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Identification of LGR4 as a prognostic biomarker 
in KRAS-mutant lung adenocarcinoma
Evidence from integrated bioinformatics analysis
Yasmeen Dodin, MSCa,* 

Abstract 
Globally, lung cancer is the leading cause of cancer-related deaths, primarily non-small cell lung cancer. Kirsten Rat Sarcoma 
Oncogene Homolog (KRAS) mutations are common in non-small cell lung cancer and linked to a poor prognosis. Covalent inhibitors 
targeting KRAS-G12C mutation have improved treatment for some patients, but most KRAS-mutant lung adenocarcinoma 
(KRAS-MT LUAD) cases lack targeted therapies. This gap in treatment options underscores a significant challenge in the field. Our 
study aimed to identify hub/key genes specifically associated with KRAS-MT LUAD. These hub genes hold the potential to serve 
as therapeutic targets or biomarkers, providing insights into the pathogenesis and prognosis of lung cancer. We performed a 
comprehensive analysis on KRAS-MT LUAD samples using diverse data sources. This included TCGA project data for RNA-seq, 
clinical information, and somatic mutations, along with RNA-seq data for adjacent normal tissues. DESeq2 identified differentially 
expressed genes (DEGs), while weighted gene co-expression network analysis revealed co-expression modules. Overlapping 
genes between DEGs and co-expression module with the highest significance were analyzed using gene set enrichment analysis 
and protein-protein interaction network analysis. Hub genes were identified with the Maximal Clique Centrality algorithm in 
Cytoscape. Prognostic significance was assessed through survival analysis and validated using the GSE72094 dataset from Gene 
Expression Omnibus (GEO) database. In KRAS-MT LUAD, 3122 DEGs were found (2131 up-regulated, 985 down-regulated). 
The blue module, among 25 co-expression modules from weighted gene co-expression network analysis, had the strongest 
correlation. 804 genes overlapped between DEGs and the blue module. Among 20 hub genes in the blue module, leucine-rich 
repeats containing G protein-coupled receptor 4 (LGR4) overexpression correlated with worse overall survival. The prognostic 
significance of LGR4 was confirmed using GSE72094, but surprisingly, the direction of the association was opposite to what 
was expected. LGR4 stands as a promising biomarker in KRAS-MT LUAD prognosis. Contrasting associations in TCGA and 
GSE72094 datasets reveal the intricate nature of KRAS-MT LUAD. Additional explorations are imperative to grasp the precise 
involvement of LGR4 in lung adenocarcinoma prognosis, particularly concerning KRAS mutations. These insights could potentially 
pave the way for targeted therapeutic interventions, addressing the existing unmet demands in this specific subgroup.

Abbreviations:  BP = biological process, CC = cellular component, DEGs = differentially expressed genes, EGFR = epidermal 
growth factor receptor, GO = gene ontology, KEGG = Kyoto Encyclopedia of Genes and Genomes, KRAS = Kirsten Rat Sarcoma 
Oncogene Homolog, KRAS-MT LUAD = KRAS-Mutant Lung Adenocarcinoma, LGR4 = leucine-rich Repeats Containing G 
Protein-coupled Receptor 4, NSCLC = non-small cell lung cancer, OS = overall survival, PPI = protein-protein interactions, TCGA-
LUAD = The Cancer Genome Atlas Lung Adenocarcinoma, WGCNA = weighted gene co-expression analysis.

