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Abstract 
Motivation: K-mer hashing is a common operation in many foundational bioinformatics problems. However, generic string hashing algorithms 
are not optimized for this application. Strings in bioinformatics use specific alphabets, a trait leveraged for nucleic acid sequences in earlier 
work. We note that amino acid sequences, with complexities and context that cannot be captured by generic hashing algorithms, can also bene-
fit from a domain-specific hashing algorithm. Such a hashing algorithm can accelerate and improve the sensitivity of bioinformatics applications 
developed for protein sequences.
Results: Here, we present aaHash, a recursive hashing algorithm tailored for amino acid sequences. This algorithm utilizes multiple hash levels 
to represent biochemical similarities between amino acids. aaHash performs �10� faster than generic string hashing algorithms in hashing ad-
jacent k-mers.
Availability and implementation: aaHash is available online at https://github.com/bcgsc/btllib and is free for academic use.

1 Introduction
Analysing proteins provides opportunities to elucidate more 
direct insights into the biochemical pathways and functional 
activities of cells, tissues, and organisms compared to analy-
sing nucleic acids alone. Conservation at the protein level can 
reveal important functional and evolutionary insights that 
may not be immediately apparent when studying sequences 
at the nucleotide level because of codon degeneracy (Miyata 
et al. 1980). For example, in an assessment of antimicrobial 
resistance, counting amino acid k-mers as opposed to nucleo-
tide k-mers was shown to enable higher accuracy and en-
hanced interpretability of machine learning algorithms 
(ValizadehAslani et al. 2020).

While there are nucleotide-specific hashing algorithms 
designed for hashing k-mers (Mohamadi et al. 2016, Kazemi 
et al. 2022, Pibiri et al. 2023), there is no stand-alone and op-
timized implementation that leverages the characteristics of 
protein k-mers to the best of our knowledge. These 
nucleotide-specific algorithms first break the sequences into 
k-mers and, typically, map them to 64-bit integers, the largest 
native type supported by computers. Mapping is achieved by 
using a hashing algorithm such as ntHash (Mohamadi et al. 
2016, Kazemi et al. 2022), or by encoding nucleic acid char-
acters, R ¼ fA, C, G, TjUg using two bits (00, 01, 10, 11) 
(Simpson et al. 2009). Compared to using a hashing algo-
rithm, 2-bit encoding has the advantage of being reversible, 
but is limited to k-mers of length 32 bp or shorter using a sin-
gle 64-bit register. This length limitation is acceptable for cer-
tain genomic applications, such as mapping (Li 2018), 
polishing (Li et al. 2022), or scaffolding (Coombe et al. 2021, 

2023) but not for other applications, such as de Bruijn graph 
genome assembly for complex organisms (Jackman 
et al. 2017).

Similarly, amino acids can utilize a 4- or 5-bit encoding, a 
variant of 2-bit encoding, but this can only capture k-mers 
that are up to 16 amino acid residues in length or shorter us-
ing 64 bits, thereby virtually leaving general hashing algo-
rithms as the only viable alternative for hashing longer 
peptide k-mers. Moreover, unlike nucleic acid sequences, 
where every base substitution is considered equally likely 
with the use of an identical penalty for any nucleotide mis-
match in sequence alignment algorithms (Smith and 
Waterman 1981), the interrelationships between amino acids 
are more complex, necessitating an understanding of molecu-
lar structure and biochemical properties, such as hydropho-
bicity, polarity, and pKa, a measure of the acidity of a 
molecule (also known as the dissociation constant). The 
BLOSUM62 (Henikoff and Henikoff 1992) matrix incorpo-
rates the relationships between amino acids and is used by 
algorithms such as BLASTp (Altschul et al. 1990) to score 
protein–protein alignments. This matrix quantifies the likeli-
hood of a substitution event between two amino acids based 
on observed mutations in protein sequences that are no more 
than 62% identical. Hash seeds generated using the 
BLOSUM62 matrix have been shown to improve sensitivity 
in homology search (Li et al. 2009). With high-throughput 
protein or peptide sequencing platforms on the horizon, 
researchers will need fast and efficient algorithms tailored for 
amino acid sequences to rapidly exploit the influx of data 
and expedite their analyses (Alfaro et al. 2021).

