

 



   

 

   

 

Because CR robustly increases maximum lifespan and delays biological aging in diverse scenarios 79–81, albeit 

the full picture could be more complex 122,123. successfully applied CR regimens help to understand the biol-

ogy of aging 124–126 and could help recovery after chemotherapy in clinic 121. We have observed a shift in Im-

Age readouts in CR animals towards that of young animals consistent with the phenotypic observations. 

Again, the changes were driven by the H3K9me3 mark, which has been robustly associated with aging88,127,128 

further substantiating the relevance of ImAge readouts for measuring biological age. It will be important to 

further refine these analyses, covering different CR regimens in mice and other species (e.g., monkeys), and to 

correlate the epigenetic changes with functional readouts at the organismal level as well as with various OM-

ICs datasets (e.g., gene expression, chromatin accessibility, and enrichment for various epigenetic marks).  

 

We observed younger ImAge in liver tumors, but only for H3K27me3 mark. Early studies suggested DNAm 

age acceleration in tumors compared to normal tissues20,21,31. However, recent studies matching tumor and 

normal tissue from the same organ/individual painted a more complex picture with deceleration of DNAm 

age in stomach adenocarcinoma129 and no change in triple-negative breast tumors130.  Analysis of ~439 endo-

metrial cancers suggested unchanged DNAm age in 90% of tumors while DNAm age deceleration was associ-

ated with advanced diseases and shorter patient survival131. Given that extended partial reprogramming in 

vivo results in tumors132, a younger chromatin and epigenetic age of tumors is rather intuitive. 

 

We discovered that in chronologically identical mice, ImAge was inversely correlated with a weighted combi-

nation of behaviors. Indeed, a significant association between DNAm clock and physical function after con-

trolling for age has been reported88. Here, the largest group of behaviors that inversely correlated with ImAge 

comprised various flavors of locomotor activity. Age-related decline in locomotor activity is a universal feature 

of living organisms well documented in Drosophila133 and insects in general134, rodents135, dogs136, primates137, 

and humans138 where it is associated with cognitive impairment and decline in brain dopamine activity139. Lo-

comotion is a very reliable factor for exploratory behavior in mice140,141. The only correlate of older ImAge was 

the respiratory exchange ratio (RER), previously observed to be increased in old mice only in the dark phase84. 

Taken together, the nature of the correlated behaviors suggests that ImAge captures appropriate functional 

readouts to represent biological age. Further, ImAge captures 82% of the variance in this dataset comprising 

chronologically identical mice. Therefore, the principal aspect captured by ImAge represents the biological 

difference between animals, i.e., their biological age. 

 

Finally, ImAge detected liver and muscle rejuvenation following one cycle of OSKM-mediated reprogramming 

in vivo. The advantage of analyzing a single cycle is that we detect the “proximal” effects of OSKM overex-

pression. With multiple cycles, the combined effect over months may include many secondary effects. Alt-

hough the final outcome is more pronounced, the underlying mechanism is likely to be “buried” in many lay-

ers of effects over months. Curiously, different mice appeared to be mostly reprogrammed for liver and skele-

tal muscles, with DAPI and H3K9ac being the most informative to detect the change. Although we didn’t have 

H3K9me3 for this experiment the combination of DAPI and H3K9ac (complimentary to H3K9me3) suggests 

that we might be detecting heterochromatin changes. It will be informative to directly compare the perfor-

mance of DNAm clocks and ImAge to quantify the apparent heterogeneity of in vivo reprogramming142. 

 



   

 

   

 

Given the robust correlation of ImAge with key physiological, behavioral, and metabolic metrics underlying 

functional decline with age, we posit that ImAge represents the first-in-class imaging-based biomarker of ag-

ing with single-cell resolution.  

 

  



   

 

   

 

MATERIALS AND METHODS. 

 

Mice  

Experiments were conducted according to guidelines and protocols approved by the Institutional Animal 

Care and Use Committee (IACUC) of Sanford Burnham Prebys Medical Discovery Institute. Data presented 

within this manuscript were obtained using male mice. C57BL/6 mice, ranging in age from 2 to 27 months 

old, and were obtained from National Institute on Aging, Aged Rodent Colonies (RRID:SCR_007317). 

 

Mouse behavioral studies. 

EchoMRI testing. The EchoMRI 3-in-1 instrument (EchoMRI LLC, Houston, TX) is a quantitative nuclear magnetic 

resonance (qNMR) imaging system for whole body composition analysis of unaesthesized small animals 143,144, and 

qNMR body composition analysis with EchoMRI instrumentation has been proposed to be “gold standard” meth-

odology for metabolic studies in the mouse 145. Following calibration, each mouse was put in a holder and placed 

into the EchoMRI chamber and lean mass, fat mass and water mass was calculated. 

Optomotor test. The optomotor allows for assessment of visual ability and consists of a stationary elevated 

platform surrounded by a drum with black and white striped walls.  Each mouse is placed on the platform to 

habituate for 1 minute and then the drum rotates at 2rpm in one direction for 1 minute, is stopped for 30 sec, 

and then rotates in the other direction for 1 minute.  The number of head tracks (15 degree movements at 

speed of drum) is recorded.  Blind mice do not track the moving stripes. 

Comprehensive Laboratory Animal Monitoring System (CLAMS). Indirect calorimetry was performed in accli-

mated, singly-housed mice using a computer-controlled, open-circuit system (Oxymax System) that is part of an 

integrated Comprehensive Lab Animal Monitoring System (CLAMS; Columbus Instruments, Columbus, OH: 146,147). 

Testing occurred in clear respiratory chambers (20 × 10 × 12.5 cm) equipped with a sipper tube delivering water, 

food tray connected to a balance, and 16 photobeams situated in rows at 0.5 in intervals to detect motor activity 

along the x- and z-axes. Room air is passed through chambers at a flow rate of 0.5 L/min. Exhaust air from each 

chamber is sampled at 15-min intervals for 1 min. Sample air is sequentially passed through O2 and CO2 sensors 

(Columbus Instruments) for determination of O2 and CO2 content, from which measures of oxygen consumption 

(VO2) and carbon dioxide production (VCO2) are estimated. Outdoor air reference values are sampled after every 

8 measurements. Gas sensors are calibrated prior to the onset of experiments with primary gas standards con-

taining known concentrations of O2, CO2, and N2 (Airgas Puritan Medical, Ontario, CA). Respiratory exchange 

ratios (RER) were calculated as the ratio of carbon dioxide production (VCO2) to oxygen consumption (VO2). En-

ergy expenditure measures (VO2, VCO2 and heat formation [(3.815 + 1.232*RER)*VO2 (in liters)]) were corrected 

for effective metabolic mass by using each mouse’s lean mass obtained from the EchoMRI test. 

Open field test. This test predicts how animals respond when introduced into a brightly illuminated open arena 
148.  It is a classical test of "emotionality" used to measure anxiety-like responses of rodents exposed to stressful 

environmental stimuli (brightly illuminated open spaces) as well as to capture spontaneous activity measures. The 

apparatus is a square white Plexiglas (50 x 50 cm) open field illuminated to 600 lux in the center. Each animal is 

placed in the center of the field and several behavioral parameters (distance traveled, velocity, center time, fre-

quency in center) are recorded during a 5-minute observation period and analyzed using Noldus Ethovision XT 

software.  

