
Sequence Analysis

aaHash: recursive amino acid sequence hashing
Johnathan Wong 1,*, Parham Kazemi 1, Lauren Coombe 1, Ren�e L. Warren 1,
Inanç Birol 1,*
1Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
�Corresponding author. Canada’s Michael Smith Genome Sciences Centre, BC Cancer, 570 W 7th Ave, Vancouver, BC V5Z 4S6, Canada.
E-mail: jowong@bcgsc.ca, ibirol@bcgsc.ca

Associate Editor: Aida Ouangraoua

Abstract
Motivation: K-mer hashing is a common operation in many foundational bioinformatics problems. However, generic string hashing algorithms
are not optimized for this application. Strings in bioinformatics use specific alphabets, a trait leveraged for nucleic acid sequences in earlier
work. We note that amino acid sequences, with complexities and context that cannot be captured by generic hashing algorithms, can also bene-
fit from a domain-specific hashing algorithm. Such a hashing algorithm can accelerate and improve the sensitivity of bioinformatics applications
developed for protein sequences.
Results: Here, we present aaHash, a recursive hashing algorithm tailored for amino acid sequences. This algorithm utilizes multiple hash levels
to represent biochemical similarities between amino acids. aaHash performs �10� faster than generic string hashing algorithms in hashing ad-
jacent k-mers.
Availability and implementation: aaHash is available online at https://github.com/bcgsc/btllib and is free for academic use.

1 Introduction
Analysing proteins provides opportunities to elucidate more
direct insights into the biochemical pathways and functional
activities of cells, tissues, and organisms compared to analy-
sing nucleic acids alone. Conservation at the protein level can
reveal important functional and evolutionary insights that
may not be immediately apparent when studying sequences
at the nucleotide level because of codon degeneracy (Miyata
et al. 1980). For example, in an assessment of antimicrobial
resistance, counting amino acid k-mers as opposed to nucleo-
tide k-mers was shown to enable higher accuracy and en-
hanced interpretability of machine learning algorithms
(ValizadehAslani et al. 2020).

While there are nucleotide-specific hashing algorithms
designed for hashing k-mers (Mohamadi et al. 2016, Kazemi
et al. 2022, Pibiri et al. 2023), there is no stand-alone and op-
timized implementation that leverages the characteristics of
protein k-mers to the best of our knowledge. These
nucleotide-specific algorithms first break the sequences into
k-mers and, typically, map them to 64-bit integers, the largest
native type supported by computers. Mapping is achieved by
using a hashing algorithm such as ntHash (Mohamadi et al.
2016, Kazemi et al. 2022), or by encoding nucleic acid char-
acters, R ¼ fA, C, G, TjUg using two bits (00, 01, 10, 11)
(Simpson et al. 2009). Compared to using a hashing algo-
rithm, 2-bit encoding has the advantage of being reversible,
but is limited to k-mers of length 32 bp or shorter using a sin-
gle 64-bit register. This length limitation is acceptable for cer-
tain genomic applications, such as mapping (Li 2018),
polishing (Li et al. 2022), or scaffolding (Coombe et al. 2021,

2023) but not for other applications, such as de Bruijn graph
genome assembly for complex organisms (Jackman
et al. 2017).

Similarly, amino acids can utilize a 4- or 5-bit encoding, a
variant of 2-bit encoding, but this can only capture k-mers
that are up to 16 amino acid residues in length or shorter us-
ing 64 bits, thereby virtually leaving general hashing algo-
rithms as the only viable alternative for hashing longer
peptide k-mers. Moreover, unlike nucleic acid sequences,
where every base substitution is considered equally likely
with the use of an identical penalty for any nucleotide mis-
match in sequence alignment algorithms (Smith and
Waterman 1981), the interrelationships between amino acids
are more complex, necessitating an understanding of molecu-
lar structure and biochemical properties, such as hydropho-
bicity, polarity, and pKa, a measure of the acidity of a
molecule (also known as the dissociation constant). The
BLOSUM62 (Henikoff and Henikoff 1992) matrix incorpo-
rates the relationships between amino acids and is used by
algorithms such as BLASTp (Altschul et al. 1990) to score
protein–protein alignments. This matrix quantifies the likeli-
hood of a substitution event between two amino acids based
on observed mutations in protein sequences that are no more
than 62% identical. Hash seeds generated using the
BLOSUM62 matrix have been shown to improve sensitivity
in homology search (Li et al. 2009). With high-throughput
protein or peptide sequencing platforms on the horizon,
researchers will need fast and efficient algorithms tailored for
amino acid sequences to rapidly exploit the influx of data
and expedite their analyses (Alfaro et al. 2021).

