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Abstract: There is a need to develop user-friendly imaging tools estimating robust quantitative
biomarkers (QIBs) from multiparametric (mp)MRI for clinical applications in oncology. Quantita-
tive metrics derived from (mp)MRI can monitor and predict early responses to treatment, often
prior to anatomical changes. We have developed a vendor-agnostic, flexible, and user-friendly
MATLAB-based toolkit, MRI-Quantitative Analysis and Multiparametric Evaluation Routines (“MRI-
QAMPER”, current release v3.0), for the estimation of quantitative metrics from dynamic contrast-
enhanced (DCE) and multi-b value diffusion-weighted (DW) MR and MR relaxometry. MRI-
QAMPER’s functionality includes generating numerical parametric maps from these methods reflect-
ing tumor permeability, cellularity, and tissue morphology. MRI-QAMPER routines were validated
using digital reference objects (DROs) for DCE and DW MRI, serving as initial approval stages
in the National Cancer Institute Quantitative Imaging Network (NCI/QIN) software benchmark.
MRI-QAMPER has participated in DCE and DW MRI Collaborative Challenge Projects (CCPs), which
are key technical stages in the NCI/QIN benchmark. In a DCE CCP, QAMPER presented the best
repeatability coefficient (RC = 0.56) across test–retest brain metastasis data, out of ten participat-
ing DCE software packages. In a DW CCP, QAMPER ranked among the top five (out of fourteen)
tools with the highest area under the curve (AUC) for prostate cancer detection. This platform can
seamlessly process mpMRI data from brain, head and neck, thyroid, prostate, pancreas, and bladder
cancer. MRI-QAMPER prospectively analyzes dose de-escalation trial data for oropharyngeal cancer,
which has earned it advanced NCI/QIN approval for expanded usage and applications in wider
clinical trials.

Keywords: multiparametric MRI; dynamic contrast-enhanced MRI; diffusion-weighted MRI; optimal
model mapping; cancer; oncology; quantitative imaging biomarkers

1. Introduction

Technical developments in MRI hardware and data acquisition have given us unique
insights into the biology of normal tissue and complex diseases [1,2]. The acquired anatomic
and physiological MR images can be used for qualitative evaluation [3,4] and quantitative
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measurement of model-based imaging metrics from multiparametric (mp)MRI [5–7]. For
example, quantitative imaging biomarkers (QIBs) derived from dynamic contrast-enhanced
(DCE)-MRI, multi-b value diffusion-weighted (DW)-MRI, and MR relaxometry are surro-
gates of tumor perfusion, cellularity, and tissue morphology [8]. Furthermore, qualitative
and quantitative analyses of mpMRI data have shown promise for tumor detection, assess-
ment of treatment response, and outcomes in clinical oncology [4,7–10].

Some challenges to the clinical application of mpMRI include robust data acquisition,
analysis techniques, and standardized guidelines for interpreting the results [11]. The limi-
tations also include the limited availability of comprehensive mpMRI analysis tools and the
reporting standards of the robustly derived QIBs [7,8]. For this purpose, the Quantitative
Imaging Network (QIN) of the National Cancer Institute (NCI) has developed a five-level
benchmark of criteria used to evaluate the performance and clinical readiness of aspiring
software tools to provide QIB analysis for prospective clinical treatment and research [12]. The
benchmarks range from initial testing against digital reference objects (DRO), participation
in collaborative challenge projects (CCPs) with test–retest results, and demonstration of its
usage in clinical trials [12]. Digital reference objects (DROs) are integral to developing and
standardizing data analysis routines [13]. DROs offer a known ground truth and are artificially
generated images designed to mimic acquired data [14]. The advantages of DROs include
adding an explicit amount of random noise that distorts the generated signal, which tests
an algorithm’s performance to see whether it can recover the known ground truth despite
inconsistencies in image quality that are typically present in real-world images [7]. The scope
of available QIN-approved tools spans multiple imaging modalities (CT, PET, and MRI) with
a range of functionalities, including quality assurance tools, quantitative parametric mapping,
and auto-segmentation routines [15]. Mature software tools in the QIN catalog must be proven
to work consistently with DROs and CCPs.