Keywords: bioinformatics, GEO, KRAS–mutant lung adenocarcinoma, LGR4, prognosis, TCGA, WGCNA

1. Introduction
The death rate from lung cancer is the highest among cancer 
related deaths worldwide, accounting for 1.8 million deaths 
in 2020.[1] Non-small cell lung cancers (NSCLCs) account for 
approximately 85% of all cases of lung cancer. Specifically, 
adenocarcinomas comprise around 40% of NSCLC cases.[2] 

Within NSCLC, the most prevalent genetic alterations occur 
in the Kristen Rat Sarcoma Oncogene Homolog (KRAS) gene, 
which is found in ~ 20% to 30% of NSCLC cases.[3] Among 
these mutations, the substitution of Gly12 with Ala, Cys, 
Asp, or Val is most commonly observed. These alterations 
are strongly associated with tobacco smoking, resistance to 
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chemotherapy and radiation treatments, and overall poor 
prognosis.[3]

Ethnicity significantly influences the prevalence of KRAS 
mutations in NSCLC.[4] Notably, there is a lower prevalence 
of KRAS mutations in adenocarcinoma among Asian pop-
ulations compared to non-Asian groups. For example, the 
prevalence is 5.7% in Chinese,[5] 9.3% in Japanese,[6] 17% in 
African-Americans,[7] 32% in Lebanese,[8] 9% in Korean,[5] 
9% in Moroccan,[9] 5.2% in Taiwanese,[10] 36.9% in Dutch,[11] 
and 14.0% in Latin Americans.[12] Notably, an Iranian study 
assessing KRAS mutation distribution in 55 patients, 13 with 
adenocarcinoma as the histological subtype, reported a 0% 
prevalence.[13]

The KRAS protein, belonging to the small guanosine triphos-
phatase (GTPase) family, operates by transitioning between 2 
states: the active form bound to GTP and the inactive form asso-
ciated with GDP. When in the active GTP-bound state, KRAS 
activates several crucial cellular signaling pathways, including 
RAF-MEK-ERK, PI3K-AKTmTOR, and RALGDS-RA.[14,15] 
Oncogenic KRAS mutations hinder the GTPase ability to 
hydrolyze GTP, leaving KRAS in a constantly active state. This 
disruption results in uncontrolled cell division and enhanced 
cell survival, contributing to the development and progression 
of cancer.[16]

Previously, it was widely believed that KRAS, due to its high 
affinity for GTP and the absence of clearly defined binding 
pockets for allosteric inhibitors, was considered untargetable 
and undruggable. However, this perspective underwent a sig-
nificant shift with the advent of 2 breakthrough covalent inhib-
itors, adagrasib and sotorasib, specifically designed to target the 
KRAS-G12C mutation. These inhibitors proved to be a game-
changer in the field. Before the era of KRAS-G12C inhibitors, 
researchers explored various therapeutic strategies aimed at 
improving lung cancer outcomes. These approaches involved 
targeting KRAS upstream regulators and downstream effectors, 
hoping to find alternative ways to disrupt the aberrant signaling 
pathways associated with KRAS-driven cancers. However, the 
advent of adagrasib and sotorasib marked a significant mile-
stone, offering a direct and specific approach to inhibit KRAS-
G12C and potentially revolutionize the treatment landscape for 
patients with lung cancer.

Adagrasib and sotorasib have demonstrated their selective 
and irreversible binding to the cysteine at codon 12, specifi-
cally within the KRAS mutation. This binding effectively traps 
KRAS in an inactive state, bound to GDP.[17,18] It is import-
ant to note that, like other kinase inhibitors, the response to 
both adagrasib and sotorasib is not long-lasting due to the 
development of resistance.[19,20] It is worth mentioning that 
KRAS-G12C mutations are only found in approximately 40% 
of patients with KRAS mutations, leaving more than half of 
patients with KRAS mutations without a targeted treatment 
option.[21]

The rapid progress in genomics and high-throughput tech-
nologies has significantly expedited the advancement of targeted 
therapies, including KRAS-G12C inhibitors. These inhibitors 
have brought about a revolutionary shift in the treatment 
approach and overall outcomes for certain patients with lung 
cancer. However, it is crucial to note that the majority of lung 
cancer cases are diagnosed at advanced stages when surgical 
interventions are no longer viable, and the absence of approved 
targeted therapies as first-line treatments for KRAS-mutant 
metastatic NSCLC[22,23] further limits the available treatment 
options. To address these challenges and improve patient care, 
further genomic research is required to gain a deeper under-
standing of KRAS genetic alterations and identify key prognos-
tic genes in KRAS-mutant lung adenocarcinoma (KRAS-MT 
LUAD) that can serve as therapeutic targets or assist in facili-
tating the routine diagnosis and treatment of lung cancer (pre-
dictive biomarkers).