Received: July 14, 2023; Revised: October 13, 2023; Editorial Decision: November 4, 2023; Accepted: November 8, 2023
The Author(s) 2023. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics Advances, 2023, 00, vbad162
https://doi.org/10.1093/bioadv/vbad162
Advance Access Publication Date: 11 November 2023
Application Note

https://orcid.org/0000-0002-1687-8972
https://orcid.org/0000-0002-2126-5644
https://orcid.org/0000-0002-7518-2326
https://orcid.org/0000-0002-9890-2293
https://orcid.org/0000-0003-0950-7839
https://github.com/bcgsc/btllib

In recent years, a number of tools that use amino acid k-
mers have been developed. KAAmer (D�eraspe et al. 2022) is a
database that utilizes key-value pairs to link amino acid 7-
mers, which have been hashed to their corresponding 32-bit
hash values by combining the hash values of each constituent
amino acid with bitwise XOR and shift operations, to the
locations of their corresponding contents, i.e. proteins that
contain the k-mers. Linclust (Steinegger and S€oding 2018), a
linear-runtime algorithm designed to efficiently cluster vast
metagenomic datasets, clusters sequences by first finding
shared amino acid k-mers through hashing. The formulation
of Linclust’s hash function is similar to that of KAAmer, but
it also incorporates a cyclical hashing component, eliminating
the need to rehash the entire k-mer when hashing consecutive
k-mers. SECOM (Fan et al. 2012) is a domain prediction
method that uses hash seeds (Li et al. 2009) to index proteins
and employs community detection to identify protein
domains. To generate the hash seeds, SECOM utilizes the
Rabin–Karp (Karp and Rabin 1987) rolling hash algorithm.
It first assigns each amino acid to an integer representation
based on the classification setting, then multiplies it by a base
raised to the power of its position, sums the results, and fi-
nally applies a modulus operation to the final hash value.
Miniprot (Li 2023), a protein to genome aligner, uses the k-
mers from a query protein to identify alignment anchors by
querying a 6-frame translated genome index using a 4-bit
encoding scheme where multiple amino acids are mapped to
the same hash value. An optimized amino acid hashing algo-
rithm that does not suffer from the restrictions of 4- or 5-bit
encoding could boost the performance of these tools by re-
ducing the processing time and capturing more specific amino
acid k-mers. Here we present aaHash, a hashing algorithm
designed for amino acid sequences that uses multi-level seed
tables to represent the biochemical similarities between
amino acids.

2 Methods
aaHash builds on ntHash (Mohamadi et al. 2016, Kazemi
et al. 2022), a rolling hash algorithm for DNA/RNA sequen-
ces, and adapts it for amino acid sequences. Similar to
ntHash, aaHash utilizes a seed table to rapidly hash adjacent
k-mers. This seed table contains 20 64-bit integers indexed
using the amino acids alphabet, R ¼ fA, C, D, E, F, G, H, I,
K, L, M, N, P, Q, R, S, T, V, W, Yg. The 20 64-bit integers
were chosen to ensure a balanced bit distribution, with each
having a nearly equal number of 1s and 0s in their binary rep-
resentation. aaHash also employs pre-built amino acid dimer
and trimer seed tables to expedite the calculation of the initial
hash value (input to recursive hash value calculations)
(Supplementary Fig. S1).