Novel object recognition test. This test assays recognition memory while leaving the spatial location of the 

objects intact and is believed to involve the hippocampus, perirhinal cortex, and raphe nuclei 149–151. The basic 

principal is that animals explore novel environments and that with repeated exposure decreased exploration 



   

 

   

 

ensues (i.e., habituation; 152). A subsequent object substitution results in dishabituation of the previously habit-

uated exploratory behavior (152–154) and is expressed as a preferential exploration of the novel object relative to 

familiar features in the environment. Mice were individually habituated to a 51cm x 51cm x 39cm open field for 

5 min. They were then be tested with two identical objects placed in the field for 5 min. After two such trials 

(each separated by 1 minute in a holding cage), the mouse was tested in the object novelty recognition test in 

which a novel object replaced one of the familiar objects.  Behavior was video recorded and then scored for 

object contact time. The first time the mice were tested the objects used were clear plastic rectangular boxes 

filled with blue marbles and green plastic drink bottles filled with water and for the second test the objects were 

amber glass bottles and glass flasks filled with beige marbles. All objects were too tall for the mice to climb up on 

and too heavy for the mice to move. 

Footprint Pattern Test. Basic gait measures can be assessed using simple footprint pattern analysis 155,156. Non-

toxic paint was applied to each mouse’s paws (a different color was used for front and back paws).  The mouse 

was then placed at one end of a runway covered in paper and allowed to ambulate until their paws no longer left 

marks.  Measurements were forelimb and hindlimb stride lengths (left and right) and front and back leg stride 

widths. Three full strides were averaged for each mouse’s values. Data were excluded from mice that did not 

make 3 measurable strides (i.e. they circled or stopped).  

Barnes maze test. This is a spatial memory test 157–159 sensitive to impaired hippocampal function 160. Mice learn 

to find an escape chamber (19 x 8 x 7 cm) below one of twenty holes (5 cm diameter, 5 cm from perimeter) 

below an elevated brightly lit and noisy platform (75 cm diameter, elevated 58 cm above floor) using cues 

placed around the room. Spatial learning and memory were assessed across 4 trials (maximum time is 3 min) 

and then directly analyzed on the final (5th) probe trial in which the tunnel was removed and the time spent in 

each quadrant was determined, and the percent time spent in the target quadrant (the one originally containing 

the escape box) was compared with the average percent time in the other three quadrants.  This is a direct test 

of spatial memory as there is no potential for local cues to be used in the mouse’s behavioral decision.   

Grip strength test. Grip strength was measured with a mouse Grip Strength Meter (Columbus Instruments) ac-

cording to the manufacturer’s instructions (User Manual 0167-007). All-limb measurements were performed with 

the angled grid attachment, pulling the mouse towards the meter by the tail after engagement of all limbs. Four 

consecutive measurements per mouse were taken and the highest three values were averaged, and data were 

expressed as newtons of peak force.  

Hanging wire test.  The hanging wire test allows for the assessment of grip strength and motor coordination 
161,162. Mice were held so that only their forelimbs contact an elevated metal bar (2 mm diameter, 45 cm long, 37 

cm above the floor) held parallel to the table by a large ring stand and let go to hang. Each mouse was given 

three trials separated by 30 seconds.  Each trial was scored as follows and the average for each mouse was calcu-

lated: 0 — fell off, 1 — hung onto the wire by two forepaws, 2 — hung onto the wire by two forepaws, but also 

attempted to climb onto the wire, 3 — hung onto the wire by two forepaws plus one or both hindpaws around 

the wire, 4 — hung onto the wire by all four paws plus tail wrapped, 5 — escaped (crawled to the ring stand and 

righted itself or climbed down the stand to the table).  Latency to falling off was also measured up to a maximum 

of 30 s.  

Rotarod test. Rotarod balancing requires a variety of proprioceptive, vestibular, and fine-tuned motor abilities 

as well as motor learning capabilities 156. An Accurotar rotarod apparatus (Omnitech Electronics, Inc., Columbus, 

OH) was used in these studies.  A protocol was used whereby the rod starts in a stationary state and then begins 

to rotate with a constant acceleration of 10 rpm.  When the mice were incapable of staying on the moving rod, 

they fell 38cm into a sanichip bedding filled chamber, breaking a photobeam in the process.  The time of fall 



   

 

   

 

(translated to the speed at fall) was recorded by computer.  The mice were tested in four sets of 3 trials, alter-

nating directions between sets which were 30 min apart.   

Treadmill test. The treadmill exhaustion test evaluates exercise capacity and endurance 163. Mice are motivated 

to run to exhaustion in order to escape a shock at the base of the treadmill. Mice were trained to run in three 

daily 5 min sessions in which stopping would result in the mice touching the back of the apparatus and experi-

encing a mild shock (200 msec pulses of electric current with pulse repetition rate of 3 times per second (3 Hz) 

and an intensity of 1 mA). The treadmill speed for training was 10 m/min (0.373 mph). For the exhaustion test, 

the speed was initially set at 10 m/min for 5 min, and was increased 2 m/min every 2 min up to a maximum 

speed of 46 m/min (1.7 mph). The mice were run until they were exhausted or the maximal speed was achieved 

(which would mean a maximum run time of 41 min). Exhaustion was defined as the inability of the animal to run 

on the treadmill for 10 sec despite receiving shocks, a maximum of 30 mild shocks. To prevent injury, the mice 

were monitored carefully and continually during each session, and immediately upon meeting the criterion for 

exhaustion the shock grid was turned off and the mouse was removed from the treadmill.  

 

Isolating Nuclei from Frozen Tissues  

Flash-frozen in liquid nitrogen (stored at -80°C) is a common practice to preserve tissue and organs that are 

not to be processed immediately 164–166. Organs and tissues were collected from freshly dissected mice, snap 

frozen using liquid Nitrogen, and stored at – 80°C. Organs and tissues were then transferred to a pre-chilled 

mortar and laid on top of dry ice; liquid Nitrogen was poured over the frozen tissue and a pestle was used to 

grind and pulverized the sample until a uniformly fine powder was obtained. Pulverized sample was the ali-

quoted and returned to – 80°C. To extract nuclei from frozen aliquots, 500 ul homogenization buffer (Nuclear 

Isolation Buffer 1 (NIM1) consisting of 250 mM Sucrose, 25 mM KCL, 10 mM Tris-buffer pH 8.0, 5 mM MgCl2, 

1 mM DTT, and 10% Triton X-100) were added to powdered tissue and transferred to the mixture a glass 

Dounce homogenizer and dounced ~ 10 times (avoiding bubbles) on ice. Add homogenization buffer up to 1 

mL and filter homogenization solution through a 40 mm cell strainer. Centrifuge filtered solution at 600xg (ac-

celeration 4, deacceleration 4) for 4 min at 4o C. Aspirate supernatant and resuspend in 200 mL of PBS. Nuclei 

were then count on CellDrop FL (DeNovix) using 1:1 Acridine Orange /Propidium Iodide and homogenization 

solution. Samples were diluted in PBS to 1 million/mL to seed each well (~30,000 cells in 30 mL/well) of 384 

well plate (Perking Elmer PhenoPlate 384-well black, clear flat bottom Cat No. 6057300) pre-coated (1 mL/25 

cm2) with poly-L-Lysine (50 mL/mg). Centrifuge plate at 4000xg for 15 min at 4o C and immediately added 60 

mL of 4% PFA to each well and incubate for 15 min at 4o C. Followed by one wash of PBS then proceed with 

microscopic imaging of epigenetic landscapes. 

