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Abstract

High-dimensional data applications often entail the use of various statistical and machine-learning 

algorithms to identify an optimal signature based on biomarkers and other patient characteristics 

that predicts the desired clinical outcome in biomedical research. Both the composition and 

predictive performance of such biomarker signatures are critical in various biomedical research 

applications. In the presence of a large number of features, however, a conventional regression 

analysis approach fails to yield a good prediction model. A widely used remedy is to introduce 

regularization in fitting the relevant regression model. In particular, a L1 penalty on the regression 

coefficients is extremely useful, and very efficient numerical algorithms have been developed 

for fitting such models with different types of responses. This L1-based regularization tends to 

generate a parsimonious prediction model with promising prediction performance, i.e., feature 

selection is achieved along with construction of the prediction model. The variable selection, and 

hence the composition of the signature, as well as the prediction performance of the model depend 

on the choice of the penalty parameter used in the L1 regularization. The penalty parameter is 

often chosen by K-fold cross-validation. However, such an algorithm tends to be unstable and may 

yield very different choices of the penalty parameter across multiple runs on the same dataset. In 

addition, the predictive performance estimates from the internal cross-validation procedure in this 

algorithm tend to be inflated. In this paper, we propose a Monte Carlo approach to improve the 

robustness of regularization parameter selection, along with an additional cross-validation wrapper 

for objectively evaluating the predictive performance of the final model. We demonstrate the 

improvements via simulations and illustrate the application via a real dataset.
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1. Introduction

There is a need to develop a prediction model in many biomedical applications, i.e., finding 

a function of a set of features, which could be biomarkers and patient characteristics, to 

predict the outcome of interest such as disease status and survival time.

Consider a typical predictive modeling problem, with Y  being the binary outcome, indicating 

cardiovascular death in the next 5 years, and x being a set of baseline covariates such as 

systolic blood pressure, body mass index, etc. The objective is to predict the value of the 

binary outcome Y , i.e., if the patient would die from a cardiovascular cause in the next 5 

years, or the 5-year cardiovascular risk P(Y = 1 ∣ X = x) for a future observation based on 

his/her covariate x. To this end, we may consider a probability model characterizing the 

conditional probability P(Y = 1 ∣ X = x). The logistic regression model

P(Y = 1 ∣ X = x) = exp (β0 + xTβ)
1 + exp(β0 + xTβ)

(1)

is one of the most convenient choices. When an estimator for the regression coefficients 

(β0, β), (β 0, β), is obtained, one may predict a future Y  based on the estimated conditional 

probability:

P(Y = 1 ∣ X = x) = exp (β 0 + xTβ)
1 + exp(β 0 + xTβ)

(2)

When the dimension of x is big, the regularization method is needed to fit the regression 

model. Lasso, or the l1 penalty [1], gained its popularity due to its ability to automatically 

obtain a sparse solution for settings with high-dimensional covariate X, whose dimension 

p >> N. As the coefficients of unimportant predictors are shrunk to zero, variable selection 

is achieved automatically within the model-fitting procedure. An additional ridge penalty 

is introduced in the elastic-net regularization to accommodate correlated predictors, so that 

when several strongly correlated predictors are associated with the outcome, the elastic net 

model will obtain a solution where the group of strongly correlated predictors are selected 

together, whereas lasso tends to select only one predictor from the cluster and ignores the 

rest [2]. The elastic-net (lasso as a special case) is implemented in the R package ‘glmnet’. 

By using cyclical coordinate descent, this numerical algorithm is very fast and efficient 

[3,4]. Coupled with the appropriate regression model, the elastic-net penalty can be used 
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to handle multiple types of outcomes such as continuous, binary, multinomial, and survival 

time [5]. Hereafter in this manuscript, we refer to this algorithm as ‘glmnet’.

There is a tuning parameter λ in lasso or elastic-net regularization. It controls the degree 

of regularization and indirectly determines the number of nonzero coefficients, and hence 

the number of predictors in the final prediction model (i.e., biomarker signature). In a 

lasso model, the selection of the tuning parameter is approximately equivalent to the 

selection of optimal numbers of predictors used in the final prediction model. A smaller 

λ corresponds to a more complex model with many predictors, and thus may overfit the 

response in the training set. Conversely, a larger λ corresponds to a more parsimonious 

model that may underfit the response in the training set. The tuning parameter is selected via 

cross-validation (CV) to optimize the estimated predictive performance [6,7]. The R package 

‘glmnet’ provides a function ‘cv.glmnet’ to conduct K-fold cross-validation, which produces 

estimates of the prediction performance measured by the root-mean-squared error (RMSE) 

for continuous outcomes, area under the curve (AUC) for binary outcomes, or deviance for 

all types of outcomes corresponding to different tuning parameters. The final model is fitted 

by selecting the λ that achieves the best CV performance (λopt).