Received: July 14, 2023; Revised: October 13, 2023; Editorial Decision: November 4, 2023; Accepted: November 8, 2023 
# The Author(s) 2023. Published by Oxford University Press.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 

Bioinformatics Advances, 2023, 00, vbad162 
https://doi.org/10.1093/bioadv/vbad162 
Advance Access Publication Date: 11 November 2023 
Application Note 

https://orcid.org/0000-0002-1687-8972
https://orcid.org/0000-0002-2126-5644
https://orcid.org/0000-0002-7518-2326
https://orcid.org/0000-0002-9890-2293
https://orcid.org/0000-0003-0950-7839
https://github.com/bcgsc/btllib


In recent years, a number of tools that use amino acid k- 
mers have been developed. KAAmer (D�eraspe et al. 2022) is a 
database that utilizes key-value pairs to link amino acid 7- 
mers, which have been hashed to their corresponding 32-bit 
hash values by combining the hash values of each constituent 
amino acid with bitwise XOR and shift operations, to the 
locations of their corresponding contents, i.e. proteins that 
contain the k-mers. Linclust (Steinegger and S€oding 2018), a 
linear-runtime algorithm designed to efficiently cluster vast 
metagenomic datasets, clusters sequences by first finding 
shared amino acid k-mers through hashing. The formulation 
of Linclust’s hash function is similar to that of KAAmer, but 
it also incorporates a cyclical hashing component, eliminating 
the need to rehash the entire k-mer when hashing consecutive 
k-mers. SECOM (Fan et al. 2012) is a domain prediction 
method that uses hash seeds (Li et al. 2009) to index proteins 
and employs community detection to identify protein 
domains. To generate the hash seeds, SECOM utilizes the 
Rabin–Karp (Karp and Rabin 1987) rolling hash algorithm. 
It first assigns each amino acid to an integer representation 
based on the classification setting, then multiplies it by a base 
raised to the power of its position, sums the results, and fi-
nally applies a modulus operation to the final hash value. 
Miniprot (Li 2023), a protein to genome aligner, uses the k- 
mers from a query protein to identify alignment anchors by 
querying a 6-frame translated genome index using a 4-bit 
encoding scheme where multiple amino acids are mapped to 
the same hash value. An optimized amino acid hashing algo-
rithm that does not suffer from the restrictions of 4- or 5-bit 
encoding could boost the performance of these tools by re-
ducing the processing time and capturing more specific amino 
acid k-mers. Here we present aaHash, a hashing algorithm 
designed for amino acid sequences that uses multi-level seed 
tables to represent the biochemical similarities between 
amino acids.

2 Methods
aaHash builds on ntHash (Mohamadi et al. 2016, Kazemi 
et al. 2022), a rolling hash algorithm for DNA/RNA sequen-
ces, and adapts it for amino acid sequences. Similar to 
ntHash, aaHash utilizes a seed table to rapidly hash adjacent 
k-mers. This seed table contains 20 64-bit integers indexed 
using the amino acids alphabet, R ¼ fA, C, D, E, F, G, H, I, 
K, L, M, N, P, Q, R, S, T, V, W, Yg. The 20 64-bit integers 
were chosen to ensure a balanced bit distribution, with each 
having a nearly equal number of 1s and 0s in their binary rep-
resentation. aaHash also employs pre-built amino acid dimer 
and trimer seed tables to expedite the calculation of the initial 
hash value (input to recursive hash value calculations) 
(Supplementary Fig. S1).

To leverage the amino acid relationships captured in the 
BLOSUM62 matrix, we first transformed the matrix such 
that the positive scores (Supplementary Fig. S2), indicating 
molecular similarity, are concentrated along the diagonal, 
thereby grouping similar amino acids together (Li et al. 
2009). We then determined different zones of degeneracy 
where all the amino acids within the zone should evaluate to 
the same hash. Using these zones, we created three levels of 
hashes for aaHash by having seed tables for each level of 
hash. The first level is a hash function where each amino acid 
character corresponds to a 64-bit hash value, the default be-
haviour in generic string hashing. For level 2, we 

implemented a degenerate hashing scheme where amino acids 
are grouped when they have positive scores with each other 
in the BLOSUM62 matrix. Similarly, for level 3, we ex-
panded the definition of degeneracy to include amino acids 
with nonnegative scores. For hash levels 2 and 3, amino acids 
in the same degeneracy group will all evaluate to the same 
hash value. aaHash also supports using these different levels 
of hashes together to create a multi-level pattern, mimicking 
the functionality of spaced seeds (Ma et al. 2002).