To leverage the amino acid relationships captured in the
BLOSUM62 matrix, we first transformed the matrix such
that the positive scores (Supplementary Fig. S2), indicating
molecular similarity, are concentrated along the diagonal,
thereby grouping similar amino acids together (Li et al.
2009). We then determined different zones of degeneracy
where all the amino acids within the zone should evaluate to
the same hash. Using these zones, we created three levels of
hashes for aaHash by having seed tables for each level of
hash. The first level is a hash function where each amino acid
character corresponds to a 64-bit hash value, the default be-
haviour in generic string hashing. For level 2, we

implemented a degenerate hashing scheme where amino acids
are grouped when they have positive scores with each other
in the BLOSUM62 matrix. Similarly, for level 3, we ex-
panded the definition of degeneracy to include amino acids
with nonnegative scores. For hash levels 2 and 3, amino acids
in the same degeneracy group will all evaluate to the same
hash value. aaHash also supports using these different levels
of hashes together to create a multi-level pattern, mimicking
the functionality of spaced seeds (Ma et al. 2002).

The base formula for aaHash is defined in Equation (1). In
this equation, H is the resulting aaHash hash value, s repre-
sents the sequence (k-mer) being hashed, k refers to the size
of the k-mer, h is the lookup table that maps each amino acid
to a 64-bit integer, and finally l defines the level of hashing.

H s0ð Þ ¼ srolk� 1ðhl s0 0½ �
� �

Þ � srolk� 2ðhl s0 1½ �
� �

Þ � . . . �

hl s0 k � 1½ �
� �

(1)

The srol operation, which denotes a cyclical bit-rotate-and-
swap, is shown in Equation (2). This operation incorporates
a bit swap mechanism between the 31st and 33rd bits using
the swap bits function and a bitwise left-rotate operation
with rol to increase the period of rotations from 64 to 1023.

srol xð Þ ¼ swap bits rol xð Þ
� �

(2)

The recursive formula of aaHash is shown in Equation (3).
si denotes the ith k-mer being hashed. The base and recursive
formulas are equivalent to that of ntHash (v2.3.0).

H sið Þ ¼ srol1ðH si� 1ð ÞÞ � srolkðhl si� 1 0½ �
� �

Þ � hl si k � 1½ �
� �

(3)

To evaluate aaHash, we compared its speed, uniformity,
and RAM usage against those of CityHash (commit
f5dc541), MurmurHash (commit 92cf370), and xxHash
(v0.8.1) (Supplementary Table S1). We also evaluated
aaHash against an implementation of Rabin–Karp (commit
23b133a) to compare the hashing speed of aaHash with that
of another rolling hash algorithm. All benchmarking tests
were performed using a single thread on a server-class system
with 144 Intel(R) Xeon(R) Gold 6254 CPU @ 3.1 GHz with
2.9 TB RAM. aaHash is freely available and implemented
within the btllib common code library v1.6.0 (Nikoli�c et al.
2022). Statistical tests were conducted using python
(v3.10.12) and SciPy (1.11.3) (Virtanen et al. 2020). aaHash
documentation and the tests used to generate the results pre-
sented in this paper can be found in our GitHub repository
at: https://github.com/bcgsc/aahash_paper.

3 Results
To evaluate aaHash’s performance in hashing consecutive
amino acid k-mers, we hashed 1 000 000 random simulated
peptide sequences, each with 250 amino acid residues, using
aaHash and three state-of-the-art hashing algorithms,
CityHash, MurmurHash, and xxHash (Supplementary Note
S1). aaHash is the fastest among all competitors when hash-
ing at least six adjacent k-mers, and achieves up to �10�
speed improvement over the second fastest hashing algo-
rithm, CityHash, (0.67 s vs 7.04 s) when hashing 226

2 Wong et al.

https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad162#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad162#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad162#supplementary-data
https://github.com/bcgsc/aahash_paper
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad162#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad162#supplementary-data

consecutive 25-mers (Fig. 1a, Supplementary Table S2).
aaHash also hashed one billion consecutive 50-mers in 3.19 s,
4.99 s, and 6.48 s to generate 1, 3, and 5 hashes per k-mer, re-
spectively, again at least an order of magnitude faster than
comparators in this use case (Fig. 1b, Supplementary Table
S3). In a separate experiment, we compared the hashing
speed of aaHash, a cyclical rolling hash algorithm against
that of Rabin–Karp which employs a polynomial rolling ap-
proach (Supplementary Note S1). The results indicate that
aaHash is �20 times faster than the Rabin–Karp algorithm
across the k values tested (Supplementary Fig. S3,
Supplementary Table S4). This large difference in hashing
speed can be attributed to the computational efficiency of the
rolling operations involved. Specifically, both the division
and polynomial computations that Rabin–Karp utilizes are
computationally more expensive than the cyclical rolls, XOR
and bit-swap operations in aaHash.