Therefore, we have developed a vendor-agnostic, full-featured, and user-friendly
MATLAB-based toolkit, Quantitative Analysis and Multiparametric Evaluation Routines for
MRI (“MRI-QAMPER”, current release v3.0). QAMPER performs the extraction of robust
QIBs from mpMRI data, and we have progressively worked to validate results through QIN
software benchmarks [12]. QAMPER’s principal functionality is to generate parametric
maps reflecting tumor permeability, cellularity, and tissue morphology. The mpMRI data
from the brain [16], head and neck [17], thyroid [18,19], prostate [20], pancreas [21], and
bladder (under review) have been seamlessly analyzed with QAMPER. Parametric maps
obtained from quantitative mpMRI images can reveal spatial heterogeneity within tumors
and provide numerical values for the underlying physiology.

Major MRI vendors have the capability to perform semi-quantitative DCE analysis and
monoexponential DW modeling at the scanner. There are open-source resources with models
for DCE and/or DW and/or MR relaxometry analysis [22,23]. QAMPER is a one-stop shop for
converting and analyzing mpMRI, which can be directly implemented in MATLAB without
the need for users to compile software binaries. When considering quantitative imaging
metrics from DCE and DW MRI data, most studies apply a single data-fitting model to
the whole tumor. However, no single model is sufficient to capture all the physiological
characteristics of a tumor [24,25]. The optimal model mapping (OMM) method implemented
in MRI-QAMPER for DCE [19] and DW MRI [25] performs voxel-wise analysis using multiple
data fitting algorithms within tumor regions of interest based on a statistical approach. The
OMM selection method serves to identify the best model to describe the data and to aid in
depicting and understanding tumor heterogeneity.

In the Methods section of this article, we will explain in detail how we implemented our
platform for mpMRI data analysis, from DICOM import and conversion to numerical parameter
map generation and nested model selection. The Results section summarizes the NCI/QIN
software benchmark validation steps explored through DRO and QIN CCP avenues.
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2. Materials and Methods

MRI-QAMPER is currently available as a MATLAB-based toolkit (The Mathworks, Nat-
ick, MA, United States). The software imports DICOM images from major MRI vendors and
different field-strength MRI scanners for post-processing of DCE MRI, multi-b-value DW MRI,
T1 mapping with multi-flip angle, and T2 mapping with multi-echo MR relaxometry. It in-
cludes organ-specific presets and boundary conditions, allowing user-customized parameters
for each non-linear fitting model of mpMRI data. MRI-QAMPER is approved by NCI/QIN
and has currently earned Level 5 “Clinical Benchmark” status for use in clinical trials [12].

Figure 1 shows an overview of the MRI-QAMPER workflow. The graphical user
interface offers an intuitive, step-by-step process to streamline analysis. The software is
vendor-agnostic and will analyze mpMR images from the brain to the pelvis in clinical
studies. It can be easily modified for other organs or preclinical data. QAMPER works
natively with NIfTI image files [26] and includes an interface to convert DICOM images
and import relevant image header acquisition metadata (i.e., flip angle (FA), repetition time
(TR), number of phases, and b-values, as necessary). Regions of Interest (ROIs) label masks
are saved in NIfTI imaging format in the same space and resolution as the MRI sequence for
processing. Our group employs ITK-SNAP [27] to contour and save compatible NIfTI files
for use with MRI-QAMPER, and to review result maps. Figure 2 is a schematic summary of
the variety of models available for processing DCE, DW, T1, and T2 MRI data. QAMPER’s
analyses range from commonly available data fitting routines [28] to more advanced data
modeling algorithms [5,24,25,29,30] and MR relaxometry analysis methods, which are
detailed as follows.

2.1. DCE MRI Pharmacokinetic Modeling

DCE MRI time course analysis focuses on extravasation and transport of contrast agent
(CA) in tissue, particularly their distribution within and elimination from the body [9].
T1-weighted DCE imaging involves a series of data acquisition before, during, and after
intravenous injection of a Gadolinium-based CA [28]. T1 mapping is performed with
multiple FAs for the estimation of pre-contrast T1 (ie, T10) [31,32] needed for Equation (1).
The spoiled gradient recalled (SPGR) acqusition Equation used for T10 fitting is provided
in Appendix A (Equation (A2)).