The base formula for aaHash is defined in Equation (1). In 
this equation, H is the resulting aaHash hash value, s repre-
sents the sequence (k-mer) being hashed, k refers to the size 
of the k-mer, h is the lookup table that maps each amino acid 
to a 64-bit integer, and finally l defines the level of hashing. 

H s0ð Þ ¼ srolk� 1ðhl s0 0½ �
� �

Þ � srolk� 2ðhl s0 1½ �
� �

Þ � . . . �

hl s0 k � 1½ �
� �

(1) 

The srol operation, which denotes a cyclical bit-rotate-and- 
swap, is shown in Equation (2). This operation incorporates 
a bit swap mechanism between the 31st and 33rd bits using 
the swap bits function and a bitwise left-rotate operation 
with rol to increase the period of rotations from 64 to 1023. 

srol xð Þ ¼ swap bits rol xð Þ
� �

(2) 

The recursive formula of aaHash is shown in Equation (3). 
si denotes the ith k-mer being hashed. The base and recursive 
formulas are equivalent to that of ntHash (v2.3.0). 

H sið Þ ¼ srol1ðH si� 1ð ÞÞ � srolkðhl si� 1 0½ �
� �

Þ � hl si k � 1½ �
� �

(3) 

To evaluate aaHash, we compared its speed, uniformity, 
and RAM usage against those of CityHash (commit 
f5dc541), MurmurHash (commit 92cf370), and xxHash 
(v0.8.1) (Supplementary Table S1). We also evaluated 
aaHash against an implementation of Rabin–Karp (commit 
23b133a) to compare the hashing speed of aaHash with that 
of another rolling hash algorithm. All benchmarking tests 
were performed using a single thread on a server-class system 
with 144 Intel(R) Xeon(R) Gold 6254 CPU @ 3.1 GHz with 
2.9 TB RAM. aaHash is freely available and implemented 
within the btllib common code library v1.6.0 (Nikoli�c et al. 
2022). Statistical tests were conducted using python 
(v3.10.12) and SciPy (1.11.3) (Virtanen et al. 2020). aaHash 
documentation and the tests used to generate the results pre-
sented in this paper can be found in our GitHub repository 
at: https://github.com/bcgsc/aahash_paper.

3 Results
To evaluate aaHash’s performance in hashing consecutive 
amino acid k-mers, we hashed 1 000 000 random simulated 
peptide sequences, each with 250 amino acid residues, using 
aaHash and three state-of-the-art hashing algorithms, 
CityHash, MurmurHash, and xxHash (Supplementary Note 
S1). aaHash is the fastest among all competitors when hash-
ing at least six adjacent k-mers, and achieves up to �10�
speed improvement over the second fastest hashing algo-
rithm, CityHash, (0.67 s vs 7.04 s) when hashing 226 
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consecutive 25-mers (Fig. 1a, Supplementary Table S2). 
aaHash also hashed one billion consecutive 50-mers in 3.19 s, 
4.99 s, and 6.48 s to generate 1, 3, and 5 hashes per k-mer, re-
spectively, again at least an order of magnitude faster than 
comparators in this use case (Fig. 1b, Supplementary Table 
S3). In a separate experiment, we compared the hashing 
speed of aaHash, a cyclical rolling hash algorithm against 
that of Rabin–Karp which employs a polynomial rolling ap-
proach (Supplementary Note S1). The results indicate that 
aaHash is �20 times faster than the Rabin–Karp algorithm 
across the k values tested (Supplementary Fig. S3, 
Supplementary Table S4). This large difference in hashing 
speed can be attributed to the computational efficiency of the 
rolling operations involved. Specifically, both the division 
and polynomial computations that Rabin–Karp utilizes are 
computationally more expensive than the cyclical rolls, XOR 
and bit-swap operations in aaHash.