Next, since uniform distribution of the hashes over the
hash space leads to smaller collision probabilities, we evalu-
ated the uniformity of the distribution of aaHash hash values
by plotting a histogram of 1 000 000 normalized hash values
derived from 100-mers of a random amino acid sequence
(Fig. 1c). Using 1000 bins, the mean and standard deviation
are 1000.0 ± 31.4, close to the ideal count of 1000 per bin.
We observed similar uniformity and distribution for levels 2
and 3 hashes, achieving a mean and standard deviation of
1000.0 ± 31.2 and 1000.0 ± 32.1 (Supplementary Figs S4 and
S5). A Kolmogorov–Smirnov (K-S) test was used to corrobo-
rate these observations. A significant P-value (with a ¼ 0:05)
would indicate the rejection of the null hypothesis, suggesting
that the aaHash hash distribution significantly differs from a
uniform hash distribution. Our results showed that the distri-
bution of different level hash values aaHash generated are
not significantly different from a uniform distribution, an im-
portant quality of good hash functions (K-S statistics of
0.0011, 0.0010, and 0.0056 and P-values of 0.15, 0.27, and
0.91 for level 1, 2, and 3 hash, respectively) (Chakravarti
et al. 1967). We also applied the Box–Muller transformation
(Box and Muller 1958) to the aaHash hash values at different
levels to assess their uniformity using the previous test setup
(Birol et al. 2018). The Box–Muller transform converts two
independent samples from a uniform distribution, U0 and

U1, into two random independent variables with a standard
normal distribution, Z0 and Z1, as shown in Equations (4)
and (5).

Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2lnU0

p
cosð2pU1Þ (4)

Z1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2lnU0

p
sinð2pU1Þ (5)

Adjacent k-mer hashes were selected as the input to the Box–
Muller transform to test for their uniformity and independence.
We then plotted the quantiles of each resulting distribution
against the theoretical quantiles of a normal distribution in a
Q–Q plot (Wilk and Gnanadesikan 1968) (Supplementary Fig.
S6). Visually, the quantiles of the transformed distributions
align well with the identity line, indicating a strong similarity be-
tween the transformed and normal distributions. We then tested
the normality of the transformed distributions using the
Shapiro–Wilk (SW) test (Shapiro and Wilk 1965). The test
reported SW test statistic of 1.00 for all distributions and P-val-
ues of 0.44 and 0.25, 0.11 and 0.55, 0.49 and 0.86 for Z0 and
Z1 distributions for level 1, 2, and 3 hashes, respectively. A sig-
nificant P-value (with a ¼ 0:05) would indicate the rejection of
the null hypothesis, suggesting that the transformed distribution
is significantly different from a normal distribution. A Pearson
correlation coefficient (Freedman et al. 2007) was computed be-
tween the Z0 and Z1 distributions derived from the aaHash
hash values at different levels. We found that correlations be-
tween the Z0 and Z1 distributions of the transformed level 1, 2,
and 3 aaHash hash values were all consistent with zero
(−0.023 ± 0.032, 0.026 ± 0.032, and −0.024 ± 0.032, respec-
tively, where the deviation indicated is one standard error), sug-
gesting independence between the Z0 and Z1 distributions. As
the SW test is sensitive to large sample size, we selected the first
1000 transformed hash values, comfortably below the upper
limit of 5000 recommended by SciPy, as the input for both tests.
The SW test results and Pearson correlation coefficients suggest
the transformed distributions are both normal and independent.
As the Box–Muller transformation is a bijection, the normality
and independence of the transformed values imply that the
untransformed aaHash hash values are uniform and