Weighted gene co-expression analysis (WGCNA) is a valu-
able scientific technique used to identify co-expressed gene 
modules and important biomarkers.[24] This method allows for 
the identification of modules containing genes that exhibit high 
correlations. Furthermore, it enables the exploration of the rela-
tionship between these modules and various clinical traits. In 
our analysis, we aimed to identify hub genes within key co-ex-
pression gene network modules specifically associated with 
KRAS-MT LUAD. These hub genes hold the potential to serve 
as therapeutic targets or biomarkers, providing insights into the 
pathogenesis and prognosis of lung cancer.

2. Materials and methods
Figure 1 presents a broad outline of the current analysis work-
flow. Further elaborations on the specific analyses can be found 
in the subsequent sections.

2.1. RNA-seq data, clinical, and somatic mutation 
information

The KRAS-MT LUAD RNA-seq data, along with correspond-
ing clinicopathological features and somatic mutation infor-
mation, were retrieved from the Cancer Genome Atlas Lung 
Adenocarcinoma (TCGA-LUAD) project.[25] The retrieval pro-
cess utilized the TCGAbiolinks R/Bioconductor package,[26] 
as well as the Maftools Bioconductor package.[27] For the 
TCGAbiolinks package, the retrieval conditions were similar 
to what specified in our previous work,[28] with the exception 
of sample.type (Primary Tumor and Solid Tissue Normal were 
used instead of Primary Tumor) and ajcc_pathologic_stage 
(all stages were included instead of advanced stages). A total 
of 134 KRAS-MT LUAD samples and 55 normal samples 
were retrieved for subsequent analyses. KRAS mutations were 
present in 24.4% of cases within the TCGA-LUAD project, 
comprising 134 mutated samples out of 549 primary tumor 
samples.[25]

2.2. Differentially expressed genes (DEGs) screening

The DESeq2 package in R was employed to identify the DEGs 
between KRAS-MT LUAD and normal tissues, using raw 
read counts.[29] To mitigate potential bias arising from genes 
with low expression counts, genes with values below ten were 
excluded from the analysis. The criteria for identifying DEGs 
included an absolute log2 fold change (|log2 FC|) of ≥ 2 and an 
adjusted P value of ≤ .05. The findings were visualized through 
an MA plot (created using the plotMA function in DESeq2), 
a volcano plot, and a heatmap (generated using the ggplot2 
package in R).[30]

2.3. Identification of KRAS-MT LUAD related modules with 
WGCNA

In this study, the TCGA-LUAD gene expression data, con-
sisting of KRAS-MT samples and normal tissue samples, 
were utilized to construct a weighted co-expression network. 
The construction of the network was performed using the 
“WGCNA” package in R.[24] To ensure the reliability of the 
network structure, 7 outlier samples from the KRAS-MT 
LUAD dataset were excluded from the analysis (Fig.  2). To 
achieve a scale-free topology and enhance the correlation adja-
cency matrix, a soft-thresholding power of β = 8 (R2 = 0.89) 
was chosen. The expression matrix was transformed into an 
adjacency matrix, employing Pearson correlation coefficients 
to estimate the coexpression relationships between gene pairs. 
Subsequently, the adjacency matrix was converted into a 
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topological overlap matrix. The DynamicTreeCut algorithm 
was applied, using topological overlap matrix dissimilarity, to 
obtain the initial set of modules. Correlated modules (with a 
correlation coefficient of R ≥ 0.75) were merged to form sim-
ilar modules. Module eigengenes, representing the first princi-
pal components, were calculated and considered representative 
of the respective module genes. The Spearman correlation test 
was employed to assess the correlation between each eigen-
gene and the clinical trait of interest (KRAS-MT LUAD). 
Further analysis focused on the genes within the most relevant 
KRAS-MT LUAD module.