Next, since uniform distribution of the hashes over the 
hash space leads to smaller collision probabilities, we evalu-
ated the uniformity of the distribution of aaHash hash values 
by plotting a histogram of 1 000 000 normalized hash values 
derived from 100-mers of a random amino acid sequence 
(Fig. 1c). Using 1000 bins, the mean and standard deviation 
are 1000.0 ± 31.4, close to the ideal count of 1000 per bin. 
We observed similar uniformity and distribution for levels 2 
and 3 hashes, achieving a mean and standard deviation of 
1000.0 ± 31.2 and 1000.0 ± 32.1 (Supplementary Figs S4 and 
S5). A Kolmogorov–Smirnov (K-S) test was used to corrobo-
rate these observations. A significant P-value (with a ¼ 0:05) 
would indicate the rejection of the null hypothesis, suggesting 
that the aaHash hash distribution significantly differs from a 
uniform hash distribution. Our results showed that the distri-
bution of different level hash values aaHash generated are 
not significantly different from a uniform distribution, an im-
portant quality of good hash functions (K-S statistics of 
0.0011, 0.0010, and 0.0056 and P-values of 0.15, 0.27, and 
0.91 for level 1, 2, and 3 hash, respectively) (Chakravarti 
et al. 1967). We also applied the Box–Muller transformation 
(Box and Muller 1958) to the aaHash hash values at different 
levels to assess their uniformity using the previous test setup 
(Birol et al. 2018). The Box–Muller transform converts two 
independent samples from a uniform distribution, U0 and 

U1, into two random independent variables with a standard 
normal distribution, Z0 and Z1, as shown in Equations (4) 
and (5). 

Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2lnU0

p
cosð2pU1Þ (4) 

Z1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2lnU0

p
sinð2pU1Þ (5) 

Adjacent k-mer hashes were selected as the input to the Box– 
Muller transform to test for their uniformity and independence. 
We then plotted the quantiles of each resulting distribution 
against the theoretical quantiles of a normal distribution in a 
Q–Q plot (Wilk and Gnanadesikan 1968) (Supplementary Fig. 
S6). Visually, the quantiles of the transformed distributions 
align well with the identity line, indicating a strong similarity be-
tween the transformed and normal distributions. We then tested 
the normality of the transformed distributions using the 
Shapiro–Wilk (SW) test (Shapiro and Wilk 1965). The test 
reported SW test statistic of 1.00 for all distributions and P-val-
ues of 0.44 and 0.25, 0.11 and 0.55, 0.49 and 0.86 for Z0 and 
Z1 distributions for level 1, 2, and 3 hashes, respectively. A sig-
nificant P-value (with a ¼ 0:05) would indicate the rejection of 
the null hypothesis, suggesting that the transformed distribution 
is significantly different from a normal distribution. A Pearson 
correlation coefficient (Freedman et al. 2007) was computed be-
tween the Z0 and Z1 distributions derived from the aaHash 
hash values at different levels. We found that correlations be-
tween the Z0 and Z1 distributions of the transformed level 1, 2, 
and 3 aaHash hash values were all consistent with zero 
(−0.023 ± 0.032, 0.026 ± 0.032, and −0.024 ± 0.032, respec-
tively, where the deviation indicated is one standard error), sug-
gesting independence between the Z0 and Z1 distributions. As 
the SW test is sensitive to large sample size, we selected the first 
1000 transformed hash values, comfortably below the upper 
limit of 5000 recommended by SciPy, as the input for both tests. 
The SW test results and Pearson correlation coefficients suggest 
the transformed distributions are both normal and independent. 
As the Box–Muller transformation is a bijection, the normality 
and independence of the transformed values imply that the 
untransformed aaHash hash values are uniform and 