The change in water proton relaxation rate (i.e., ∆R1(t) = (R 1(t)−R10) [s−1]) due to
CA relaxivity, r1 [(mM)−1s−1], is linearly related to the tissue CA concentration, Ct (mM),

R1(t) = R10+r1Ct(t) → ∆R1(t) = r1Ct(t), (1)

where R10 is the pre-contrast longitudinal relaxation rate.
The signal in the DCE images is converted to tissue CA concentration via longitudinal T1-

relaxation [31], requiring measurement of the pre-contrast R10 (=1/T10) and arterial input function
(AIF) from the major artery within the field of view (FOV). DCE pharmacokinetic analysis can be
performed to estimate physiological parameters via compartmental models ranging from complex
to simple, providing plasma (blood) flow (Fp), permeability surface area product (PS), volume
fractions of blood plasma (vp), and extracellular extravascular space (EES) (ve).

Figure 2 shows the various DCE pharmacokinetic models that can be used to analyze
data where the application of the optimal model selection depends on tumor heterogeneity.
The most general two-compartment exchange model (2CXM: Fp, PS, ve, and vp) [5] reduces
to nested simpler models under special approximation, including the compartmental tissue
uptake model (CTUM Fp, PS, and vp) [5], extended Tofts model (ETM: Ktrans, ve, and vp) [28],
Tofts Model (TM: Ktrans and ve) [28], and Patlak model (PM: Ktrans and vp) [33]. These models
assume an infinitely fast water exchange between the tissue compartments, called fast water
exchange limit (FXL). On the other hand, the shutter speed model (SSM) model (also referred
to as fast exchange regime (FXR)) describes the finite rate of water exchange across the cell
membrane between intracellular space (ICS) and EES [34], providing estimates of the mean
lifetime of the water molecule in intracellular space (τi) in addition to Ktrans and ve. The
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comprehensive list of DCE MRI routines available in QAMPER includes 2CXM, CTUM, ETM,
TM, PM, and SSM (Figure 2). Herein, we describe the commonly used Tofts models.

1 

 

 

Figure 1. Workflow of MRI-QAMPER v3.0: (A) Images are acquired from MRI scanner and converted
from DICOM to NIfTI. Skilled physician or planner contours ROI on image. The NIfTI MR images
and ROI are loaded into the MRI-QAMPER GUI. (B) View of the MRI-QAMPER DCE GUI, with
preview of patient image with ROI overlaid. Interface provides options for selecting multiple DCE
routine for analysis, parameter bounds, option for OMM and AIF. (C) View of the MRI-QAMPER DW
GUI, with patient and ROI preview. Interface provides options for selecting multiple DW routines,
parameter bounds, manual toggling/editing of b-values and OMM option.
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Figure 2. Schematic of image processing routines included with MRI-QAMPER v3.0. The software
provides methods for: multi-flip angle T1 mapping, multi-echo T2 relaxometry, multi-compartmental
methods for DCE, and fitting for multi-b-value DW imaging.

2.1.1. Extended Tofts Model (ETM)

ETM assumes a two-compartment model (vascular space and EES) expression for
modeling Ct(t) is given by Equation (2), and standard TM is obtained assuming a weakly
vascularized (vp→0) (Equation (3)).

Ct(t) = Ktranse−kep ⊗ Cp(t) + vpCp(t) (2)

Ct(t) = Ktranse−kep ⊗ Cp(t) (3)

where the ⊗ operator denotes the convolution function. Cp and Ct are the plasma space
and tissue CA concentrations, respectively. kep is the backward flux from the EES to
vascular space.

2.1.2. Patlak Model (PM)

The two-parameter Patlak model ignores back flux to the vascular space from EES.
The extended Patlak model is equivalent to the ETM [33].

Ct(t) = Ktrans ⊗ Cp(t) + vpCp(t) (4)

2.1.3. Fast Exchange Regime (FXR) or Shutter Speed Model (SSM)

In biological tissue, water protons reside in three compartments: intravascular space,
EES, and ICS [35]. Equilibrium water exchange kinetics occur between these compartments.
Two- and three-site two-water exchange models have been developed to account for the
water exchange kinetics in estimates of T1 relaxation [36]. FXR is a two-compartment
model that accounts for equilibrium water exchange across cell membranes between intra-
cellular space and EES [34]. FXR is formulated in Equation (5), in terms of nonlinear R1
(≡ 1/T1,) incorporating EES CA concentration (Ce(t) = Ct(t)/ve) from Equation (3) into
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Equation (5), rather than using the linear relationship between the change in R1 (∆R1) with
Ct (Equation (1)). The equation for FXR is given by

R1t(t) =
1
2

[
(R1i + kie+R10e + r1 Ce(t) + kei)−

√
(R1i + kie − R10e − r1 Ce(t)− kei)

2 + 4 kiekei

]
(5)

where R1i and R10e are pre-contrast R1 for ICS and EES; kie in the inverse of mean lifetime
of intracellular water protons, τi=1/kie; and kie is the rate of water exchange from ICS to
EES (vice versa for kei).