 

Isolating Peripheral Blood Mononuclear Cells (PBMC’s)  

200 mL of blood was collected retroorbital for each mouse and immediately mixed with an equal volume of 

50 mM EDTA (to prevent coagulation). Blood mixture was further diluted with 200 mL of PBS and carefully 

layering on top of 750 mL of Ficoll-Paque Plus (Millipore Sigma Cat. No. GE17-1440-02); followed by density 

gradient centrifugation at 700xg for 30 minutes at room temperature. The PBMC rich layer (cloudy phase) was 

carefully collected avoiding mixing the above and below layers and transferred to a new tube containing 10 

mL of PBS. The PBMC mixture was centrifuged at 700xg for 20 minutes at room temperature and then re-

moved supernatant and resuspend pellet in 1 mL of PBS. Isolated PBMC’s were counted manually using a he-

mocytometer (Hausser Scientific Cat. No. 3120). Samples were diluted in PBS to 1 million/mL to seed each 

well (~30,000 cells in 30 mL/well) of 384 well plate (Perking Elmer PhenoPlate 384-well black, clear flat bottom 



   

 

   

 

Cat No. 6057300) pre-coated (1 mL/25 cm2) with poly-L-Lysine (50 mL/mg). Centrifuge plate at 4000xg for 15 

min at 4o C and immediately added 60 mL of 4% PFA to each well and incubate for 15 min at 4o C followed 

by PBS wash. 

 

Doxorubicin treatment  

Two months old C57BL/6 mice were intraperitoneal injected with doxorubicin (Santa Cruz Biotechnology, Cat. 

No. 25316-40-9) 10 mg/Kg. Doxorubicin was diluted in 150mM NaCl solution, and control mice were injected 

only with the vehicle solution (150mM NaCl). Fourteen days after treatment, mice were sacrificed and liver 

collected and immediately snap frozen in liquid nitrogen.    

     

Caloric restriction 

Animal studies were conducted in accordance with approved protocols submitted through the respective In-

stitutional Animal Care and Use Committees (IACUCs) at the University of Wisconsin Madison. Caloric Re-

striction mice: male C57BL/6N mice were individually housed under pathogen free conditions. Mice were ran-

domized into control or restricted groups at 2 months of age and fed the AIN-93M semi-purified diet (Bio-

Serv) either a Control diet (95% ad libitum) or Restricted diet (25% less than control). The mice were sacrificed 

at 7 months of age and tissues were harvested, flash frozen and stored at -80°C. 

 

Liver cancers  

Animal studies were conducted in accordance with approved protocols submitted through the respective In-

stitutional Animal Care and Use Committees (IACUCs) at the University of California San Diego. C57BL/6(?) 

male mice were intraperitoneally injected with 25 mg/kg diethylnitrosamine (DEN; N0258, Sigma-Aldrich) at 

postnatal day 15. At 8 months of age the mice were then sacrificed and dissected tumor and non-tumor parts 

of the liver and samples were immediately fresh frozen using dry ice/2-methylbutane bath and then stored at 

– 80 °C. All tissue collection occurred during a 4-hour time frame (Zeitgeiber time 7-11; corresponding to 

1pm-5pm) to minimize circadian effects on metabolism, proliferation, etc. 

 

Microscopic Imaging of Epigenetic Landscapes 

Wells were blocked with 2% BSA in PBS 0.5% Triton X-100 for 1 hour at room temperature, and then incu-

bated with primary antibody overnight at 4C and then washed with PBS 3x (5 minutes each at room tempera-

ture). Next, wells were incubated with secondary antibody overnight at 4C and then washed with PBS 3x (5 

minutes each at room temperature). Antibodies were used at the following concentrations: Anti H3K27ac 

1:1000 (Active Motif Cat No. 39685), and /or Anti H3K27me3 1:1000 (Active Motif Cat No. 39155), and/or 

Anti H3K4me1 1:1000 (Active Motif Cat No. 61633). Antibodies were detected using the following secondary 

antibodies for their appropriate hots: Goat anti-Rabbit IgG (H+L) Alexa Fluor™ 488 (Thermo Fisher Scientific 

Cat. No. A11034), and Donkey anti-Mouse IgG (H+L) Alexa Fluor™ 488 (Thermo Fisher Scientific Cat. No. 

A31570). Wells were counterstained with DAPI (Thermo Fisher Scientific Cat. No. D1306) during the second-

ary antibody staining and plates were sealed with adhesive foil (VWR Cat. No. 60941-124). Cells/nuclei were 

imaged on either an Opera Phenix high-content screening system (PerkinElmer) or an IC200-KIC (Vala Sci-

ences) using a 20x objective. At least five fields/well and a total of 9 z-stacks at a 1mm z-step for Opera Phe-

nix and nine fields/well and a total of 10 z-stacks at a 1mm z-step for IC200 were acquired and five wells per 

mouse sample were imaged. Unless stated otherwise, at least three wells and a minimum of 300 cells for each 

condition were used for analysis. 



   

 

   

 

 

Image Feature Extraction 

Image features were extracted for each single cell (nucleus) within a segmentation mask annotating cell nuclei 

on the images. The radial falloff 167,168 artifact of the images was corrected using BaSiC Illumination correction 

on all channels as a preprocessing step167. The segmentation was performed using StarDist[Citation error] applied 

to DAPI images. We defined cell nuclei as the segmentation masks after the removal of small objects with an 

area corresponding to a radius less than 3-7𝜇𝑚, assuming spherical shape, dependent on tissue and micro-

scope used. The cell nuclei masks were applied to all channels to isolate raw images of each nucleus in each 

channel. Texture features (252 2-dimensional TAS features; 756 3D TAS features per epigenetic mark/channel) 

were calculated from each nucleus for each channel as previously described67,68. In this study, 28 binarized im-

ages per epigenetic mark/channel were obtained by applying band-pass thresholding with the following inter-

vals: (𝑣#, ∞), (𝑣# − 𝑣#𝑝,∞), (𝑣# + 𝑣#𝑝,∞), (𝑣# − 𝑣#𝑝, 𝑣# + 𝑣#𝑝), where 𝑣# indicates mean pixel/voxel val-

ues within a cell nuclei mask, 𝑝 indicates a factor to determine the width of the band, ranging from 0.1 to 0.9 

with the step of 0.1. One static interval and three width-variable intervals with nine factors derive 28 binarized 

images. 

 

ImAge Axis Construction 

The ImAge axis was obtained using z-scored features of young and old groups based on their centroids or 

linear SVM models. The centroid-based axis was then defined by the vector from the centroid of the young 

group to the centroid of the old group. The SVM-based axis was defined by the vector orthogonal to the hy-

perplane optimized to separate young and old groups; the precise location of this axis can be defined as the 

intersection of the orthonormal vector to the hyperplane and the centroid of all data points. The calculation of 

centroids and optimization of SVM models were performed using all features (without feature selection) over 

all data points resampled using bootstrap (see the following section for details of bootstrapping). It is im-

portant to note that the ImAge axis does not deform the feature space in any way; it is a simple linear trans-

position and projection.  