2.4. Intersection of DEGs and WGCNA

In the subsequent steps, we focused on utilizing the most perti-
nent module and genes associated with KRAS-MT LUAD. These 
selections were made by employing WGCNA and identifying 
the genes that overlapped with the DEGs.

2.5. Application of gene set enrichment analysis, and 
construction of protein-protein interactions (PPI)

The overlapping/intersecting genes obtained from the analy-
sis were subjected to gene ontology (GO) enrichment analysis, 
which included molecular function, cellular component (CC), 
and biological process (BP), as well as Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analysis. This anal-
ysis was conducted using the “clusterProfiler” package in R[31] 
using a minimum gene set of 20 and a P value of .05. Graphical 
representations of the significantly enriched BP, CC, molecu-
lar function, and KEGG pathways were generated using the 
ggplot2 package in R, focusing on the top 5 results.[30] The 
intersecting genes obtained from the analysis were subjected 
to further analysis using the Search Tool for the Retrieval of 
Interacting Genes online tool.[32] This analysis aimed to con-
struct a PPI network with a cutoff criterion of a combined 
score ≥ 0.9, indicating high confidence in the interactions. The 
resulting PPI network was visualized using Cytoscape software 

Figure 1. Broad outline of the current analysis workflow.
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(v3.9.1).[33]To identify the most important genes within the 
co-expression network, the Maximal Clique Centrality algo-
rithm provided by the cytoHubba plugin in Cytoscape was 
applied.[34] This analysis allowed for the identification of the 
top 20 hub genes in the co-expression PPI network, which play 
significant roles in the network based on their connectivity and 
centrality.

2.6. Hub genes survival analysis

To investigate the potential association of these hub genes with 
overall survival (OS) in KRAS-MT LUAD patients, the expres-
sion levels of each hub gene were categorized into 2 groups: 
patients with expression levels greater than or equal to the 
median, and patients with expression levels smaller than the 
median. To assess the survival differences between the high 

Figure 2. Hierarchical clustering method (A) and principal component analysis method (B) for detecting outlier samples.



5

Dodin • Medicine (2023) 102:46 www.md-journal.com

and low expression groups, the R packages “survival” (v3.5–
5) and “survminer” (v0.4.9) were utilized. Kaplan–Meier 
estimates were used to analyze the survival probabilities, and 
the log-rank test was employed to determine the statistical 
significance. A P value <.05 was considered indicative of a 
significant difference in survival between the high and low 
expression groups.

2.7. External validation of survival-related hub genes

For external validation, we used a microarray dataset 
(GSE72094) to verify survival significance of the survival 
related hub gene. The GSE72094 dataset enrolled a total of 
442 patients, all of whom had comprehensive mRNA expres-
sion data and underwent Sanger sequencing analysis to investi-
gate the presence of epidermal growth factor receptor (EGFR), 
KRAS, TP53, and STK11 genes.[35] For the survival analysis we 
only included KRAS positive samples (N = 139).

3. Results

3.1. TCGA gene expression data

A comprehensive analysis was conducted on a total of 182 sam-
ples, consisting of 127 KRAS-MT LUAD samples and 55 adja-
cent normal tissues, to identify the DEGs. Among the screened 
genes, a total of 3162 DEGs met the criteria for selection, with 
2131 genes showing up-regulation and 985 genes showing 
downregulation. The DEGs were visually represented through 
the MA plot (Fig.  3A), volcano plot (Fig.  3B), and heatmap 
(Fig. 3C).