Detailed equations for signal-to-CA conversion, CTUM, and 2CXM models are pro-
vided in the Appendix A.

2.1.4. Arterial Input Function (AIF) Selection

QAMPER provides options to perform DCE analysis using an AIF of the user’s choice.
This may be a curated or population-based AIF [37] or extraction of an individual-based
AIF using QAMPER’s automated method. Automated AIF detection is performed by
identifying the major artery in the image field of view using time-wise cross-correlation
analysis against an idealized reference function for each voxel in the DCE volume [38]. The
contrast-enhanced image signal intensity curve is converted to Cp(t) [31], which can then
be used as the impulse function for compartmental DCE models.

2.2. DW MRI Data Modeling

Quantitative DW MRI measures the Brownian motion of water molecules at a cellular
level. Multi-b-value acquisitions at low b-values (b ≤ 0–100 s/mm2) and intermediate to
high b-values (b ≥ 100–2000 s/mm2) exhibit two distinct curvature signals. The standard
monoexponential model calculates the apparent diffusion coefficient (ADC, Equation (6)),
reflecting tumor cellularity, from imaging with at least≥ 2 b-values using a straightforward
linear regression fitting [39]. ADC is a composite metric accounting for molecular diffu-
sion and microcapillary perfusion. LeBihan formulated a biexponential model (intravoxel
incoherent motion (IVIM)), fitting multi-b-value signal with estimated metrics of the cap-
illary network, i.e., pseudo-diffusion coefficient (D∗), perfusion fraction ( f ), and tissue
true diffusion coefficient (D) (Equation (8)) [29]. IVIM estimation of f provides insight
into vascular dynamics without CA injection. ADC and IVIM models assume a Gaussian
probability distribution function for the displacement of the water molecules. The presence
of underlying tissue microstructures in a tumor can alter the distribution of water diffusion
from Gaussian to non-Gaussian (NG). Diffusion kurtosis imaging (DKI) (Equation (7))
was introduced to capture NG effects by expanding the DW signal to second-order higher
b-values [30], represented by apparent kurtosis coefficient (Kapp), a surrogate QIB of tissue
microstructure, in addition to the apparent diffusion coefficient (Dapp). NG-IVIM describes
simultaneous perfusion and restricted diffusion by incorporating microstructure, K, the
signal deviation from Gaussianity [25,29], providing estimates of the f , D∗, D, and K.
Figure 2 shows QAMPER’s available DW models, which can be used to analyze data and to
identify the optimal model based on tumor heterogeneity. The DW MRI model equations
are as follows:

2.2.1. Monoexponential model [39]:

Sb = S0e−b×ADC (6)

where Sb and S0 are signal intensities with and without diffusion-weighting factor b
(s/mm2), respectively.

2.2.2. DKI model [30]:

S = S0 e−b×Dapp+
1
6 Kapp(b×Dapp)

2
(7)



Tomography 2023, 9 2058

2.2.3. Intravoxel incoherent motion (IVIM) model [29]:

S = S0( f e−b×D∗) + (1− f )e−b×D) (8)

2.2.4 Non-Gaussian intravoxel incoherent motion (NG-IVIM) model [25]:

S = S0 ( f e−b×D∗) + (1− f )e
−b×D+ 1

6 K(b×D)2

) (9)

2.3. T1 and T2 Relaxometry

T1 and T2 relaxometry measurements assess the water content fraction and vascu-
lar morphology through multiple acquisitions of varying imaging parameters [40]. For
quantification of T1 and T2 values, the standard approaches are inversion recovery (IR)
with different inversion time (TI) values and multiple single spin-echo (SE) methods with
varying echo time (TE) values. Various methods have been developed to quantify T1 and T2
metric values within a clinically feasible timeframe [32,41–43]. Multi-echo T2 mapping [44]
can be tailored appropriately for different anatomical regions and physiological conditions.

Variable flip angle T1 measurement allows T1 value estimation in a clinically feasible
time using multiple spoiled gradient echo acquisitions with different FA [32]. The Equation
is given in Appendix A (A2).

A multi-echo spin-echo sequence is commonly used for T2 mapping, and the Equation
is given by [44].