Figure 1. Performance of aaHash. (a) Runtime for hashing 1 000 000 � 250 amino acids residue long sequences with k-mer lengths from 25 to 250.
aaHash outperforms all other hashing methods when computing more than five subsequent k-mers (i.e. k< 246, see inset). (b) Comparing multi-hashing
runtime of aaHash versus other state-of-the-art hashing functions for one billion 50-mers. aaHash hashing is �10� faster than the closest competitor,
CityHash. The colours indicate the number of hashes generated. (c) Histogram of 1 000 000 100-mer hashes generated by aaHash from a random amino
acid sequence of length 1 000 099. The dashed line indicates the average number of hashes in a bin (1000). The hash values were normalized by dividing
the hash values by 264 � 1, the largest 64-bit integer, and plotted on the histogram with bin size of 1000. The mean and standard deviation of the bin
counts are 1000.0 ± 31.4, demonstrating the empirical uniformity of aaHash.

aaHash 3

https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad162#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad162#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad162#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad162#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad162#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad162#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad162#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad162#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad162#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad162#supplementary-data

independent. Lastly, we compared the uniformity and distribu-
tion of the hash values generated by aaHash and the state-of-
the-art hashing algorithms by querying k-mers from the UniProt
human proteome (Bateman et al. 2023) and 1 000 000 ran-
domly simulated 250 amino acid residues long sequences
against a Bloom filter (Bloom 1970), a probabilistic data struc-
ture, loaded with k-mers from 1 000 000 randomly generated
250 amino acid residues long sequences (Supplementary Note
S1, Supplementary Tables S5–S10). As the Bloom filter contains
only randomly generated k-mers, any hits would be considered
false positives. We then compared the actual false positive rate
with the theoretical false positive rate calculated using the occu-
pancy of the Bloom filter to determine if the aaHash-generated
hash values follow a uniform distribution. aaHash achieved
false positive rates of 11.9 ± 0.3%, 3.1 ± 0.07%, and 2.2 ±
0.04% for 1, 3, and 5 hashes per k-mer, respectively. These do
not differ significantly from the theoretical false positive rates of
11.8%, 3.1%, and 2.2% for 1, 3, and 5 hashes per k-mer, re-
spectively, for both datasets across multiple k-mer lengths based
on the two-sided paired Student’s t-test, where a significant P-
value (with a ¼ 0:05) would reject the null hypothesis and indi-
cate the aaHash false positive rates significantly differ from the
theoretical false positive rates (t statistics of 0.98, 1.00, and
1.00 and P-values of 0.37, 0.36, and 0.36) (Student 1908).
These results, which simulate a possible use case of aaHash, are
also on par with the other state-of-the-art hashing algorithms
and demonstrate that the aaHash algorithm is empirically uni-
form, reaffirming the results of a previous study investigating re-
cursive hashing (Cohen 1997).

Generic recursive cyclical k-mer (n-gram) hashing
approaches can have limitations for use cases requiring larger
k-mer sizes. In particular, they are constrained by the size of
the datatype (e.g. hashing a k-mer longer than 64 bases is
non-uniform if stored in a 64-bit integer) (Supplementary Fig.
S7). The Rabin–Karp rolling hash algorithm shares a similar
limitation. When k is sufficiently large, the value of bk can ex-
ceed the size of the datatype, leading to a loss in information,
and thus increasing the likelihood of hash collisions. For
aaHash, the bit-swap operation in Equation (2) increases the
periodicity from 64 to 1023. Given that typical k-mer hash-
ing applications utilize k-mer sizes � 1023, this bit-swap
mechanism renders aaHash functionally uniform for typical
use cases. While a previous study established that cyclical re-
cursive n-gram hashing is not formally uniform (Lemire and
Kaser 2010), the considerations in the formulation of aaHash
and the results of the empirical uniformity and independence
tests demonstrate that aaHash is a suitable hashing algorithm
for bioinformatics applications.

Finally, we compared the peak memory usage of each hash-
ing algorithm and note that the peak memory usage does not
differ substantially, regardless of k-mer length and number of
hashes generated (Supplementary Tables S11 and S12).