In our experience, we have observed considerable instability in the selected value of λopt

via cross-validation, and hence in the selection of optimal variables/predictors in some 

practical applications, especially for smaller datasets. This may be due to random variation 

in the cross-validation procedure. We illustrate this phenomenon using proteomics data 

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset [8,9], which includes 

measurements of 320 biomarkers (peptides) in 135 subjects with mild cognitive impairment 

(MCI) and 86 age-matched normal subjects (NL). We apply glmnet to identify an optimal 

combination of biomarkers for classifying NL and MCI subjects. Figure 1A shows the 

distribution of λopt estimates from 1000 independent iterations of the glmnet algorithm, 

where a different random seed value was used in each cross-validation. The distribution of 

the number of selected biomarkers corresponding to the estimated λopt is shown in Figure 1B. 

As evident from these figures, there is considerable variation in the λopt estimates each time 

the cross-validation procedure is employed, and thus the signature composition (selected 

informative biomarkers) and its size (number of selected biomarkers) vary considerably 

(from fewer than 5 biomarkers to greater than 50 biomarkers) across each application 

of the ‘cv.glmnet’. This instability makes the applicability of the glmnet algorithm and 

the scientific interpretation of the peptides included in the resulting predictive signature 

challenging. It is known that the result from cross-validation procedure depends on the 

specific data training and testing splitting in the cross-validation, and thus may vary from 

cross-validation to cross-validation. However, there is oftentimes a misconception that the 

result from k-fold cross-validation is much more stable due to the fact that every observation 

has served as a testing data point once and has contributed to the model training k − 1
times. The aforementioned simple example shows that stability still can be a serious 

concern for k-fold cross-validation, whose selected optimal penalty parameter can have a 

multimodal distribution resulting in quite different choices of λopt depending on the particular 

implementation of cross-validation. To address this concern, in this paper, we propose a 

simple Monte Carlo approach for glmnet, which we call MCglmnet. We demonstrate a 
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significant improvement in stability via simulation studies and illustrate it using the ADNI 

dataset described above.

In addition, we propose the use of the outside cross-validation wrapper on the glmnet 

and MCglmnet algorithms to evaluate and report the predictive performance of the 

resulting signatures. We emphasize this because there may be a temptation to use only 

the performance estimates from the built-in cross-validation procedure within glmnet for 

selecting λopt (cv.glmnet) as the final performance measure of the signature. However, this 

estimate tends to be overly optimistic, and the size of the optimistic bias may depend on 

the aforementioned variability in the selected λopt via cross-validation. In the simulations, 

we demonstrate a reduction in bias in predictive performance estimates when using the 

additional outside cross-validation wrapper.

2. Methods

2.1. MCglmnet Algorithm

Consider a typical predictive modeling problem with N observations and p predictiors. 

Specifically, let Y  denote the the binary outcome and X be the baseline covariates. A 

logistic regression model assumes Equation (1) and the elastic-net regularization estimates 

the model parameter by solving the following regularized optimization problem:

min
β0, β

Rλ(β0, β) = min
β0, β

1
N ∑

i = 1

N
yi β0 + xi

Tβ − log 1 + exp β0 + xi
Tβ + λPα(β) (3)

where {(xi, yi), i = 1, ⋯, n} is the observed data consisting of n independent identically 

distributed copies of (X, Y ),

Pα(β) = (1 − α)1
2‖β‖l2

2 + α‖β‖l1 = ∑
j = 1

p 1
2(1 − α)βj

2 + α ∣ βj ∣ . (4)

Pα is the elastic-net penalty, which is a weighted average of the ridge regression penalty 

(α = 0) and the lasso penalty (α = 1). Here, λ is the penalty parameter controlling the 

complexity of the final model and is selected via k fold cross-validation in ‘glmnet’. The 

resulting penalty parameter depends on randomly splitting the dataset into K nonoverlapping 

parts and may be instable, as discussed in the Introduction section.