Figure 1. Performance of aaHash. (a) Runtime for hashing 1 000 000 � 250 amino acids residue long sequences with k-mer lengths from 25 to 250. 
aaHash outperforms all other hashing methods when computing more than five subsequent k-mers (i.e. k< 246, see inset). (b) Comparing multi-hashing 
runtime of aaHash versus other state-of-the-art hashing functions for one billion 50-mers. aaHash hashing is �10� faster than the closest competitor, 
CityHash. The colours indicate the number of hashes generated. (c) Histogram of 1 000 000 100-mer hashes generated by aaHash from a random amino 
acid sequence of length 1 000 099. The dashed line indicates the average number of hashes in a bin (1000). The hash values were normalized by dividing 
the hash values by 264 � 1, the largest 64-bit integer, and plotted on the histogram with bin size of 1000. The mean and standard deviation of the bin 
counts are 1000.0 ± 31.4, demonstrating the empirical uniformity of aaHash.
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independent. Lastly, we compared the uniformity and distribu-
tion of the hash values generated by aaHash and the state-of- 
the-art hashing algorithms by querying k-mers from the UniProt 
human proteome (Bateman et al. 2023) and 1 000 000 ran-
domly simulated 250 amino acid residues long sequences 
against a Bloom filter (Bloom 1970), a probabilistic data struc-
ture, loaded with k-mers from 1 000 000 randomly generated 
250 amino acid residues long sequences (Supplementary Note 
S1, Supplementary Tables S5–S10). As the Bloom filter contains 
only randomly generated k-mers, any hits would be considered 
false positives. We then compared the actual false positive rate 
with the theoretical false positive rate calculated using the occu-
pancy of the Bloom filter to determine if the aaHash-generated 
hash values follow a uniform distribution. aaHash achieved 
false positive rates of 11.9 ± 0.3%, 3.1 ± 0.07%, and 2.2 ± 
0.04% for 1, 3, and 5 hashes per k-mer, respectively. These do 
not differ significantly from the theoretical false positive rates of 
11.8%, 3.1%, and 2.2% for 1, 3, and 5 hashes per k-mer, re-
spectively, for both datasets across multiple k-mer lengths based 
on the two-sided paired Student’s t-test, where a significant P- 
value (with a ¼ 0:05) would reject the null hypothesis and indi-
cate the aaHash false positive rates significantly differ from the 
theoretical false positive rates (t statistics of 0.98, 1.00, and 
1.00 and P-values of 0.37, 0.36, and 0.36) (Student 1908). 
These results, which simulate a possible use case of aaHash, are 
also on par with the other state-of-the-art hashing algorithms 
and demonstrate that the aaHash algorithm is empirically uni-
form, reaffirming the results of a previous study investigating re-
cursive hashing (Cohen 1997).

Generic recursive cyclical k-mer (n-gram) hashing 
approaches can have limitations for use cases requiring larger 
k-mer sizes. In particular, they are constrained by the size of 
the datatype (e.g. hashing a k-mer longer than 64 bases is 
non-uniform if stored in a 64-bit integer) (Supplementary Fig. 
S7). The Rabin–Karp rolling hash algorithm shares a similar 
limitation. When k is sufficiently large, the value of bk can ex-
ceed the size of the datatype, leading to a loss in information, 
and thus increasing the likelihood of hash collisions. For 
aaHash, the bit-swap operation in Equation (2) increases the 
periodicity from 64 to 1023. Given that typical k-mer hash-
ing applications utilize k-mer sizes � 1023, this bit-swap 
mechanism renders aaHash functionally uniform for typical 
use cases. While a previous study established that cyclical re-
cursive n-gram hashing is not formally uniform (Lemire and 
Kaser 2010), the considerations in the formulation of aaHash 
and the results of the empirical uniformity and independence 
tests demonstrate that aaHash is a suitable hashing algorithm 
for bioinformatics applications.

Finally, we compared the peak memory usage of each hash-
ing algorithm and note that the peak memory usage does not 
differ substantially, regardless of k-mer length and number of 
hashes generated (Supplementary Tables S11 and S12).

Unlike other hashing algorithms, aaHash introduces sec-
ond and third level hashing, enabling researchers to compare 
amino acid sequences at the hash level using the BLOSUM62 
matrix. BLOSUM62 was chosen because it is the default sub-
stitution matrix for BLASTp (Altschul et al. 1990), but the 
concept can be extended to other similarity matrices like 
PAM matrices (Dayhoff et al. 1978). In addition, aaHash 
supports the integration of various hash levels to produce 
multi-level patterns. These multi-level patterns mimic the 
functionality of spaced seeds (a pattern with ‘care’ and ‘don’t 
care’ positions) (Ma et al. 2002), which are typically used for 

approximate matching in DNA homology searches, but in-
stead of completely ignoring the ‘don’t care’ positions, 
aaHash will consider the biochemical similarity between the 
amino acids based on the hash level of each position.

aaHash is a specialized amino acid hashing algorithm that 
outperforms other state-of-the-art hashing algorithms in 
speed when hashing consecutive amino acid k-mers, a fre-
quently employed operation in bioinformatics. Additionally, 
the implementation of multi-level hashing has great potential 
for enabling homology searches between evolutionarily diver-
gent sequences. With its improved speed over other state-of- 
the art algorithms and homology-oriented features, we expect 
aaHash to be both beneficial to the scientific community and 
improve many bioinformatics applications involving amino 
acid sequence analysis.
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