Unlike other hashing algorithms, aaHash introduces sec-
ond and third level hashing, enabling researchers to compare
amino acid sequences at the hash level using the BLOSUM62
matrix. BLOSUM62 was chosen because it is the default sub-
stitution matrix for BLASTp (Altschul et al. 1990), but the
concept can be extended to other similarity matrices like
PAM matrices (Dayhoff et al. 1978). In addition, aaHash
supports the integration of various hash levels to produce
multi-level patterns. These multi-level patterns mimic the
functionality of spaced seeds (a pattern with ‘care’ and ‘don’t
care’ positions) (Ma et al. 2002), which are typically used for

approximate matching in DNA homology searches, but in-
stead of completely ignoring the ‘don’t care’ positions,
aaHash will consider the biochemical similarity between the
amino acids based on the hash level of each position.

aaHash is a specialized amino acid hashing algorithm that
outperforms other state-of-the-art hashing algorithms in
speed when hashing consecutive amino acid k-mers, a fre-
quently employed operation in bioinformatics. Additionally,
the implementation of multi-level hashing has great potential
for enabling homology searches between evolutionarily diver-
gent sequences. With its improved speed over other state-of-
the art algorithms and homology-oriented features, we expect
aaHash to be both beneficial to the scientific community and
improve many bioinformatics applications involving amino
acid sequence analysis.

Acknowledgements
We thank Hamid Mohamadi for his contributions to discus-
sions in the initial stages of the project.

Author contributions
Johnathan Wong (Conceptualization [lead], Formal analysis
[lead], Investigation [lead], Methodology [lead], Software
[lead], Validation [lead], Visualization [lead], Writing—origi-
nal draft [lead], Writing—review & editing [lead]), Parham
Kazemi (Methodology [supporting], Software [supporting],
Validation [supporting], Writing—review & editing [equal]),
Lauren Coombe (Software [supporting], Writing—review &
editing [equal]), Ren�e L. Warren (Supervision [equal],
Writing—review & editing [equal]) and Inanc Birol (Funding
acquisition [lead], Supervision [equal], Validation [support-
ing], Writing—review & editing [equal])

Supplementary data
Supplementary data are available at Bioinformatics
Advances online.

Conflict of interest
None declared.

Funding
This work was supported by the Canadian Institutes of
Health Research (CIHR) [PJT-183608 to I.B.]; and the
National Institutes of Health [2R01HG007182-04A1 to I.
B.]. The content of this article is solely the responsibility of
the authors, and does not necessarily represent the official
views of the National Institutes of Health or other funding
organizations. The funding organizations did not have a role
in the design of the study, the collection, analysis and inter-
pretation of the data, or in writing the article.

Data availability
Information about the data used to benchmark aaHash and
its comparators can be found in Supplementary Note S1.

4 Wong et al.

https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad162#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad162#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad162#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad162#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad162#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad162#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad162#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad162#supplementary-data

References
Alfaro JA, Bohl€ander P, Dai M et al. The emerging landscape of single-

molecule protein sequencing technologies. Nat Methods 2021;
18:604–17.

Altschul SF, Gish W, Miller W et al. Basic local alignment search tool. J
Mol Biol 1990;215:403–10.

Bateman A, Martin M-J, Orchard S et al. UniProt: the universal protein
knowledgebase in 2023. Nucleic Acids Res 2023;51:D523–31.

Birol I, Mohamadi H, Chu J. ntPack: a software package for big data in
genomics. In: 2018 IEEE/ACM 5th International Conference on
Big Data Computing Applications and Technologies (BDCAT),
Zurich, Switzerland, 2018, 41–50. IEEE, New York.

Bloom BH. Space/time trade-offs in hash coding with allowable errors.
Commun ACM 1970;13:422–6.

Box GEP, Muller ME. A note on the generation of random normal devi-
ates. Ann Math Stat 1958;29:610–1.

Chakravarti IM, Laha RG, Roy J. Handbook of methods of applied sta-
tistics. In: Wiley Series in Probability and Mathematical Statistics
(USA) eng. Hoboken, NJ: John Wiley and Sons, 1967, 392–394.

Cohen JD. Recursive hashing functions for N-grams. ACM Trans Inf
Syst 1997;15:291–320.

Coombe L, Li JX, Lo T et al. LongStitch: high-quality genome assembly
correction and scaffolding using long reads. BMC Bioinformatics
2021;22:534.

Coombe L, Warren RL, Wong J et al. ntLink: a toolkit for de novo ge-
nome assembly scaffolding and mapping using long reads. Curr
Protoc 2023;3:e733.