We propose to address the stability problem via MCglmnet, where the tuning parameter 

estimation procedure is repeated multiple (s) times (e.g., s = 100), wherein the tuning 

parameter, λopt
(t)  is estimated in each of the s iterations (t = 1, …, s) via internal k-fold cross-

validation (cv.glmnet), and the final estimate of the tuning parameter, λopt, is defined as the 

median of the sλopt
(t)  values. That is, the tuning parameter in MCglmnet algorithm is estimated 

by

median λopt
(1), … , λopt

(s)
(5)
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where λopt
(t)  denotes the tuning parameter estimated via k-fold cross-validation in the tth 

iteration (t = 1, …, s). Note here that MCglmnet with s = 1 is equivalent to glmnet.

Remark 1. When s is large, the empirical distribution of λopt
(1), …, λopt

(s) is a good approximation 

to that of λopt ∣ data, where the randomness arises from the random splitting of the observed 

data into k folds in the cross-validation procedure. Therefore, λopt
(t)  is a single random 

realization and a very crude approximation to the “center” of the conditional distribution 
(λopt ∣data), which is better estimated by the median of λopt

(1), …, λopt
(s). Alternatively, we may 

choose the penalty parameter to be an estimate of

E(λ optdata) . (6)

The “center” for the distribution of λopt
(1), …, λopt

(s) (median or mean) is a more stable choice for 

the penalty parameter than a simple random realization, when the variability of λopt
(t)  is not 

ignorable, as in Figure 1.

Remark 2. Applying a Monte Carlo simulation to stabilize a random quantity is a common 
approach. In the aforementioned procedure, we can also directly define the prediction error 
as a function of λ in each of the Monte Carlo iterations, denoted by

lcvs(λ) = ∑
i = 1

k
∑

i ∈ Di
s
l(yi, β λ(D−i

s )Txi) (7)

where {Di
s, i = 1, ⋯, k} splits the data into k nonoverlapping parts of approximately equal 

sizes, D−i
s  represents the data not in Di

s, β λ(D−i
s ) is the regularized estimator of β with penalty 

parameter λ based on data in D−i
s , and l( ⋅ , ⋅ ) is an appropriate loss function. Clearly, lcvs(λ)

is also random due to random splits; data = D1
s ∪ D2

s… ∪ Dk
s. We may choose to stabilize lcvs(λ)

first and then determine the penalty parameter. Specifically, the final tuning parameter can 
be chosen as the minimizer of the loss function

median{lcv1(λ), ⋯, lcvs(λ)} (8)

or

S−1 ∑
j = 1

S
lcvj(λ) . (9)

To obtain a less biased estimate of the performance of this procedure, another cross-

validation (CV wrapper) is conducted around the entire tuning parameter estimation 

procedure. Furthermore, this cross-validation wrapper is repeated c times (e.g., c = 50), 

and the mean and standard deviation (SD) of each performance measure (e.g., sensitivity, 

specificity) are reported to summarize the performance of the entire procedure. Figure 2 

displays the key steps in the implementation of the MCglmnet algorithm.
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In a lasso model via glmnet, the selected variables are solely determined by the tuning 

parameter λ. Figure 3 shows an example of a coefficient solution path for different values 

of λ. The paths for active variables are highlighted in red. As λ decreases, the order of 

the variables being added to the model is defined. Once a final λ is estimated via cross-

validation, the composition of the signature is determined by the variables with nonzero 

coefficients. Note that the same solution path is used by MCglmnet and glmnet. The 

difference between the two approaches is how the final λ is estimated. This means that the 

stability of variable selection, and hence the signature, depends entirely on the stability of 

λ estimate. By introducing the Monte Carlo step in the MCglmnet procedure and choosing 

the final λ estimate to be the median of many replicated runs of the glmnet procedure, the 

variability of this λ estimate is always smaller than the variability of the λ estimate from 

a single run of glmnet. Since the solution path used by MCglmnet and glmnet is fixed for 

a given training dataset, the stability of the number of variables selected (signature size) 

is equivalent to the stability of the composition of the signature, and thus we can use the 

variability of the signature size to represent the overall stability of the signature.