 

The robustness of the ImAge axis was validated in 100 iterations of tests, where 75% and 25% of data were 

randomly sampled without replacement for training (axis construction) and testing (projection onto the axis), 

respectively. This training step only involves the young and old groups. Importantly, the other age or condi-

tion groups (middle age, perturbations) were not included in the training. 

 

At each iteration of training/testing, we resampled single cell data with bootstraps of 200 cells to obtain the 

average data point representative to each mouse sample with uncertainty of the average. The bootstrap was 

performed 1000 times for each mouse sample to equalize the number of data points per mouse. In our analy-

sis, the utilization of bootstrap sampling is essential to examine the aging related changes in the cell composi-

tion. Throughout the aging process, the cell identity remains unchanged, while the composition of the cell 

distribution undergoes variations. For instance, individual T cells from a young and an older mouse may ap-

pear identical, but when sampling a bootstrap of 200 cells from blood samples, the composition of cells, or 

the ratio between different cell types, differs between young and old mice. Clustering the single cells do not 

reveal the difference between young and old samples but simply put the cells of the sample type together. 

 



   

 

   

 

The ImAge orthogonal distance was defined by the distance to the ImAge axis. Thus, the orthogonal compo-

nent can be considered the positive scalar value representing the distance of a datapoint to the ImAge axis. 

The orthogonal distance 𝑑$ for a data point can be given by 𝑑$ = 8𝒙! − 𝒑!, where 𝒙 is the relative coordinate 

of the datapoint with the origin of the ImAge axis, and 𝒑 is the coordinate of the same data point projected 

on the ImAge axis (i.e., 8𝒑! is the ImAge readout). 

 

Spearman correlation between multiple tissues 

To select the most robust correlations, we removed 1 age group iteratively and corrected for multiple com-

parisons. Spearman correlations were calculated via pairwise comparisons between all combinations of either 

2 or 3 age groups per organ pair per channel. P-values were post-hoc corrected for multiple comparisons us-

ing the Bonferroni method. An alpha of 0.05 was applied to the p-values and significant correlations per or-

gan pair per channel were counted. Organ pairs which were correlated in both all age groups and 2 age 

groups with the 3rd removed were considered robust and significant. 

 

Information distance metric 

We have used a distance metric based on mutual information. Considering two random variables 𝑥 and 𝑦 

from corresponding distribution 𝑋 and 𝑌 that are normalized between 0 and 1 using min-max normalization, 

the mutual information 𝐼(𝑋, 𝑌) measures how much uncertainty of one variable is reduced by knowing the 

other variable. In other words, 𝐼(𝑋, 𝑌) measures the information shared by both variables. The variation of in-

formation 𝐷(𝑋, 𝑌) 169, or information distance metric we call here, is a measure of information that is not 

shared by both variables. Like the correlation and correlation distance, mutual information and information 

distance measures the dependence and independence between two random variables. However, unlike the 

correlation and correlation distance that measures the linear relationship between two variables, mutual infor-

mation and information distance can capture the nonlinear relationship between two variables. The infor-

mation distance can be written in terms of marginal entropies: 𝐻(𝑋), 𝐻(𝑌), and joint entropy 𝐻(𝑋, 𝑌) 
 

𝐷(𝑋, 𝑌) = %(',))+,(',))

%(',))
= !%(',))+%(')+%())

%(',))
  (1) 

 

In practice, we can consider two samples as 𝑥 and 𝑦, with corresponding feature values 𝑥" and 𝑦" where 1 ≤
𝑖 ≤ 𝑁-./012. and 𝑁-./012. is the number of features. The probability density 𝑋 and 𝑌, can be approximated by 

the histogram 𝑝(𝑧) of the feature values for each sample where 𝑝(𝑧) is the number density of feature values 𝑥" 
or 𝑦" that sit inside the bin centered at 𝑧 with bin size ℎ = 0.1. Entropy can be calculated using the Shannon 

entropy 𝐻(𝑧) = 	−∑ 𝑝(𝑧) logM𝑝(𝑧)N	
4∈6  for 𝑧 = 𝑧7, 𝑧8. 

 

Embedding the data in the hyperbolic space 

Hyperbolic geometry provides continuous approximation to tree-like hierarchical system, resulting in the dis-

tinguishing property of exponential expansion of states compared to quadratic expansion of states in Euclid-

ean space 170. The hyperbolic geometry can be visualized using Poincare half space model and Poincare disk 
170. Hyperbolic space is better suited compared to Euclidean space for representing complex multipara met-

rical biological datasets. This is because hyperbolic space enables using fewer dimensions, inferring the hid-

den nodes based on the activity of observed “leaf” nodes, and reading out the “centrality” of each node 171–

173. Using the information distance metric, the nodes in the middle are features that sample take different 



   

 

   

 

values and the nodes on the boundary are samples. In another words, the sample is a representation of a seri-

ous feature value selection starting from middle to boundary.  

 

Considering the aging process is due to a sequence of biological changes, and each change is chosen from a 

variety of choices, hence the number of possible states increase exponentially. We employed the Hyperbolic 

Multidimensional Scaling (HMDS) 72, which is a version of MDS in hyperbolic space. Euclidean MDS minimizes 

the difference between the distances calculated in the original Euclidean data space and the distances calcu-

lated in the high dimensional reduced space. Once we specify the dimension of the reduced space, the qual-

ity of embedding could be assessed using Shepherd diagram, which compares the distance in the original 

space and the distance in the dimensionality reduced hyperbolic space.  

 

In order to quantify the performance of the dimension reduction using MDS, we can plot the Shepherd dia-

gram where we compare the distances between samples in the original high dimensional space and the dis-

tances between samples in the lower dimensional embedded space. In general, the better the MDS performs, 

the closer the distances between samples embedded in the lower dimension correlate linearly with the dis-

tances between samples in the original space. The linear relationship ensures that the distances between sam-

ples are not distorted when we embed the samples from original high dimensional space to lower dimen-

sional space. The correlation, the tightness of linear fitting, ensures the accuracy and robustness of the em-

bedding.  

 

Finding linear coefficients for behaviors 

We took advantage of the logarithmic and exponential representations, which map the points from the hyper-

bolic space to the tangent space centered at a reference point and vice versa 174. The tangent space is Euclid-

ean, and the curved geodesic in the hyperbolic space can be approximated by a straight line in the tangent 

space which is easier to compute. 

 

In our analysis, we consider n samples with distinct biological ages represented as the column vector 𝑡 of di-

mension n. Similarly, we have N behavioral features, each denoted as  𝑓!%%⃗  , where 𝑖	 ranges from 1 to N, also 

column vectors of dimension n. Instead of assessing the correlation between ImAge (𝑡) and individual 

readouts (𝑓!%%⃗  ), we explore the collective impact of these readouts on ImAge. We calculate the correlation  𝑅	 

between ImAge (𝑡) and the optimal linear combination of features, given by ∑ 𝛼"
 
"  𝑓!%%⃗ , where {𝛼"}  represents 

coefficients that maximize 𝑅	, minimize p-values, and satisfy ∑ 𝛼"
$ 

"   =  1 . Non-significant and highly variable 

features have been systematically filtered, with a specific focus on those whose p-value, in terms of correlation 

with the ImAge variable, exceeds the threshold of 0.3. These features have been removed from the analysis, 

ensuring a more rigorous and refined dataset for subsequent investigations. 