Dayhoff MO, Schwartz RM, Orcutt BC. A model of evolutionary
change in proteins. In: Atlas of Protein Sequence and Structure, Vol.
5. Silver Spring, MD: National Biomedical Research Foundation,
1978, 345–52.

D�eraspe M, Boisvert S, Laviolette F et al. Flexible protein database
based on amino acid k-mers. Sci Rep 2022;12:9101.

Fan M, Wong K-C, Ryu T et al. SECOM: a novel hash seed and com-
munity detection Based-Approach for Genome-Scale protein do-
main identification. PLoS One 2012;7:e39475.

Freedman D, Pisani R, Purves R. Statistics (International Student
Edition). 4th edn. New York: WW Norton & Company,
2007;119-157.

Henikoff S, Henikoff JG. Amino acid substitution matrices from pro-
tein blocks. Proc Natl Acad Sci USA 1992;89:10915–9.

Jackman SD, Vandervalk BP, Mohamadi H et al. ABySS 2.0: resource-
efficient assembly of large genomes using a Bloom filter. Genome
Res 2017;27:768–77.

Karp RM, Rabin MO. Efficient randomized pattern-matching algo-
rithms. IBM J Res Dev 1987;31:249–60.

Kazemi P, Wong J, Nikoli�c V et al. ntHash2: recursive spaced seed hash-
ing for nucleotide sequences. Bioinformatics 2022;38:4812–3.

Lemire D, Kaser O. Recursive n-gram hashing is pairwise independent,
at best. Comput Speech Lang 2010;24:698–710.

Li H. Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics 2018;34:3094–100.

Li H. Protein-to-genome alignment with miniprot. Bioinformatics
2023;39:btad014.

Li JX, Coombe L, Wong J et al. ntEditþsealer: efficient targeted error
resolution and automated finishing of Long-Read genome assem-
blies. Curr Protoc 2022;2:e442.

Li W, Ma B, Zhang K. Amino acid classification and hash seeds for homol-
ogy search. In: Rajasekaran, S. (ed.), Bioinformatics and Computational
Biology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, 44–51.

Ma B, Tromp J, Li M et al. PatternHunter: faster and more sensitive ho-
mology search. Bioinformatics 2002;18:440–5.

Miyata T, Yasunaga T, Nishida T et al. Nucleotide sequence divergence
and functional constraint in mRNA evolution. Proc Natl Acad Sci
USA 1980;77:7328–32.

Mohamadi H, Chu J, Vandervalk BP et al. ntHash: recursive nucleotide
hashing. Bioinformatics 2016;32:3492–4.

Nikoli�c V, Kazemi P, Coombe L et al. btllib: a Cþþ library with Python in-
terface for efficient genomic sequence processing. JOSS 2022;7:4720.

Pibiri GE, Shibuya Y, Limasset A et al. Locality-preserving minimal per-
fect hashing of k-mers. Bioinformatics 2023;39:i534–43.

Shapiro SS, Wilk MB. An analysis of variance test for normality (com-
plete samples). Biometrika 1965;52:591–611.

Simpson JT, Wong K, Jackman SD et al. ABySS: a parallel assembler for
short read sequence data. Genome Res 2009;19:1117–23.

Smith TF, Waterman MS. Identification of common molecular subse-
quences. J Mol Biol 1981;147:195–7.

Steinegger M, S€oding J. Clustering huge protein sequence sets in linear
time. Nat Commun 2018;9:2542.

Student. The probable error of a mean. Biometrika 1908;6:1.
ValizadehAslani T, Zhao Z, Sokhansanj BA et al. Amino acid k-mer

feature extraction for quantitative antimicrobial resistance (AMR)
prediction by machine learning and model interpretation for biolog-
ical insights. Biology (Basel) 2020;9:365.

Virtanen P, Gommers R, Oliphant TE et al.; SciPy 1.0 Contributors.
SciPy 1.0: fundamental algorithms for scientific computing in py-
thon. Nat Methods 2020;17:261–72.

Wilk MB, Gnanadesikan R. Probability plotting methods for the analy-
sis for the analysis of data. Biometrika 1968;55:1–17.

aaHash 5

	Active Content List
	1 Introduction
	3 Results
	Acknowledgements
	Data availability
	References