In this paper, we describe and present the characteristics of the glmnet and MCglmnet 

algorithms for a binary outcome, without loss of generality. While there are many different 

performance measures for a predictive model of a binary outcome such as sensitivity, 

specificity, accuracy, positive predictive values (PPV), negative predictive value (NPV), 

area under the receiver operating characteristic curve (AUC), deviance, etc., for the sake 

of simplicity, we will use only AUC for the tuning parameter selection in the internal 

cross-validation procedure, and to summarize the predictive performance results from the 

cross-validation wrapper.

2.2. Research Questions

In this section, we address the following three questions via simulation:

1. Does MCglmnet produce more stable signatures than glmnet?

2. Is the predictive performance of MCglmnet better than glmnet?

3. Is an outer cross-validation a better procedure than the built-in cross-validation in 

evaluating the prediction performance?

2.3. Simulation Design

We designed our simulation studies to address the research questions, and to mimic the 

situations that are typically seen in real data.

The response variable Y  was generated from a logistic regression model,

log Pr(Y = 1 ∣ X = x)
Pr(Y = 0 ∣ X = x) = a + b1X1 + b2X2 + … + b5X5 (10)

where the five active variables X1, X2, …, X5 are all randomly generated from N(0, 1), and 

a = 0, (b1, b2, b3, b4, b5) = (8m, 7m, 6m, 5m, 4m) and the value of m is 0.04, 0.07, 0.15, which 

corresponds to the true AUC of 0.7, 0.8, and 0.9, respectively. Here, the true AUC refers 
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to the ROC AUC of the true probability from the generating model versus the ‘observed 

y’, where the ‘observed Y ′ is from the binomial distribution with the corresponding true 

probability. The assumed True AUC values, 0.7, 0.8, and 0.9, denote different predictive 

strengths of the simulation model. We then generate 50, 500, or 5000 inactive variables W
(not associated with Y) from N(0, 1). In addition to each of these sets of inactive variables, 

we generate 4, 40, or 400 correlated variables X, respectively. Among these 4, 40, and 400 

variables, half are generated to have correlations of 0.5 and the other half with correlations 

of 0.8 with the five informative predictors. For example, the 400 correlated variables are 

generated such that 80 are correlated with each of the five true predictors, where 40 

have correlations of 0.5 and the other 40 have correlations of 0.8. In the case where four 

correlated variables are generated, we use only the first two true predictors, and generate 

two correlated variables for each predictor, one with a correlation of 0.5 and the other with 

0.8. The inactive variables are introduced to mimic the real data from high-dimensional 

genomics and proteomics applications, where the true active variables are hidden among 

numerous noise variables and are often correlated with a group of other variables.

For the training dataset, we consider three different sample size scenarios: n = 100, 500, 

and 1000. Each training set was paired with a test set of sample size N = 10, 000 that was 

independently generated in the same way as the corresponding training set. The reason we 

chose a large test set was to obtain an accurate estimate of the true external predictive 

performance of the prediction model based on the training set (‘External AUC’), which 

will be used as an unbiased measure for comparing the performance of MCglmnet and 

glmnet for different scenarios. In total, 27 scenarios of training and testing datasets were 

generated (3 levels of signal strength × 3 levels of number of noise variables × 3 training 

set sample sizes). Each of these simulated datasets were then analyzed using glmnet and 

MCglmnet, and the results were then compared with respect to the stability of variable 

selection (size and composition of the signatures) and the predictive performance. Different 

numbers of MC iterations (s = 10, 20, 50, 100, 200, 300, 400, and 500) were considered in 

this evaluation to obtain insights on the optimal number of iterations that ensures stability 

of variable selection. To evaluate the stability of the signature, we used the inter-percentile 

range between the 10th percentile and the 90th percentile (IPR-90) of the signature size 

obtained from 100 replicated runs of the method on the training datasets for each scenario. 

The rationale for reporting IPR-90 instead of the inter-quartile range (IQR) is that we wanted 

to capture the full range of instability of the signature size.

The entire simulation design can be summarized by the following steps:

1. Fix m ∈ {0.04, 0.07, 0.15}, (m1, m2) ∈ {(50, 4), (500, 40), (5000, 400)}, and 

n ∈ {100, 500, 1000} (27 combinations).