 

  

To ensure the uniqueness of the linear coefficients {𝛼"}, we compute a correlation matrix among all normal-

ized significant feature vectors, grouping correlated feature vectors into orthogonal clusters. We identify 9 

major orthogonal clusters of behavioral readouts, selecting a representative readout 𝑓!%%⃗ ,  from each cluster for 

coefficient computation. To estimate feature variance and ensure consistency across multiple measurements, 



   

 

   

 

we applied four trials of jackknife resampling to each 𝑓!%%⃗ , which encompasses several measurements over sev-

eral days. Additionally, we conducted 1000 trials of reshuffling and recombination, such as selecting the first 

measurement from 𝑓!%%⃗   and the second measurement from 𝑓%%%⃗ . The linear coefficients {𝛼"} are computed as av-

erages over these trials for each orthogonal cluster 𝑓!%%⃗ . 

 

Separation between different cell types 

To assess changes in epigenetic variation across diverse cell types during aging, we utilize two key metrics: 

the Silhouette score and the Kolmogorov–Smirnov distance (KS distance). The Silhouette score evaluates clus-

tering performance, adaptable to both original and dimensional reduced data. In this study, we calculate Sil-

houette scores directly on raw data to avoid the bias introduced in the various dimension reduction pro-

cesses. We utilize both the information distance and Euclidean distance metrics to illustrate changes in sepa-

ration among different cell types from both an informational and a value perspective. Also, we employ 100 

bootstraps to estimate the silhouette score within each age group, which allows us to assess the statistical sta-

bility and robustness of the silhouette score across various age categories. 

  
To further confirm our observation of reduced separation between cell types during aging, we need a metric 

quantifying differences across cell types in individual features. The KS distance measures the distance be-

tween one-dimensional distributions characterizing distinct cell types. We sample 5000 cells per feature to 

capture distributions of specific cell types at given ages. Evaluating differences across 𝑁&"''() tissue types fol-

lows a systematic approach: pairwise KS distances are computed between each tissue pair, with subsequent 

averaging. The resulting average KS distance is given by ∑ 𝐾𝑆(𝑖,  𝑗)/𝐶(𝑁&"''() , 2)
*!"##$%
"+,, ./"

 where 𝑖,  𝑗	denote 

cell types and the 𝐾𝑆(𝑖,  𝑗) is their KS distance and 𝐶(𝑁&"''() , 2) is number of combinations choosing 2 

pairwise tissues from total 𝑁&"''() tissues 

 

OSKM mice analyses and identification of young and old cell signatures 

To compare each mouse at the individual level, the SVM model was trained using averaged data points ob-

tained by bootstrapping 200 single-cell data points (see Methods for details of bootstrap sampling). The ac-

curacy of the separation of young and old samples was 1.000 and 0.997 in testing for the liver and muscle 

samples, respectively, in 100 iterations of tests using random data splits (see Methods for details of train-

ing/testing scheme). We obtained ImAge based on the distance from the hyperplane of a linear SVM using 

3D TAS features extracted from confocal images. 

 

The signature cells for each age group (young or old) were identified as single cells where the ImAge readout 

was hardly observed in the other group and can be given by following indicator functions for young signature 

𝐼9$1:; and old signature 𝐼$<=; 

𝐼9$1:;(𝑎) = P1, 𝑖𝑓	𝑎 < 𝑞$<=,>
0,				𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (2) 

and 

𝐼$<=(𝑎) = P1, 𝑖𝑓	𝑎 > 𝑞9$1:;,?>
0,											𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

(3) 

Here, 𝑎 indicates the ImAge readout for a single cell (nucleus), 𝑞$<=,> indicates the 5th percentile value of sin-

gle-cell ImAge readout in old samples, and 𝑞9$1:;,?> indicates the 95th percentile value of single-cell ImAge 



   

 

   

 

readout in young samples. The proportion of signature cells and intermediate population can be obtained by 

calculating the proportion of them across all single-cell data obtained from each mouse sample. The choice of 

percentile values can adjust the purity of the definition of signature cells. For instance, using 0th percentile 

(minimum value) of old in eq.(2) to define the young signature will ensure the selection of single cells only ap-

pear in the young group. In this study, we could not find clear boundary between young and old groups be-

cause of the heterogeneity of single cells; the single-cell ImAge readouts for young and old groups were 

largely overlapped (Fig. 6f). Hence, We determined the young signatures by selecting the 5th percentile, 

which accounted for only 5 percent of young signature cells in the old group, considering these 5 percent as 

statistical noise. Similarly, we adopted the opposite approach to determine the old signature. This approach 

ensured that we had a sufficient number of signature cells without compromising the quality of the data by 

including too much statistical noise. 

 

DNA methylation clock analysis 

To compare ImAge to a comparable mouse DNA methylation clock, we selected the whole lifespan mouse 

multi-tissue (WLMT)76. First, reduced representation bisulfate sequence (RRBS) data collected from C57BL/6 

whole blood samples of various ages were downloaded from GEO (accession number GSE80672). Only con-

trol mice were obtained for the purposes of comparison. Data preprocessing was performed as previously de-

scribed with the following changes: newer versions of Trim Galore! (v0.6.1)175 and Bismark (v0.24.2)176 were 

used for adapter trimming and sequence alignment. Due to the sparsity in RRBS data versus our TAS features, 

CpGs with less than 99% coverage across all samples were eliminated for PCA for a fairer comparison be-

tween techniques. Any missing WLMT clock CpG sites after filtering were replaced. Total variance was calcu-

lated from the densified data, which was subsequently used to calculate the proportion of variance explained 

by the WLMT clock. To further equalize the comparison, DNAm data was randomly sampled without replace-

ment (n=16, the same number of samples in our blood PBMC dataset) for 100 iterations and PCA and vari-

ance explained were computed for each iteration. Here we report the 1st-99th percentile of these 100 itera-

tions, and confirmed the total variance explained without subsampling is within these bounds. 
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Figure legends 

Fig. 1. Emergence of chromatin trajectories of aging. a, Graphical representation of the MIEL workflow: Nu-

clear isolation, immunofluorescence imaging, image preprocessing, nuclear segmentation, texture feature ex-

traction, and downstream analysis. b-c, ImAge calculations and regression analysis of CD3+ and CD3- subsets 

of PBMCs from C57BL/6NJ males aged from 1.7 to 32 months (1.7, 2.2, 5.3, 8.7, 15.1, 21, 22.3, 32.2) (n=2 

per age group). b, 2-dimensional EMDS of texture features. c, 3-dimensional HMDS of texture features. d-e, 

Graphical representation of the method of ImAge axis construction above scatterplots of the resulting ImAge 

measurements versus age for the CD3+ subset (top), the CD3- subset (middle), and the whole population 

(PBMC) (bottom). d, ImAge using the geodesic connecting the centroids of the youngest and oldest groups in 

Euclidean or hyperbolic space. e, ImAge using Linear SVM fit to the youngest and oldest groups. PBMC: pe-

ripheral blood mononuclear cells. E/HMDS: Euclidean/hyperbolic multi-dimensional scaling, respectively. 

