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Abstract
Monocytes and neutrophils play key roles in the cytokine storm triggered by SARS-
CoV-2 infection, which changes their conformation and function. These changes are 
detectable at the cellular and molecular level and may be different to what is observed 
in other respiratory infections. Here, we applied machine learning (ML) to develop and 
validate an algorithm to diagnose COVID-19 using blood parameters. In this retrospec-
tive single-center study, 49 hemogram parameters from 12,321 patients with clinical 
suspicion of COVID-19 and tested by RT-PCR (4239 positive and 8082 negative) were 
analysed. The dataset was randomly divided into training and validation sets. Blood 
cell parameters and patient age were used to construct the predictive model with 
the support vector machine (SVM) tool. The model constructed from the training set 
(5936 patients) achieved an accuracy for diagnosis of SARS-CoV-2 infection of 0.952 
(95% CI: 0.875–0.892). Test sensitivity and specificity was 0.868 and 0.899, respec-
tively, with a positive (PPV) and negative (NPV) predictive value of 0.896 and 0.872, 
respectively (prevalence 0.50). The validation set model (4964 patients) achieved an 
accuracy of 0.894 (95% CI: 0.883–0.903). Test sensitivity and specificity was 0.8922 
and 0.8951, respectively, with a positive (PPV) and negative (NPV) predictive value of 
0.817 and 0.94, respectively (prevalence 0.34). The area under the receiver operating 
characteristic curve was 0.952 for the algorithm performance. This algorithm may 
allow to rule out COVID-19 diagnosis with 94% of probability. This represents a great 
advance for early diagnostic orientation and guiding clinical decisions.
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1  |  INTRODUC TION

Machine learning (ML) tools constitute a method for data analysis 
that automate the construction of analytic models. This is because 
systems can learn from data, identify patterns and make decisions 
with minimal human intervention. In this sense, its application is 
increasing in biomedical research, engaging health researchers in 
a process of discovery around developing data-driven algorithms 
to make clinically reliable predictions.1–3 There are several studies 
in the haematology field that use ML tools for guiding diagnosis of 
haematological diseases4–6 and they have been successfully applied 
to general image recognitions, including histopathological images, to 
assist the process of medical diagnosis.7–10

Shouval et al. analysed data of patients in the European Society 
for Blood and Marrow Transplantation and succeeded in construct-
ing a prediction model of overall mortality after.11 Other studies 
have reported on applications of ML for the prediction of relapse 
risk and for stratification of early-stage haematological disease.12–14 
For instance, Pan et al. successfully applied ML for the identifica-
tion of prognostic factors of childhood acute lymphoblastic leukae-
mia based on medical data.15 For the most part, ML algorithms have 
been investigated for hematologic diagnosis using specific labora-
tory, histopathology, flow cytometry and molecular data, and very 
few studies have used laboratory data.4,16–18

Cellular and molecular changes caused by several diseases are 
directly or indirectly usually detectable through modifications in 
blood parameters, provided by new more refined haematology au-
tomatized analyzers. From this basis, few studies have been carried 
out, with application of different prediction models including identi-
fication of blasts and different subtypes of acute leukaemias. Some 
of them have developed analytic and tree decision models for blasts 
detection from cell morphological data, more concretely in distinc-
tion of acute promyelocytic leukaemia.19

Currently, in addition to usual hemogram parameters, autom-
atized analyzers provide even more information, turning cellular 
morphology changes into numeric and objective information. The 
Beckman Coulter DXH 900 technology is based on cellular volume, 
conductivity, and laser scatter, providing information of leucocyte 
subpopulation and cell morphologic data (CMD). These CMD are 
numerical data that reflect different morphological features of the 
leucocytes such as size, cytoplasm complexity, nucleus/cytoplasm 
ratio, granularity etc. Moreover, this analyser offers a new parame-
ter: monocyte distribution width (MDW), defined as an early sepsis 
indicator (ESI).20–22

It is well established that the hyperinflammatory response in-
duced by SARS-CoV-2 is the major cause of disease severity and 
monocytes play the main role in cytokine storm, changing their 
conformation, function and phenotype. However, other studies 
also suggest that neutrophils may also have a key role in the dis-
ease pathophysiology. According to the literature, those changes 
may be different in SARS-CoV-2 infection other respiratory infec-
tions such as virus influenza.23,24 COVID-19 pandemic has globally 

exceeded health systems, and has laid bare the need for improved 
diagnostic tools to monitor/control SARS-CoV-2 infection. While 
microbiological testing based on reverse transcription (RT)-PCR re-
mains the gold standard, simple, reliable and inexpensive tests that 
could help in diagnosing SARS-CoV-2 infection.24 In the present 
study, we sought to explore the possibility of generating a decision-
making ML algorithm to allow the classification and prediction of 
COVID-19 diagnosis based on blood parameters. Our primary goal 
was to generate an algorithm by ML tools for the accurate diagnosis 
of SARS-CoV2 infection in an efficient and early manner in patients 
with respiratory symptoms. As a secondary goal, we evaluated the 
accuracy of the algorithm in patients at different clinical stages, in-
cluding critical patients.

2  |  MATERIAL S AND METHODS

2.1  |  Study setting and population

The present study is a retrospective single-center study performed 
between January 2020 and March 2021. Data were collected from 
Hospital Universitario 12 de Octubre (H12O), a Spanish tertiary re-
ferral center. All enrolled patients (N = 12,321) had been admitted 
in the Emergency Department with respiratory symptoms and were 
tested for RT-PCR, resulting in 4239 positive patients and 8082 
negative patients. RT-PCR was performed using the GeneXpert® 
analyser (Cepheid). From the 8082 negative patients we study a 
subgroup of patients that have a positive RT-PCR test for influenza 
A and B virus (N = 81).

We excluded paediatric patients (<18 years) and patients with 
haematological malignancies. We collected data of age (median 
72 years) and gender (64% males, 36% females).

Blood samples were processed within 2 h of extraction The spec-
imens were contained in tubes with EDTA 2k. In total 48 parameters 
from hemogram were analysed and, together with the patients age, 
had been used to construct the analytic model.

In a second step, clinical data from a subgroup of hospitalized 
patients 1127 were collected: ventilatory failure (VF) (defined as 
invasive mechanical ventilation required), exitus (E), and admission 
to critical care unit (CCU). A total of 439 hospitalized patients had 
VF, 150 were admitted to CCU and 143 patients dead caused of the 
COVID-19 (Figure 1).

This project was included in the H12O ImmunoCovid study and 
the H12O ethical committee approved it.

2.2  |  Statistical analysis and ML 
algorithm generation

The prediction model was developed using the R studio Software 
and the CARET (Classification and Regression Training) package. 
Database was divided into two random equal subgroups: the training 
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group to train the model, and the validation group to check the re-
sults. Then, these groups were balanced by down sampling strategy, 
remaining a total of 5936 patients in the training group (half of them 
with COVID-19 positive diagnosis and the other half with negative) 
and 4964 in the validation one (a total of 10,900 patients). We used 
a supervised strategy. The best algorithm evaluated was obtained by 
supervised support vector machines (SVM) tool.

SVM is a supervised learning algorithm that get the characteris-
tics of known items in multiple dimensions and then build predictive 
models to classify data of unknown classification.25

In our study, each patient expressed different values of blood 
test parameters, so the distributions are separated in a multidi-
mensional space. Consequently, when data from SARS-CoV-2 
infected and non-infected patients are mixed to make up the 
training data file, the dividing plane between both groups differed 
in the multidimensional space. Thus, finding the corresponding 
optimal parameters of the individual-specific: C parameter (C) 

and sigma (γ) in this dividing plane was the key to establish the 
best SVM model.32 It was decided to choose the SVM model by 
presenting a median of the area under the ROC curve of 0.88. 
No data preprocessing was performed, and the parameters cho-
sen for the model were: γ = 0.014; C = 1; and Number of Support 
Vectors = 458. The evaluation of the different models was based 
on the comparison of the efficacy obtained through a 10-fold 
cross-validation.

We used 49 parameters, including total white blood cells (WBC): 
total leucocytes, neutrophils, lymphocytes, monocytes, 41 parame-
ters of CMD from neutrophils, monocytes and lymphocytes, WBC 
differential optical count (IWDOP), MDW, immature granulocytic 
cells (IEGC), and age as the unique clinical variable, cause it may in-
fluence morphological changes in circulating cells.

The performance of the pattern in this model was evaluated 
using receiver operating characteristic (ROC) curve. The sensitivity, 
specificity, accuracy, positive predictive value (PPV) and negative 
predictive value (NPV) were also computed by confusion matrix-
derived metrics.

With respect of the model performance in different clinical 
groups, we assessed differences in the accuracy of the model based 
on the severity of the patient. The evaluation of differences was per-
formed by t-test.

3  |  RESULTS

3.1  |  Machine learning algorithm generation

Using SVM we generate a predictive model trained with a total 
of 5936 patients tested (2968 positive COVID-19 RT-PCR and 
2968 negative COVID-19 RT-PCR). The accuracy for the diagnosis 
of SARS-CoV2 infection in this training phase was 0.852 (95% CI: 
0.875–0.892). The test sensitivity and specificity were 0.868 and 
0.899 respectively with a PPV: 0.896 and NPP: 0.872 (prevalence: 
0.50). Results obtained from the validation test phase, applied to 
1271 COVID-19-positive patients and 3693 COVID-19-negative pa-
tients (total of 4964 patients), were the following: accuracy 0.894 
(95% CI: 0.883–0.903), sensitivity 0.8922 and specificity 0.8951 
with PPV 0.817 and NPV: 0.94 (prevalence: 0.344). Table 1 The ROC 
curve showed an area under curve (AUC) of 0.952 for this classifica-
tion algorithm model (Figure 2).

F I G U R E  1  Flow chart shows the distribution of the patients 
included in the study, a total of 12,321. Patients with infectious or 
respiratory symptons are divided in a negative or positive group 
according to PCR result. In the subgroup of hospitalized patients, 
patients are classified based on clinical severity: ventilatory failure, 
admitted to critical care unit (CCU) or exitus.

TA B L E  1  Contingency table. Results from validation phase.

Algorithm results

Real diagnosis

Prediction COVID+ COVID−

COVID 454 704

No COVID 79 4436
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3.2  |  Accuracy of the model in different 
clinical groups

According to the different clinical groups we obtained these re-
sults (Table  2): the accuracy for the COVID-19 diagnosis reached 
91.87% in hospitalized patients vs non hospitalized group, that was 
88% (p = 0.0003), 95% CI (1847%–5736%). The accuracy of predic-
tion was 93.48% for patients with VF versus 90.85% in the non-VF 
group (p = 0.14). Similar results were achieved in patients admitted to 
CCU with an accuracy of 96.88% and non-admitted patients to CCU: 

91.12% (p = 0.024). No differences were found between the exitus 
group (92.59%) and the non-exitus group (92%).

The importance of each variable in isolation for the develop-
ment of the algorithm is reported in Figure 3. IWDOP turned out 
to be the most valuable variable on its own, which corresponds to 
the leucocyte optical count. The parameters based on monocyte 
and neutrophil light scattering showed the most importance for 
the model. Only three parameters without importance by their 
own were detected. Nonetheless, none of the variables could be 
removed because the combination and mutual information of all 

F I G U R E  2  ROC curve: Results from 
the validation test. The accuracy for 
COVID-19 infection prediction with an 
AUC of 0.9524.

Data Accuracy training (%) Accuracy test (%) Significance

All patients (N = 4964) 88.43 89.41 –

Non-hospitalized (n = 3837) 88.3 88 p = 0.0003

Hospitalized (n = 1127) 91.3 91.87

RF=No (n = 688) 91.81 90.85 p = 0.14

RF=Yes (n = 439) 92.66 93.48

CCU=No (n = 977) 91.67 91.12 p = 0.024

CCU=Yes (n = 150) 95.88 96.88

E = No (n = 974) 93.21 92 p = 0.92

E = Yes (n= 153) 88.35 92.59

Note: Bold values are highlighting the statistically significant results.
Abbreviations: CCU, admission in critical care unit; E, exitus; RF, respiratory failure.

TA B L E  2  Accuracy of the model in 
different clinical groups.
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parameters are what make possible to achieve the best accuracy of 
the algorithm (Figure 3).

3.3  |  Accuracy of the model in differentiation of 
COVID-19 infection versus flu

For a subgroup of patients that included 81 patients with flu ver-
sus 81 patients with SARS-Cov 2 infection, the results obtained: a 
ROC curve with an area of 0.892, with a sensitivity and specificity of 
80% and 85%, respectively. A total of 12.96% of false positives for 
COVID-19 on the flu group, and 9.72% of false positives for flu on 
the group of COVID-19.

4  |  DISCUSSION

ML tools have allowed us to generate an algorithm based on hemo-
gram parameters that is able to diagnose COVID-19 disease with 
high accuracy.

4.1  |  Diagnosis of COVID-19 is complex

Transcriptase polymerase chain reaction (RT-PCR) has routinely 
been used to confirm diagnosis of SARS-CoV2 infection and have 
been established as the ‘gold standard’. However, diagnostic uncer-
tainties and controversies have arisen. Several authors have pointed 
out the poor performance of this technique, particularly in terms of 
sensitivity.24–26 Important variations in the sensitivity occur accord-
ing to the different types of collected specimens27 and depending 
on the time of evolution of the disease. Another drawback of RT-
PCR is the requirement of at least 4 h of processing performed by 
skilled technicians. Antigen detection is another available diagnostic 
tool for SARS-CoV2 and has the advantage of the earliness and the 
lack of the precarious sensibility reported in many studies.24,25 It is 
proposed that the combination of these two techniques should be 
stablished as gold standard.24

These facts led us to search for rapid and accurate tests for SARS-
CoV2 screening, based on routine biological tests. So, we highlight 
the importance of hemogram not only as a quick screening of hae-
matological disease but also as a basic laboratory tool with and easy 

F I G U R E  3  Lists the most important 
blood parameters (as estimated by ReliefF) 
and their frequencies. Abbreviations are 
indicated in Appendix S1.
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and quick performance from which we can get a large amount of 
information from circulating cells, including useful data for discrim-
inating infection diseases. Evidence of this is the novel ESI, a new 
name for MDW, based in monocytes morphological changes that 
improves the sepsis detection with a high S and E.20,21 In addition 
to MDW, novel analyzers offer investigational parameters (CMDs), 
that attend to cellular conformation and allow the detection of mor-
phological changes that are not detectable by human visualization.28 
ML is a current tool that can handle a great number of parameters 
from individual cells to be simultaneously assessed, with a higher 
speed of analysis. These are the reasons why is the perfect tool for 
obtaining the maximum data, in the most cost effectiveness way, 
from hemogram. In fact, there are already published studies with ML 
in CMD for the detection of infections.5,29 Bigorra et al.5 have devel-
oped an algorithm from hemogram parameters with supervised ML, 
obtaining a model that is able to classify viral infections or lympho-
cytic chronic leukaemia with an overall accuracy that ranged from 
96% to 98%. Regarding the COVID-19 disease, Vasse et al. using 
random forest classifier have obtained an algorithm for diagnosis of 
COVID-19 using CPDs,[28] and there is only one study with a similar 
design that the present study, using ML for distinguishing COVID-19 
from flu, but still with a poor number of patients.30 Therefore, our 
study is the first one which has built and algorithm with great accu-
racy for COVID-19 diagnosis, that could be available in all clinical 
centers because it is an inexpensive technique, and can be carried 
out in less than 1 h. Sensitivity a specificity of diagnostic tests for 
SARS-CoV-2 varied considerably between studies. Molecular test 
RT-PCR testing showed the highest performance with 100% PPV 
and 97.4% NPV, whereas serological testing had lower PPV (84%) 
and NPV (82.3%), with the sensitivity of both tests worsening in 
asymptomatic patients.30,31 Our algorithm had a better NPV than 
serological testing (94% vs. 82.3%), indicating that it could replace 
antigen screening for COVID-19 in the Emergency Department.

Early in the pandemic, we observed that many patients clinically 
suspected of COVID-19 had a negative RT-PCR, but our model clas-
sified them as COVID-19 positive. These patients were excluded 
from the database because of the lack of confirmed diagnosis.

Our algorithm was trained during the period of high prevalence 
of SARS-CoV-2 infection (50%), and so we have no evidence of the 
effectiveness of this model in less prevalent populations. However, 
we consider that it could be useful as a screening tool and may save 
RT-PCR performance or antigen tests in future scenes.

It is important to analyse if this prediction model is able to distin-
guish SARS-CoV-2 infection from other respiratory virus infections 
with a similar clinical spectrum. Probably flu is the most common 
infection that may have a clinical overlap with COVID-19, that is 
the reason of why we explore the accuracy in a little proportion of 
patients with flu. The results are quite promising (AUC: 0.89) nev-
ertheless we require more analyses that include a large number of 
patients to confirm these results.

The main limitation of the present study is that it did not include 
asymptomatic patients, so we could not evaluate the accuracy of the 

model in those patients. However, when we studied the accuracy 
based on clinical severity, the algorithm seemed to perform better 
in critically ill patients, with significant differences found in hospi-
talized patients. It is important to note the accuracy of prediction in 
patients admitted to CCU, albeit not significant. This might be due 
to the small number of patients included in this group. It will be im-
portant to test the algorithm in asymptomatic patients, to realize its 
potential as a screening tool.

Other main limitation of these study is that all the data came 
from the same center. For the validation of this model, it is so im-
portant to test the algorithm in a different population, so we are 
requesting for the collaboration with other centers so that we can 
present results of a prospective study. Regarding to the study pop-
ulation, we have included all type or races, given our influence area 
includes a multiracial community area. Although for the moment we 
are not able to collect this data, neither to know if there are differ-
ences in the performing of algorithm attending to race. Regarding 
gender, similarly we presupposed that there should not be differ-
ences in cellular changes, and algorithm should rule out in the same 
way between genders, but this has not been tested. Excluding paedi-
atric patients, age was one of the variables included for the training 
of the algorithm, we have observed that age has a little importance 
in isolation for the development of the algorithm. Pending validation 
in paediatric patients.

Furthermore, it will be interesting to check the model on differ-
ent subgroups attending to other additional clinical and non-clinical 
features such as gender, race or comorbidities.

5  |  CONCLUSION

Our results suggest that ML can be used successfully to generate 
an algorithm based on hemogram parameters for the diagnosis for 
COVID-19 disease, which is applicable to any population and with 
a global accuracy similar to the gold standard test. This is a great 
advance for early diagnostic orientation and for guiding clinical 
decision-making.
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