2. Generate a training set consisting of n copies of a p dimensional covariate vector 

X and a binary response Y . The following steps are used to generate each 

individual copy.

a. Generate informative predictor X1, ⋯, X5 from standard normal.
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b. Generate binary response Y  via a logistic regression model with the 

regression coefficients for (X1, ⋯, X5) being (8,7,6,5,4)′×m.

c. Generate m = m1 + m2 additional predictors:

i. Generate m1 noise variables XN from standard normal 

independent of (X1, ⋯, X5).

ii. Generate m2 correlated variables XC from standard normal 

but correlated with (X1, ⋯, X5) with specified correlation 

coefficient.

d. Let X = (X1, ⋯, X5, XN
T , XC

T)T  and Y = Y .

3. Generate a test set consisting of N = 10, 000 copies of (X, Y ) as in step (2).

4. Data analysis:

a. Apply MCglmnet with s = 10, 20, 50, 100, 200, 300, 400, and 500 

MC iterations to select the optimal tuning parameter and train a lasso-

regularized logistic regression prediction model using the training set.

b. Apply conventional glmnet to select the optimal tuning parameter and 

train a lasso-regularized logistic regression prediction model using the 

training set.

c. Apply the outer cross-validation to estimate AUCs using the training 

set.

d. Apply the prediction model from step (4a) and (4b) to the testing set 

and calculate the external AUC using the test set.

5. Repeat steps 2–4 100 times and summarize the simulation result by

a. The IPR-90 of the signature sizes from the training sets;

b. The mean of AUC estimates from internal and outer cross-validations 

from training sets;

c. The mean and SD of the external AUC from test sets.

3. Results

3.1. Stability of Variable Selection

Figure 4 shows the IPR values obtained for all 27 simulation scenarios. For each scenario, 

variability of the signature size dropped consistently with the increasing number of MC 

iterations. For most scenarios, 50 MC iterations (i.e., s = 50) were adequate to ensure 

stability of the signature size. Without the MC step iterations (i.e., glmnet; s = 1) or with 

only a few MC iterations, the size of the signature varied considerably for data with 

moderate sample size (N = 100), and this was exacerbated with the increasing number of 

noise variables. For larger sample sizes (N = 500 or 1000), the instability is less severe, but 

the benefit of the MC iterations is evident in all the scenarios.
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3.2. Does Mcglmnet Perform Better Than Glmnet?

Having demonstrated considerable improvement in the stability of the signatures with MC 

iterations of glmnet, the next question of interest is whether MCglmnet performs better 

than glmnet with respect to the predictive performance. For each of the 27 scenarios in the 

simulation design, we conducted 100 replicate runs of MCglmnet with s = 1 (glmnet) and 

with s = 50 iterations. The mean and SD of the external test set AUC of 100 replicate runs 

for all these scenarios are summarized in Table 1. It is evident from this table that predictive 

performance of MCglmnet is mostly similar to that of glmnet, but with lower variability 

(SD).

3.3. Is an Outer Cross-Validation Needed?

In this same table, we also report the bias of the AUC from the internal CV procedure and 

the outside 5-fold CV wrapper. The AUC values from the internal CV tend to overestimate 

the performance, as reflected by the positive bias relative to the external test set AUC; this 

is especially evident when the signal is weak or the sample size is small. This bias arises 

due to using the same internal CV for both estimating the optimal λ to derive the final 

signature/model and also to report the predictive performance. The AUC estimates from the 

outside 5-fold CV wrapper reduced this bias and were closer to the external test set AUC.

Lastly, we have conducted a more comprehensive simulation to cover other simulation 

scenarios, and the conclusion of the simulation study remains the same. For example, when 

the correlation between active variables (true predictor) and correlation variables (surrogate 

to the true predictor) becomes weaker, the stability of variable selection becomes better in 

general, but more MC iterations can still bring substantial improvement.

4. Real Data Application: ADNI Proteomics Data

We applied MCglmnet with s = 50 along with glmnet (MCglmnet with s = 1) to the 

ADNI proteomics data described in Section 1. The MCglmnet and glmnet algorithms were 

replicated 100 times to assess and compare the stability of variable selection, and the final 

signatures were recorded.

Figure 5A shown the probability density plot of log(λ) estimated from the 100 replicated 

runs of the MC algorithm. Comparing this to Figure 1, it is evident that the MCglmnet with 

s = 50 yields a much more stable distribution of log(λ), which translates to more stable 

variable selection, as shown in Figure 5B and Table 2. The final signature obtained from 

MCglmnet with s = 50 is based on nine biomarkers, with the standardized coefficients of the 

biomarkers plotted in Figure 6. The AUC estimated from 10 iterations of 5-fold embedded 

outer cross-validation is 0.74.

5. Discussion

There is an impression that cross-validation is a gold standard in selecting tuning parameters 

in training a prediction model, and the K-fold cross-validation is quite stable and generates 

reproducible results. However, the numerical study in this paper shows that there is 

substantial Monte Carlo variability remaining in the cross-validation method if the size 
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of training and testing splits is small or moderate. This issue can be easily resolved using the 

proposed method, but may cause serious reproducibility problems if left unaddressed.

Although not reported in this paper, we also obtained the results of MCglmnet and glmnet in 

which the tuning parameter is chosen to be one standard error (λ1se) below the λopt generating 

the optimal CV performance. The use of λ1se results in a more parsimonious signature, which 

tends to have less variability than the signature corresponding to the λopt estimate. However, 

the predictive peformance of the signature from λ1se (as measured by external AUC and 

outside cross-validation AUC) tends to be lower than the signature from λopt. This is not a 

surprise, considering the tradeoff between the prediction performance and the sparsity of 

the final model. Therefore, our recommendation is to use MCglmnet with λopt to obtain a 

signature that has both good stability and optimal predictive peformance.

This idea of introducing Monte Carlo or other resampling methods (such as bootstrap)) 

to obtain a more stable signature is applicable to any predictive modeling method that 

utilizes cross-validation or other numerical optimization methods to adaptively select the 

tuning hyperparameters. Following the same spirit of Bagging [10], we also tried the 

bootstrap approach in place of Monte Carlo, splitting data into training and testing sets 

in the MCglmnet algorithm, and found the results to be very similar. To stabilize the tuning 

parameter selection by increasing the number of MC iterations is indeed a simple yet 

effective approach. The practical cost is mainly the longer computational time: one needs 

to train the prediction model a large number of times in multiple runs of cross-validation. 

Theoretically, as the number of MC iterations goes to infinity, the selected tuning parameter 

becomes a function of observed data only, and it is interesting to examine its statistical 

property such as its variance. The answer to this question may help us to choose the 

appropriate number of MC iterations in practice, which is important, especially when it is 

time-demanding to train complex prediction models in cross-validation. Ideally, the number 

of MC iterations should be selected such that the Monte Carlo variance is relatively small in 

comparison with the intrinsic variance of the optimal tuning parameter as a random statistic, 

if the number of MC iterations goes to infinity. Those questions warrant future research.

In this paper, while our simulation studies and real data illustrations were provided for 

a binary response and a logistic regression model with a lasso penalty, the results and 

conclusions can be generalized for other types of response variables such as multinomial, 

continuous, and time-to-event, as well as for different penalty functions such as SCAD 

[11,12].

6. Conclusions

In this paper, we proposed a Monte Carlo modification of the glmnet algorithm to improve 

the stability of variable section. The new approach for the tuning parameter estimation 

results in a substantially more stable variable selection and hence a more robust prediction 

signature. While the average predictive performance may be similar between the new 

method and conventional practice where the tuning parameter is selected based on a 

single K-fold cross-validation, the predictive performance of the new MCglmnet tends to 

be more stable (i.e., less variable), especially for small-to-moderate sample size and weak 
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to moderate signal. In addition, the performance estimates from the internal cross-validation 

procedure used for estimating the tuning parameter in the glmnet algorithm tends to be 

overly optimistic for smaller datasets with weak-to-moderate signal. This is because the 

tuning parameter selection is not included as part of the cross-validation. This bias is 

substantially reduced or eliminated by embedding the tuning parameter estimation within an 

outside cross-validation wrapper to estimate the performance of the resulting signature.
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Figure 1. 
Distribution of λopt (A) across 1000 runs of glmnet is shown, along with the distribution of 

the corresponding number of predictors in the signatures (B). Each application of the glmnet 

algorithm for this dataset results in an optimal signature, with size varying greatly from less 

than 5 to over 50 predictors.
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Figure 2. 
Outline of the MCglmnet algorithm.