3.2. Weighted co-expression network and their key 
modules

By employing a soft-thresholding power β value of 8, the fit 
index curve for the scale-free topology flattened out at 0.89 
(Fig. 4). Subsequently, a total of 25 co-expression modules were 

Figure 3. Differentially expressed genes (DEGs) in KRAS-MT LUAD. MA plot (A), volcano plot (B), heatmap (C). KRAS-MT LUAD = Kirsten Rat Sarcoma 
Oncogene Homolog-mutant lung adenocarcinoma.
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identified within the constructed weighted gene co-expression 
network of KRAS-MT LUAD. These modules were obtained 
through the process of merging correlated modules using aver-
age linkage clustering (Fig. 5).

The constructed weighted gene co-expression network in 
KRAS-MT LUAD comprised various modules, each repre-
sented by a distinct color such as black, light yellow, royal 
blue, yellow, blue, midnight blue, salmon, tan, magenta, green 
yellow, gray 60, dark green, pink, light green, brown, purple, 
light cyan, dark turquoise, green, red, turquoise, dark red, 
cyan, dark gray, and gray, including 21–11,221 genes. The 
gray module specifically consisted of genes that did not belong 
to any other module. Through correlation analysis between 
module eigengenes and KRAS-MT LUAD, it was observed that 
16 modules exhibited an association with KRAS-MT LUAD 
(Fig. 6).

Among the identified modules in KRAS-MT LUAD, the blue 
module stood out as the most significant and representative. It 
consisted of 2692 genes, with a correlation (R2 = 0.40) and sta-
tistical significance (P = 1.227674e-85). Due to its prominence, 
the blue module was chosen for further analysis.

3.3. Intersection of DEGs and WGCNA

A total of 804 genes within the blue module overlapped with 
the set of DEGs.

3.4. Application of gene set enrichment analysis

Functional enrichment analyses using GO and KEGG were 
performed on the set of 804 genes. GO enrichment analy-
sis revealed significant enrichment in 1 BP and 5 CCs. KEGG 
enrichment analysis identified 1 significantly enriched pathway. 

The top 5 enriched GO terms and KEGG pathways are dis-
played in Figure 7.

3.5. Hub gene identification

With the assistance of the Search Tool for the Retrieval of 
Interacting Genes database, a PPI network was constructed 
from the DEGs within the blue module. The resulting PPI net-
work contained 804 nodes and 184 edges. To identify hub 
genes within the blue module, we employed the Maximal 
Clique Centrality algorithm through the cytoHubba plugin. 
The top 20 genes identified as hub genes within the blue mod-
ule were ADAM Metallopeptidase With Thrombospondin 
Type 1 Motif 14, ADAMTS like 3, Somatomedin B And 
Thrombospondin Type 1 Domain Containing, Semaphorin 
5A, ADAM Metallopeptidase With Thrombospondin Type 1 
Motif 8, Endothelin 1, Adrenoceptor Beta 2, Thrombospondin 
Type 1 Domain Containing 1, Angiotensin II Receptor Type 
2, Cholinergic Receptor Muscarinic 1, Wnt Family Member 
3A, R-Spondin 1, R-Spondin 2, R-Spondin 4, Leucine-rich 
Repeats Containing G protein-coupled receptor 4 (LGR4), 
ADAM Metallopeptidase With Thrombospondin Type 1 Motif 
1, Fibroblast Growth Factor Receptor 2, Receptor Activity 
Modifying Protein 2, Receptor Activity Modifying Protein 3 
(RAMP3), and Calcitonin Receptor Like Receptor. These hub 
genes are depicted in Figure 8.

3.6. Hub genes survival analysis

The analysis of the 20 hub genes within the blue module revealed 
a significant correlation between the increased expression of 1 
gene, LGR4, and a lower OS rate in KRAS-MT LUAD patients 
(P = .012). This finding is illustrated in Figure 9.

Figure 4. Analysis of the scale-free fit index and the mean connectivity of various soft-thresholding powers.