 

Fig. 2 Age-related ImAge progression in multiple solid organs. a-e ImAge measurements and accuracy cal-

culations on isolated nuclei from quadriceps (quads), liver, kidney, cardiac muscle (heart), and brain collected 

from three differentially aged cohorts of mice: 2 months (n=5) 15 months (n=4) and 27 months (n=4). Two 

plates were analyzed, both immunolabeled with H3K27ac+DAPI and then with either H3K27me3 or 

H3k4me1. Data for overlapping channels (DAPI & H3K27ac) were combined for computations. Boxplots min-

max normalized 0-1 test set of bootstrapped data is shown. Differences of means were calculated via Tukey’s 

HSD. f, Consistent correlations were observed between skeletal muscle & heart (top row, bottom left), as well 

as brain & liver (bottom center), and heart & kidney (bottom right). Spearman’s R and p-values with Bonferroni 

correction for multiple comparisons. Significance values for all tests shown represent: * = p < 0.05, ** = p < 

0.01, *** = p < 0.001, **** = p < 0.0001 

 

Fig. 3. Age-related loss of cell type-specific chromatin and epigenetic information. a, A 2-dimensional 

EMDS of young (1.7 months) and old (32.2 months) CD3+ and CD3- subsets of PBMCs. b, c, Silhouette scores 

of CD3+ and CD3- subsets at indicated ages for individual marks (b) or their combination (c) using the infor-

mation distance metric (based on mutual information and Shannon entropy, see Methods). d, the Kolmogo-

rov-Smirnov (KS) distance analysis of CD3+ and CD3- subsets across indicated ages performed on significant 

features. e, A 2-dimensional EMDS of young (2 months) and old (27 months) liver, kidney, quads, and heart. f, 

g, Silhouette scores of 5 organs at indicated ages for individual marks (f) or their combination (g) using the 

information distance metric. d, the Kolmogorov-Smirnov (KS) distance analysis of 4 organs across indicated 

ages performed on significant features. Significant features were selected based on: 1) statistically significant 

(p < 0.05, Pearson |r|>0.85) KS distances between cell types and 2) a statistically significant (p < 0.05, Pearson 

|r|>0.95) correlation between KS distance and age. 

 

Fig. 4. Diet, chemotherapy, and cancer affect ImAge. a-c ImAge calculations separated by epigenetic marks 

and several marks combined for indicated conditions for Caloric Restriction (CR), Doxorubicin (DXR), or in-

duced hepatocarcinomas (tumor). a, young (3 mo., n=4) and old (24 mo., n=4) control mice were used to con-

struct an ImAge axis upon which CR (7 mo., n=4) and control (7 mo., n=4) ImAge values were measured. b, 

young (1 mo., n=3) and old (27 mo., n=3) control mice treated with PBS were used to construct an ImAge axis 

upon which young DXR-treated mice (1 mo., n=4) ImAge values were measured. c, liver tissue from old mice 

(8 mo., n=3) with induced tumors was separated by the presence or absence of tumors. Normal old tissue 

along with young control mice (2 mo., n=3) were used to construct an ImAge axis upon which old tumor 



   

 

   

 

ImAge values were measured. In (c), two plates were analyzed, both immunolabeled with H3K27ac+DAPI and 

then with either H3K27me3 or H3k4me1. Data for overlapping channels (DAPI & H3K27ac) were combined for 

computations. Significance was calculated using Tukey’s HSD. All ages shown are in months. p-value cutoffs 

are as follows: *: 0.01 < p <= 0.05; **: 0.001 < p <= 0.01;  ****: p <= .0001. 

 

Fig. 5. Locomotor activity is a salient correlate of ImAge in chronologically identical mice. a, A 3-dimen-

sional representation of the 9-dimensional Hyperbolic embedding (HDMS) and its 2-dimensional projection 

(view from the top) of the young (2 months) and old (27 months) mouse quadriceps samples utilized as refer-

ences to obtained centroids for the ImAge axis. Quadriceps samples from chronologically identical (25 

months) mice from the behavioral cohort were co-embedded with reference mice to obtain (b) their ImAge 

distribution between the reference samples. c, the 9 orthogonal clusters of behavior with the coefficients for 

linear optimization correlating behavioral/functional readouts and ImAge. The direction of ImAge association 

with each cluster (older, younger) is proportional to the cluster’s ⍺i.  d, Correlations between ImAge and a lin-

ear combination of all behavioral readouts (top) and locomotor activities only, clusters 1, 3, 4, and 7 (bottom).  

 

Fig. 6. ImAge revealed heterogeneity of partial reprogramming in vivo. The chronological ages of young 

and old mice are 3.2 and 13.8 months, respectively. a, Evaluating the degree of reprogramming after doxycy-

cline-induced OSKM factors (i4F mice, old-OSKM) in the liver and muscle. b, c, Distribution of ImAge (100 

iterations of the test is shown) in the liver (b) and muscle (c). Dots on the right side of violin plots are the mean 

ImAge of individual mouse samples. d, e, Violin plots representing the distribution of the ImAge within indi-

vidual samples in the liver (d) and muscle (e). Statistically significant differences were assessed between all 

old-OSKM samples and the old mice sample with the lowest ImAge (the “youngest” old mouse). f, Distribu-

tion of ImAge at a single-cell level. The mean accuracy of the young and old segregation was 0.620±0.001 

(100 iterations). The young and old signatures are defined by the threshold of ImAge readout at 5th (and 

lower) and 95th (and higher) percentile values of old and young single cell ImAge readout, respectively. g, h, 

The proportion of young/old ImAge signatures in the liver (g) and muscle (h) for each animal. The gray arrows 

indicate an increase in young and a decrease in old signatures compared to the “youngest” old mouse de-

fined in comparison of ImAge distributions (d and e). The dotted and dashed lines indicate the reference pro-

portions of young and old signatures, respectively, in the “youngest” old mouse. i, Uniform manifold approxi-

mation and projection (UMAP) of single-cell texture features obtained from the liver samples. The green and 

brown data points represent the single cells with young and old ImAge signatures, respectively. The interme-

diate single cells are in grey. p<0.05 Mann-Whitney U-test. 

 

Extended Data Figure legends. 

Extended Data Fig. 1: ImAge accuracy measurements in blood. a-b PBMCs were isolated from mice aged 

2, 5, 9, 15, 21, 23, 32 months (n=2 for all groups), and immunolabeled for CD3 and H3K4me1 and cos-

tained with DAPI. Lineplots: Accuracy measurements versus bin size split by train and test data. 95% Confi-

dence intervals are shown. Barplots: Final accuracy measurements for data shown in Figure 1 (200 cells per 

bin). Error bars represent +/- 2 sd. Measurements were made for all models constructed: a, centroid based b, 

SVM. PBMC: peripheral blood mononuclear cells. SVM: Support Vector Machine 

 



   

 

   

 

Extended Data Fig. 2: ImAge versus orthogonal distance plots. a-b, PBMCs were isolated from mice aged 

2, 5, 9, 15, 21, 23, 32 months (n=2 for all groups), and immunolabeled for CD3 and H3K4me1 and cos-

tained with DAPI. Scatterplots show ImAge (normalized 0-1) versus orthogonal distance to the ImAge axis. 