Hong et al. Page 13

Mathematics (Basel). Author manuscript; available in PMC 2023 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
A lasso coefficient solution path.
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Figure 4. 
Inter-percentile (10~90%) range (IPR) values of the signature size corresponding to the λopt

estimates from 100 replicate runs of glmnet (s = 1) and MCglmnet with different numbers of 

MC iterations (s = 10, 20, 50, 100, 200, 300, 400, 500) and different levels of signal strength 

(AUC = 0.7, 0.8, 0.0) are summarized in this graph.
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Figure 5. 
Distribution of λopt (A) across 100 replicated runs of MCglmnet (s = 50) is shown, along with 

the distribution of the corresponding number of predictors in the signatures (B). Comparison 

of these distributions to Figure 1 reveals that the signatures derived via MCglmnet are 

considerably more stable than those derived via glmnet (MCglmnet with s = 1).
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Figure 6. 
Signature identified by MCglmnet for classifying MCI and NL subjects, along with 

performance estimates derived via 5-fold outside cross-validation wrapper.
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Table 1.

Summary of external AUC from 100 replicated runs of each method and the bias of AUC reported by internal 

CV and the outside 5-fold CV wrapper. For MCglmnet, s = 50.

Simulated Dataset Glmnet (s = 1)
External AUC

MCglmnet (s = 50)
External AUC Bias of AUC

Reported by
Internal CV †

Bias of AUC
Reported by

Outside 5-fold CV ‡Scenario True AUC N W Median MAD Median MAD

1

0.7

100

50 58.7% 0.5% 58.8% 0.0% 3.7% 1.0%

2 500 54.1% 0.4% 54.1% 0.0% 2.8% 2.1%

3 5000 53.2% 0.3% 53.2% 0.1% 5.5% 3.3%

4

500

50 67.2% 0.2% 67.2% 0.0% −0.1% −0.1%

5 500 64.7% 0.2% 64.8% 0.0% 0.7% 0.1%

6 5000 62.7% 0.3% 62.7% 0.0% 2.5% −2.2%

7

1000

50 68.9% 0.1% 68.9% 0.0% 0.0% 0.0%

8 500 67.5% 0.0% 67.5% 0.0% 0.2% −0.1%

9 5000 65.5% 0.2% 65.5% 0.0% 1.4% −0.2%

10

0.8

100

50 69.3% 0.8% 69.3% 0.1% 4.4% 2.1%

11 500 63.6% 0.4% 63.3% 0.1% 6.8% 3.2%

12 5000 60.6% 0.6% 60.5% 0.1% 9.2% 3.9%

13

500

50 78.4% 0.2% 78.4% 0.0% −0.4% 0.0%

14 500 76.9% 0.1% 76.9% 0.0% 0.4% −0.3%

15 5000 74.2% 0.3% 74.2% 0.0% 1.4% −0.5%

16

1000

50 79.1% 0.1% 79.1% 0.0% 0.0% −0.1%

17 500 78.6% 0.1% 78.6% 0.0% 0.1% 0.0%

18 5000 77.0% 0.1% 77.0% 0.0% 0.6% −0.2%

19

0.9

100

50 85.7% 0.4% 85.7% 0.1% 1.9% 0.3%

20 500 81.5% 0.6% 81.5% 0.2% 3.2% 2.2%

21 5000 77.3% 0.7% 76.9% 0.1% 4.3% 2.7%

22

500

50 91.2% 0.1% 91.2% 0.0% −0.1% −0.1%

23 500 90.6% 0.1% 90.6% 0.0% 0.0% −0.1%

24 5000 89.2% 0.1% 89.2% 0.0% 0.3% 0.0%

25

1000

50 91.6% 0.0% 91.6% 0.0% −0.1% 0.0%

26 500 91.2% 0.0% 91.2% 0.0% 0.1% −0.1%

27 5000 90.6% 0.0% 90.6% 0.0% 0.2% 0.1%

†
This bias is calculated by subtracting the external AUC from the AUC reported by internal CV procedure that was used for selecting the tuning 

parameter λ. For each scenario, 30 replicated datasets were simulated, and the median and MAD bias of internal CV AUC were summarized over 

30 replicated datasets.

‡
This bias is calculated by subtracting the external AUC from the AUC estimated by the outside 5-fold CV wrapper on MCglmnet procedure with s 

= 50.
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Table 2.

Distribution of number of variables selected in signature. ADNI proteomics data.

Method Min. 1st Qu. Median Mean 3rd Qu. Max.

glmnet 3 3 10 16.15 29 56

MCglmnet (s = 50) 3 9 10 11.25 14 18
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