Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1983 Feb;71(2):276–285. doi: 10.1104/pp.71.2.276

Mechanical Properties of the Plasma Membrane of Isolated Plant Protoplasts 1

Mechanism of Hyperosmotic and Extracellular Freezing Injury

Joe Wolfe 1,2, Peter L Steponkus 1
PMCID: PMC1066024  PMID: 16662817

Abstract

The volume of isolated protoplasts of rye (Secale cereale L. cv Puma) in a suspending solution at constant concentration is shown to be negligibly changed by tensions in the plasma membrane which approach that tension necessary to lyse them. This allows a detailed investigation of the plasma membrane stress-strain relation by micropipette aspiration.

Over periods less than a second, the membrane behaves as an elastic two-dimensional fluid with an area modulus of elasticity of 230 millinewtons per meter. Over longer periods, the stress-strain relation approaches a surface energy law—the resting tension is independent of area and has a value of the order 100 micronewtons per meter. Over longer periods the untensioned area, which is defined as the area that would be occupied by the molecules in the membrane at any given time if the tension were zero, increases with time under large imposed tensions and decreases under sufficiently small tension. It is proposed that these long term responses are the result of exchange of material between the plane of the membrane and a reservoir of membrane material. The irreversibility of large contractions in area is demonstrated directly, and the behavior of protoplasts during osmotically induced cycles of contraction and expansion is explained in terms of the membrane stress-strain relation.

Full text

PDF
279

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chien S., Sung K. L., Skalak R., Usami S., Tözeren A. Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane. Biophys J. 1978 Nov;24(2):463–487. doi: 10.1016/S0006-3495(78)85395-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Deuling H. J., Helfrich W. Red blood cell shapes as explained on the basis of curvature elasticity. Biophys J. 1976 Aug;16(8):861–868. doi: 10.1016/S0006-3495(76)85736-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Evans E. A., Waugh R. Osmotic correction to elastic area compressibility measurements on red cell membrane. Biophys J. 1977 Dec;20(3):307–313. doi: 10.1016/S0006-3495(77)85551-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gruen D. W., Wolfe J. Lateral tensions and pressures in membranes and lipid monolayers. Biochim Biophys Acta. 1982 Jun 14;688(2):572–580. doi: 10.1016/0005-2736(82)90368-6. [DOI] [PubMed] [Google Scholar]
  5. Lilley R. M. Isolation of Functionally Intact Rhodoplasts from Griffithsia monilis (Ceramiaceae, Rhodophyta). Plant Physiol. 1981 Jan;67(1):5–8. doi: 10.1104/pp.67.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Marcelja S. Chain ordering in liquid crystals. II. Structure of bilayer membranes. Biochim Biophys Acta. 1974 Oct 29;367(2):165–176. doi: 10.1016/0005-2736(74)90040-6. [DOI] [PubMed] [Google Scholar]
  7. Marcelja S., Wolfe J. Properties of bilayer membranes in the phase transition or phase separation region. Biochim Biophys Acta. 1979 Oct 19;557(1):24–31. doi: 10.1016/0005-2736(79)90086-5. [DOI] [PubMed] [Google Scholar]
  8. Quinn P. J., Williams W. P. Plant lipids and their role in membrane function. Prog Biophys Mol Biol. 1978;34(2):109–173. doi: 10.1016/0079-6107(79)90016-6. [DOI] [PubMed] [Google Scholar]
  9. RAND R. P., BURTON A. C. MECHANICAL PROPERTIES OF THE RED CELL MEMBRANE. I. MEMBRANE STIFFNESS AND INTRACELLULAR PRESSURE. Biophys J. 1964 Mar;4:115–135. doi: 10.1016/s0006-3495(64)86773-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. RAND R. P. MECHANICAL PROPERTIES OF THE RED CELL MEMBRANE. II. VISCOELASTIC BREAKDOWN OF THE MEMBRANE. Biophys J. 1964 Jul;4:303–316. doi: 10.1016/s0006-3495(64)86784-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Waugh R., Evans E. A. Thermoelasticity of red blood cell membrane. Biophys J. 1979 Apr;26(1):115–131. doi: 10.1016/S0006-3495(79)85239-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Wolfe J., Steponkus P. L. The stress-strain relation of the plasma membrane of isolated plant protoplasts. Biochim Biophys Acta. 1981 May 20;643(3):663–668. doi: 10.1016/0005-2736(81)90363-1. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES