Abstract
Metabolism of abscisic acid was compared in stressed and in rehydrated leaf blades of Xanthium strumarium L. Chicago strain that were either detached or left intact on the plant. Under all conditions, phaseic acid was the major metabolite. The high level of phaseic acid that was observed in intact plants 1 day after recovery from stress declined slowly and had not yet reached the prestress level 1 week later. The glucosyl ester of abscisic acid, β-d-glucopyranosyl abscisate, accumulated at a low rate during periods of prolonged stress. Repeated stress-recovery cycles resulted in a gradual increase in the level of the glucosyl ester, which did not decline following relief of stress for at least 34 days. The level of the glucosyl ester of abscisic acid may therefore serve as a cumulative indicator of the water stresses to which a particular leaf has been exposed.
Darkness stimulated abscisic acid metabolism in both detached and attached leaves. Treatment of Xanthium leaves in light with ethylene or chemicals that release ethylene also resulted in a faster breakdown of abscisic acid. Inasmuch as darkness is known to stimulate ethylene production, it is proposed that enhancement of abscisic acid metabolism in darkness is mediated by ethylene.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bassi P. K., Spencer M. S. Effect of carbon dioxide and light on ethylene production in intact sunflower plants. Plant Physiol. 1982 May;69(5):1222–1225. doi: 10.1104/pp.69.5.1222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyer G. L., Zeevaart J. A. Isolation and Quantitation of beta-d-Glucopyranosyl Abscisate from Leaves of Xanthium and Spinach. Plant Physiol. 1982 Jul;70(1):227–231. doi: 10.1104/pp.70.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelsen C. E., Safir G. R., Hanson A. D. Water potential in excised leaf tissue: comparison of a commercial dew point hygrometer and a thermocouple psychrometer on soybean, wheat, and barley. Plant Physiol. 1978 Jan;61(1):131–133. doi: 10.1104/pp.61.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raschke K., Zeevaart J. A. Abscisic Acid Content, Transpiration, and Stomatal Conductance As Related to Leaf Age in Plants of Xanthium strumarium L. Plant Physiol. 1976 Aug;58(2):169–174. doi: 10.1104/pp.58.2.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeevaart J. A., Brede J. M., Cetas C. B. Translocation patterns in xanthium in relation to long day inhibition of flowering. Plant Physiol. 1977 Nov;60(5):747–753. doi: 10.1104/pp.60.5.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeevaart J. A. Changes in the Levels of Abscisic Acid and Its Metabolites in Excised Leaf Blades of Xanthium strumarium during and after Water Stress. Plant Physiol. 1980 Oct;66(4):672–678. doi: 10.1104/pp.66.4.672. [DOI] [PMC free article] [PubMed] [Google Scholar]