7

Dodin • Medicine (2023) 102:46 www.md-journal.com

3.7. External validation of the survival-related hub genes

In our study, we conducted survival analysis using RNA-seq 
data from KRAS-MT LUAD tissues. Our analysis identified a 
specific up-regulated DEG that overlapped with a tumor-re-
lated module known as the blue module. Remarkably, this gene 
exhibited a strong correlation with poor survival outcomes in 
LUAD patients. To validate the prognostic significance of this 
survival-related hub gene (LGR4), we sought external vali-
dation using a separate microarray dataset, GSE72094. The 
validation process involved performing survival analysis in a 
manner consistent with our previous approach using TCGA 
data. The results obtained from this external dataset are pre-
sented in Figure 10, further supporting the survival significance 

of LGR4 as observed in our initial analysis, but with the oppo-
site direction (low expression levels of LGR4 were associated 
with poor survival).

4. Discussion
Over recent decades, the molecular analysis of lung cancer 
patients has unveiled a multitude of mutations that exhibit cor-
relations with NSCLC.[25,36] Approximately 60% of adenocarci-
noma cases feature a driver mutation that serves as the catalyst 
for the oncogenic process. The most common driver mutations 
encompass KRAS (25%), EGFR at 23%, anaplastic lymphoma 
kinase at 6%, Phosphoinositide-3-Kinase, Catalytic, Alpha 
Polypeptide at 3%, v-Raf Murine Sarcoma Viral Oncogene 

Figure 5. Hierarchical clustering dendrograms of identified co-expressed genes in KRAS-MT LUAD. KRAS-MT LUAD = Kirsten Rat Sarcoma Oncogene 
Homolog-mutant lung adenocarcinoma.

Figure 6. Heatmap of the correlation between Eigengene and the clinical treat of KRAS-MT LUAD. KRAS-MT LUAD = Kirsten Rat Sarcoma Oncogene 
Homolog-mutant lung adenocarcinoma.
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Homolog B1 at 3%, and Human Epidermal Growth Factor 
Receptor 2 at 1%.[37,38] Targeted therapies have demonstrated 
success against EGFR mutations, anaplastic lymphoma kinase 
rearrangements, and KRAS-G12C mutations. Nevertheless, 

persistent challenges in this field revolve around disease pro-
gression, the emergence of drug resistance, and late-stage lung 
cancer diagnosis. Identifying novel biomarkers becomes imper-
ative for early disease detection, prognostic assessment, and 

Figure 7. Gene set enrichment analysis (GSEA) for the DEGs intersecting with the blue module (N = 804). (A) GO biological process (BP); (B) GO cellular 
component and (C) KEGG pathway analysis. No molecular function (MF) was significantly enriched under the specified conditions. Spot sizes represent the 
number of genes, while color indicates adjusted P values. DEGs = differentially expressed genes, GO = gene ontology, KEGG = Kyoto Encyclopedia of Genes 
and Genomes.
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stratifying patients who would best respond to diverse targeted 
therapies.

Several research studies have employed computational meth-
odologies to detect genetic alterations in LUAD patients, aim-
ing to uncover predictive, diagnostic, or prognostic biomarkers. 
These endeavors led to the identifications of different hub genes 
that can serve as potential biomarkers including Angiopoietin 
1[39]; Secreted Phosphoprotein 1[40]; Aurora Kinase A, DNA 
Topoisomerase II Alpha and Maternal Embryonic Leucine 
Zipper Kinase[41]; Ubiquitin Conjugating Enzyme E2 C[42]; HLF 
Transcription Factor, Chordin Like 1, Selenium Binding Protein 
1, and Transmembrane Protein 163[43]; GINS Complex Subunit 
2.[44] These investigations primarily focused on gene-level alter-
ations and often overlooked the comprehensive molecular 
profiles of lung cancer patients. While they did offer valuable 
insights into the potential roles of biomarkers within LUAD 
broadly, we assert that comprehensively assessing the roles of 
these biomarkers necessitates an in-depth understanding of the 
specific mutational landscape.