ImAge was calculated using either a, centroid-based method or b, SVM. C Performance comparison of Eu-

clidean Multidimensional Scaling (EMDS) and Hyperbolic Multidimensional Scaling (HMDS) within a 12-dimen-

sional space. HMDS demonstrates significantly reduced distortion and uncertainty of distances (R²=0.99) fol-

lowing the embedding process in hyperbolic space as compared to EMDS (R²=0.67). This outcome supports 

the notion that our data exhibits an inherent hyperbolic structure. 

 

Extended Data Fig. 3: ImAge accuracy measurements in multiple solid organs. A-E, Nuclei isolated from 

solid organs of young (2 months, n=4) and aged (27 months, n=4) control mice were immunolabeled and im-

aged with two sets of antibodies: (H3K27ac & H3K4me1), (H3K27ac & H3K27me3), both costained with DAPI. 

Lineplots: Accuracy measurements versus bin size split by train and test data. 95% Confidence intervals are 

shown. Dashed or solid lines represent plate / antibody set of origin:  (H3K27ac & H3K4me1), (H3K27ac & 

H3K27me3), respectively. Barplots: Final accuracy measurements for data shown in figure 2 (200 cells per 

bin). Error bars represent +/- 2 sd. Measurements were made for all models constructed: A, quads B, liver C, 

kidney D, heart E, brain 

 

Extended Data Fig. 4: ImAge measures age in multiple solid organs. A-B, Pairwise Spearman correlation 

coefficients of ImAge measurements from quadriceps (quads), liver, kidney, cardiac muscle (heart), and brain 

collected from three differentially aged cohorts of mice: 2 months (n=5) 15 months (n=4) and 27 months 

(n=4). Isolated nuclei were immunolabeled and imaged with two sets of antibodies, both costained with DAPI. 

The first antibody set visualized H3K27ac & H3K27me3 (A) and the second visualized H3K27ac & H3K4me1 

(B). Callouts show all organ pairs that were significantly correlated between all 3 age groups and at least 2 

age groups, leaving out the 3rd. KDE line in callouts represents the 5th percentile. All ImAge data visualized is 

from the test split. P-values were Bonferroni corrected for multiple comparisons. KDE: Kernel Density Estima-

tion 

 

Extended Data Fig. 5  Separation between different cell types with aging, including the Brain.  A 2-dimen-

sional EMDS of young (2 months) and old (27 months) liver, kidney, quads, and heart and brain. The observed 

clustering pattern reveals that the brain tissue cluster maintains a distinct separation from the clusters repre-

senting other tissue types, such as Kidney, Liver, Skeletal Muscle, and Cardiac Muscle. B-C.  Silhouette 

scores of 5 organs at indicated ages for individual marks (b) or their combination (c) using the information dis-

tance metric. The Silhouette scores do not indicate a decline in tissue differentiation with aging in the pres-

ence of brain tissue due to slower progression of chromatin aging. 

 

Extended Data Fig. 6 ImAge accuracy metrics for interventions in biological age. A-C, Nuclei from young 

and aged control mice were immunolabeled for H3K27ac and either H3K9me3 (A & B) or H3K27me3 & 

H3k4me1 (C) and costained with DAPI. Lineplots: Accuracy measurements versus bin size split by train and 

test data. 95% Confidence intervals are shown. Barplots: Final accuracy measurements for data shown in fig-

ure 4 (200 cells per bin). Error bars represent +/- 2 sd. A, Accuracy measurements for separating 3 month 

(n=3) and 24 month (n=3) old mice at various bin sizes. B, Accuracy measurements for separating 1 month 

(n=4) and 27 month (n=4) old mice at various bin sizes. C, Accuracy measurements for separating 2 month 



   

 

   

 

(n=5) and 8 month (n=6) old mice at various bin sizes. Dashed or solid lines represent plate / antibody set of 

origin:  (H3K27ac & H3K4me1), (H3K27ac & H3K27me3). 

 

Extended Data Fig. 7. Statistics of the behaviors and the ImAge. A-B Clustering of individual features and 

individual behavior clusters correlations. To make our linear coefficients  unique, we need to find orthogonal 

bases from individual behaviors. The criterion for behaviors clustering together is based on the A high Pear-

son correlation (>0.7) and high significance according to B p values (<0.05). C Correlation between ImAge 

and clusters of behaviors. Investigating the relationship between ImAge and individual orthogonal clusters of 

behaviors. D The ImAge distribution along the aging geodesic in hyperbolic space and the orthogonal dis-

tance distribution to the same aging geodesic for skeletal muscle cells in chronologically identical mice uti-

lized for behavior performance evaluation. The majority of the overall variance, approximately 82%, is princi-

pally accounted for by the ImAge along the aging geodesic, with the orthogonal distance contributing to a 

comparatively minor 17% of the explained variance. E Performance comparison of Euclidean Multidimen-

sional Scaling (EMDS) and Hyperbolic Multidimensional Scaling (HMDS) within a 9-dimensional space. HMDS 

demonstrates significantly reduced distortion of distances (R²=0.87) following the embedding process in hy-

perbolic space as compared to EMDS (R²=0.35). This outcome supports the notion that our data exhibits in-

herent hyperbolic structure. 

 

Extended Data Fig. 8 ImAge detected partial reprogramming of multiple organs at the mouse sample 

level and enabled to find of signatures of different age groups. The chronological ages of young and old 

mice are 3.2 and 13.8 months, respectively. a, A graphical representation of the experimental condition: old 

mice were treated with doxycycline to overexpress OSKM factors to evaluate the degree of reprogramming 

on the liver, quadriceps, and cardiac muscle (heart). b-d (left), Distribution of ImAge obtained from 100 itera-

tions of the test procedure using the linear support vector machine. Round-shaped symbols on the right side 

of violin plots for each age group represent the mean ImAge of each mouse sample. b-d (right), Sample-wise 

comparison of ImAge. Each violin plot represents the distribution of the ImAge for each mouse sample with 

the numbers from one to five for young, old-OSKM and old groups. In all panels, an asterisk indicates the sig-

nificant decrease from the old mouse showed the lowest ImAge in the old group with respect to the median 

ImAge (Mann-Whitney U-test, significant threshold; p<0.05). 

  

Extended Data Fig. 9 The degree of partial reprogramming varies depending on tissues and epigenetic 

marks/channels. The chronological ages of young and old mice are 3.2 and 13.8 months, respectively. a, 

Each violin plot represents the distribution of the ImAge for each mouse sample with the numbers from one 

to five for young, Old-OSKM, and old groups. The Left and right columns are for the liver and muscle, respec-

tively. In all panels, an asterisk indicates the significant decrease from the old mouse showed the lowest Im-

Age in the old group with respect to the median ImAge (Mann-Whitney U-test, p<0.05). b, c, proportion of 

cells with young and old signature ImAge in each age group in the liver (b) and muscle (c) (Mann-Whitney U-

test, p<0.05).  

 

Extended Data Fig. 10. Overview of young/old signature of ImAge revealed at the single cell level in liver 

samples with in-vivo partial reprogramming. uniform manifold approximation and projection (UMAP) of 

three-dimensional threshold adjacency statistic (TAS) features for single cells. The green and brown data 



   

 

   

 

points represent the single cells with the signature ImAge of young and old, respectively. The gray points rep-

resent the intermediate single cells that did not belong to either of the signatures. 
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Figures

Figure 1

Emergence of chromatin trajectories of aging. a, Graphical representation of the MIEL work�ow: Nuclear
isolation, immuno�uorescence imaging, image preprocessing, nuclear segmentation, texture feature
extraction, and downstream analysis. b-c, ImAge calculations and regression analysis of CD3+ and CD3-
subsets of PBMCs from C57BL/6NJ males aged from 1.7 to 32 months (1.7, 2.2, 5.3, 8.7, 15.1, 21, 22.3,
32.2) (n=2 per age group). b, 2-dimensional EMDS of texture features. c, 3-dimensional HMDS of texture
features. d-e, Graphical representation of the method of ImAge axis construction above scatterplots of the
resulting ImAge measurements versus age for the CD3+ subset (top), the CD3- subset (middle), and the
whole population (PBMC) (bottom). d, ImAge using the geodesic connecting the centroids of the
youngest and oldest groups in Euclidean or hyperbolic space. e, ImAge using Linear SVM �t to the
youngest and oldest groups. PBMC: peripheral blood mononuclear cells. E/HMDS: Euclidean/hyperbolic
multi-dimensional scaling, respectively



Figure 2

Age-related ImAge progression in multiple solid organs. a-e ImAge measurements and accuracy
calculations on isolated nuclei from quadriceps (quads), liver, kidney, cardiac muscle (heart), and brain
collected from three differentially aged cohorts of mice: 2 months (n=5) 15 months (n=4) and 27 months
(n=4). Two plates were analyzed, both immunolabeled with H3K27ac+DAPI and then with either
H3K27me3 or H3k4me1. Data for overlapping channels (DAPI & H3K27ac) were combined for
computations. Boxplots minmax normalized 0-1 test set of bootstrapped data is shown. Differences of
means were calculated via Tukey’s HSD. f, Consistent correlations were observed between skeletal muscle
& heart (top row, bottom left), as well as brain & liver (bottom center), and heart & kidney (bottom right).
Spearman’s R and p-values with Bonferroni correction for multiple comparisons. Signi�cance values for
all tests shown represent: * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001



Figure 3

 Age-related loss of cell type-speci�c chromatin and epigenetic information. a, A 2-dimensional EMDS of
young (1.7 months) and old (32.2 months) CD3+ and CD3- subsets of PBMCs. b, c, Silhouette scores of
CD3+ and CD3- subsets at indicated ages for individual marks (b) or their combination (c) using the
information distance metric (based on mutual information and Shannon entropy, see Methods). d, the
Kolmogorov-Smirnov (KS) distance analysis of CD3+ and CD3- subsets across indicated ages performed



on signi�cant features. e, A 2-dimensional EMDS of young (2 months) and old (27 months) liver, kidney,
quads, and heart. f, g, Silhouette scores of 5 organs at indicated ages for individual marks (f) or their
combination (g) using the information distance metric. d, the Kolmogorov-Smirnov (KS) distance analysis
of 4 organs across indicated ages performed on signi�cant features. Signi�cant features were selected
based on: 1) statistically signi�cant (p < 0.05, Pearson |r|>0.85) KS distances between cell types and 2) a
statistically signi�cant (p < 0.05, Pearson |r|>0.95) correlation between KS distance and age

Figure 4



Diet, chemotherapy, and cancer affect ImAge. a-c ImAge calculations separated by epigenetic marks and
several marks combined for indicated conditions for Caloric Restriction (CR), Doxorubicin (DXR), or
induced hepatocarcinomas (tumor). a, young (3 mo., n=4) and old (24 mo., n=4) control mice were used
to construct an ImAge axis upon which CR (7 mo., n=4) and control (7 mo., n=4) ImAge values were
measured. b, young (1 mo., n=3) and old (27 mo., n=3) control mice treated with PBS were used to
construct an ImAge axis upon which young DXR-treated mice (1 mo., n=4) ImAge values were measured.
c, liver tissue from old mice (8 mo., n=3) with induced tumors was separated by the presence or absence
of tumors. Normal old tissue along with young control mice (2 mo., n=3) were used to construct an ImAge
axis upon which old tumor ImAge values were measured. In (c), two plates were analyzed, both
immunolabeled with H3K27ac+DAPI and then with either H3K27me3 or H3k4me1. Data for overlapping
channels (DAPI & H3K27ac) were combined for computations. Signi�cance was calculated using Tukey’s
HSD. All ages shown are in months. p-value cutoffs are as follows: *: 0.01 < p <= 0.05; **: 0.001 < p <=
0.01; ****: p <= .0001.



Figure 5

Locomotor activity is a salient correlate of ImAge in chronologically identical mice. a, A 3-dimensional
representation of the 9-dimensional Hyperbolic embedding (HDMS) and its 2-dimensional projection
(view from the top) of the young (2 months) and old (27 months) mouse quadriceps samples utilized as
references to obtained centroids for the ImAge axis. Quadriceps samples from chronologically identical
(25 months) mice from the behavioral cohort were co-embedded with reference mice to obtain (b) their
ImAge distribution between the reference samples. c, the 9 orthogonal clusters of behavior with the
coe�cients for linear optimization correlating behavioral/functional readouts and ImAge. The direction of
ImAge association with each cluster (older, younger) is proportional to the cluster’s ฀i. d, Correlations
between ImAge and a linear combination of all behavioral readouts (top) and locomotor activities only,
clusters 1, 3, 4, and 7 (bottom).



Figure 6

ImAge revealed heterogeneity of partial reprogramming in vivo. The chronological ages of young and old
mice are 3.2 and 13.8 months, respectively. a, Evaluating the degree of reprogramming after doxycycline-
induced OSKM factors (i4F mice, old-OSKM) in the liver and muscle. b, c, Distribution of ImAge (100
iterations of the test is shown) in the liver (b) and muscle (c). Dots on the right side of violin plots are the
mean ImAge of individual mouse samples. d, e, Violin plots representing the distribution of the ImAge



within individual samples in the liver (d) and muscle (e). Statistically signi�cant differences were
assessed between all old-OSKM samples and the old mice sample with the lowest ImAge (the “youngest”
old mouse). f, Distribution of ImAge at a single-cell level. The mean accuracy of the young and old
segregation was 0.620±0.001 (100 iterations). The young and old signatures are de�ned by the threshold
of ImAge readout at 5th (and lower) and 95th (and higher) percentile values of old and young single cell
ImAge readout, respectively. g, h, The proportion of young/old ImAge signatures in the liver (g) and
muscle (h) for each animal. The gray arrows indicate an increase in young and a decrease in old
signatures compared to the “youngest” old mouse de�ned in comparison of ImAge distributions (d and
e). The dotted and dashed lines indicate the reference proportions of young and old signatures,
respectively, in the “youngest” old mouse. i, Uniform manifold approximation and projection (UMAP) of
single-cell texture features obtained from the liver samples. The green and brown data points represent
the single cells with young and old ImAge signatures, respectively. The intermediate single cells are in
grey. p<0.05 Mann-Whitney U-test.
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