Limited research efforts have been dedicated to the identifi-
cation of novel biomarkers in LUAD that are specifically linked 

to driver mutations, potentially serving as therapeutic targets or 
offering diagnostic and prognostic value. For instance, Zhang 
and colleagues discovered a significant correlation between the 
elevated expression of Beta-1,3-N-acetylglucosaminyltransferase 
3 (B3GNT3) and poorer OS in EGFR-mutant LUAD patients.[45] 
Regarding KRAS-mutant LUAD patients, Dai et al identified 
7 hub genes from an analysis of 184 stage IIB to IV LUAD 
samples.[46]

In this study, we aimed to identify potential prognostic bio-
markers in KRAS-MT LUAD using WGCNA. Our analysis 
revealed the blue module as the most significant and represen-
tative module associated with in KRAS-MT LUAD, consisting 
of 2692 genes. We further explored the intersection of DEGs 
caused by KRAS mutation and the blue module, leading to the 
identification of 804 overlapping genes. Functional enrichment 
analysis using GO and KEGG pathways provided insights into 
the potential biological functions of these intersecting genes. In 
our study, we focused on identifying hub genes within the DEGs 
located in the blue module of in KRAS-MT LUAD. Hub genes 
are highly connected genes within a network and are often crit-
ical in maintaining network integrity and functionality. The top 

Figure 8. PPI analysis and identification of hub genes involved in the DEGs intersecting with the blue module using. STRING database and cytoHubba plug-in 
Cytoscape. DEGs = differentially expressed genes, PPI = protein-protein interaction, STRING = Search Tool for the Retrieval of Interacting Genes.
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20 hub genes identified in our analysis may hold potential as 
therapeutic targets or biomarkers in in KRAS-MT LUAD. To 
evaluate the prognostic significance of the identified hub genes, 
we performed survival analysis and categorized patients into 
high and low expression groups based on the median expres-
sion levels of each hub gene. The survival analysis indicated a 
potential correlation between the expression of LGR4 and the 
OS of patients with in KRAS-MT LUAD, where elevated levels 
of LGR4 were associated with poor survival outcomes. LGR4, 
also referred to as protein-coupled receptor 87, belongs to the 
group B of the LGR family, which includes LGR4, LGR5, and 
LGR6 receptors. These transmembrane receptors are members 

of the superfamily of G protein-coupled receptors, play signifi-
cant roles in developmental processes, and have implications in 
various cancer types.[47]

To validate our findings, we performed an external validation 
using a microarray dataset (GSE72094) of KRAS-MT LUAD. 
This validation aimed to assess the survival significance of the 
identified survival-related hub gene. Our analysis of the microar-
ray dataset GSE72094 has uncovered a perplexing discrepancy 
that challenges the prevailing understanding of LGR4 role in 
LUAD prognosis. Few studies have focused on the prognostic 
value of LGR4, while the majority of these studies and analy-
ses,[48–51] including our own TCGA analysis, have consistently 

Figure 9. Kaplan–Meier survival of hub genes. The patients were categorized into high-level (red) and low-level (green) groups based on the gene median 
expression.

Figure 10. Kaplan–Meier survival of survival-related hub genes. The Patients were categorized into high-level (red) and low-level (green) groups based on the 
gene median expression.
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associated higher expression levels of LGR4 with worse OS in 
LUAD patients, our validation results based on the microarray 
dataset revealed a strikingly contrasting pattern. Surprisingly, 
we observed that lower expression levels of LGR were cor-
related with poor OS, in direct opposition to the established 
consensus. Notably, an earlier study by Rao et al[52] also pre-
sented similar findings, providing further support for our val-
idation results. They demonstrated that in KRAS lung cancer, 
the gene expression patterns associated with an active receptor 
activator of nuclear factor-kB/receptor activator of nuclear fac-
tor-κB ligand system are linked to worse OS. LGR4, which acts 
as a membrane-bound negative regulator by countering recep-
tor activator of nuclear factor-kB activation, is a receptor for 
receptor activator of nuclear factor-κB ligand.[53] This observa-
tion could provide an explanation for Rao et al’s discovery that 
lower mRNA expression of LGR4 is linked to an unfavorable 
outcome.

The existence of such divergent findings raises intriguing 
questions about the underlying mechanisms driving LGR4 
impact on LUAD prognosis. One possible explanation could be 
the inherent heterogeneity within LUAD, as different subtypes 
or molecular characteristics might respond differently to LGR4 
expression. Moreover, KRAS mutations occurring within the 
same codon may exhibit non-identical biological effects, leading 
to variations in progression-free survival rates, changes in tumor 
gene expression, and differences in drug responsiveness.[54] 
Additionally, variations in the sample size, patient demograph-
ics, treatment regimens, and follow-up protocols across different 
studies may contribute to the observed disparities. Furthermore, 
it is crucial to consider the complexities of LGR4 signaling path-
ways and its interactions with other molecular players within 
the tumor microenvironment.

These contrasting outcomes highlight the need for further 
comprehensive investigations to elucidate the factors that deter-
mine LGR4 role in the prognosis of LUAD as a whole, and 
specifically in KRAS-mutant LUAD. Future functional studies 
should be conducted to elucidate the biological mechanisms 
underlying the association between LGR4 expression and sur-
vival in KRAS-MT LUAD. This could involve in vitro and in 
vivo experiments, such as cell line models, animal models, and 
molecular assays, to investigate the impact of LGR4 on tumor 
growth, metastasis, and response to therapy. Moreover, the asso-
ciation of LGR4 with clinical variables, such as stage, tumor 
size, lymph node involvement, and treatment response, should 
be assessed. This will help determine whether LGR4 expression 
is an independent prognostic factor or if its association with sur-
vival is confounded by other clinical factors. By gaining a deeper 
understanding of these complexities, we can pave the way for 
personalized therapeutic approaches and refine prognostic mod-
els in the context of KRAS-MT LUAD.

Like any research endeavor, our study does come with inher-
ent limitations that warrant consideration. While we diligently 
conducted an extensive bioinformatics analysis to uncover 
potential prognostic genes in KRAS-MT LUAD in comparison 
to adjacent samples, it crucial to acknowledge that our approach 
was retrospective and built upon publicly available datasets. 
Consequently, it prudent to approach our study findings with 
caution, recognizing the need for validation through prospective 
investigations and experimental validations. It also important to 
underscore that a more comprehensive set of experimental data 
is necessary to comprehensively explore the underlying mecha-
nisms and interactions of the identified genes. This underscores 
the necessity for future research endeavors to delve deeper into 
the intricate molecular aspects and functional significance of 
these genes in KRAS-MT LUAD. Additionally, it is vital to rec-
ognize that our initial assessment relies on data from the TCGA-
LUAD project, which encompasses a comprehensive collection 
of genomic studies conducted through cross-sectional analy-
sis, utilizing NGS and whole-exome sequencing techniques. 

Within this dataset, approximately 70% of the patients were 
of Caucasian ethnicity, while only 2% were of Asian descent.[15] 
Consequently, it is of paramount importance to consider the 
variances in ethnic backgrounds when interpreting our results 
and when seeking to apply these findings to diverse demo-
graphic groups.

5. Conclusion
In conclusion, our study identified LGR4 as a potential prog-
nostic biomarker in KRAS-MT LUAD using WGCNA. The 
differences in how LGR4 expression and survival are related 
in the TCGA and GSE72094 datasets emphasize the intri-
cate nature of KRAS-MT LUAD. Further investigations are 
warranted to elucidate the precise role of LGR4 in lung ade-
nocarcinoma prognosis, particularly in the context of KRAS 
mutations. These findings contribute to our understanding 
of KRAS-MT LUAD and provide insights into potential bio-
markers for patient prognosis and personalized treatment 
strategies.
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