S = S0 e−
TE
T2 (10)

where TE is the echo time.

2.4. Optimal Model Mapping (OMM)

Model selection techniques for DCE or DW MRI data fitting refer to identifying the best
model that more closely fits the data set for each voxel [24,25,31,45]. Heterogeneity within
solid tumors and surrounding tissue, irregular levels of vasculature development, and
leakiness are represented by different compartment models. The data acquisition methods
and underlying tumor physiology need to be considered while applying OMM. The F-
Statistic (F-test) [46], R-square (R2) [31], chi-square (χ2) [47], corrected Akaike information
criteria (AICc) [19,48–50], and Bayesian information criteria (BIC) [25,51] have been used
to select the model that most accurately reflects the tumor physiology and can be used to
quantify values of imaging biomarkers in each voxel.

2.5. Imaging Formats and Conversion

QAMPER utilizes the dcm2niix conversion application to import DICOM images into
NIfTI format for processing. The software readily accepts NIfTI images of ROI masks in
matching coordinate space to the parent image, and generated parametric maps are output
as NIfTI files. The output mapping data are simultaneously saved as MATLAB struct
arrays in MAT files, plus additional metrics to assess the quality of fitted output: AIC [48],
BIC [51], and R2. In addition to MATLAB, two open-source external dependencies are
currently required to run MRI-QAMPER: dcm2niix [26] and NIfTI Toolbox for MATLAB.

3. Results

At our center, QAMPER has been used to analyze mpMRI data, which resulted in
peer-reviewed articles on outcomes in various organs, such as the brain [16], head and
neck [17], thyroid [18,19], prostate [20], pancreas [21], and bladder (article under review)
(Figure 3). The software was evaluated using DROs and participated in CCPs and in
clinical trials.
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3.1. QAMPER QIN Software Validation: DROs and CCPs

The initial performance of the MRI-QAMPER routines was validated using well-
established digital reference objects (DROs) for DCE and DW MRI, serving as early approval
stages in the QIN software benchmark [12]. MRI-QAMPER has participated in DCE and DW
QIN CCPs: (i) MR Relaxometry Brain OSIPI DCE Challenge (in press) led by Dr. Anahita
Fathi Kazerooni (UPENN and CHOP) and (ii) Multi b-Value Prostate Challenge [20] led by
Dr. Peter S. LaViolette (MCW). The software is approved for clinical trials and is routinely
used for mpMRI data analysis in an oropharyngeal cancer dose de-escalation clinical trial
(#NCT03323463) at MSKCC [10].

1 

 

 

Figure 3. Representative output of MRI-QAMPER v3.0: input images (DW b = 0, T1-weighted base
image) and output quantitative parametric maps (ADC, Ktrans), computed for images in brain, head
and neck, pancreas and bladder. Visualization of parametric map overlay was created with MRIcron
(v1.0.20190902) software.

3.2. DCE MRI DRO (RSNA)

QAMPER DCE perfusion routines were tested using the DCE DRO from the Radiological
Society of North America (RSNA) Quantitative Imaging Biomarkers Alliance (QIBA; noise-
free, three-parameter, extended, https://sites.duke.edu/dblab/qibacontent/, accessed on
10 October 2023) [52], developed in the Barboriak Lab, Duke University [14]. The ETM,
three-parameter fit, model was used to fit a synthetic data slice with 661 time points. The
resulting Ktrans map from QAMPER showed excellent agreement with the ground truth.

https://sites.duke.edu/dblab/qibacontent/
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3.3. DW MRI DRO (University of Michigan)

The diffusion DW MRI DRO developed by the Chenevert Lab, University of Michigan,
was used to evaluate the performance of QAMPER routines for ADC, IVIM, and DKI [53].
This set of DROs was generated for advanced DW MRI clinical trial protocols. The gen-
erated DROs include simulated acquisition noise, DICOM scaling, and clinically relevant
DW MRI parameter ranges for perfusion-fraction IVIM and DKI models. The resulting DW
MRI-derived parametric maps showed excellent agreement with the ground truth.

3.4. Collaborative Challenge Projects
3.4.1. DCE CCP (ISMRM, Open Science Initiative for Perfusion Imaging (OSIPI))

The OSIPI Task Force on DCE/DSC challenges was formed to benchmark perfusion
quantification methods by route of organized community challenges (in press) to craft
a systematic and controlled framework to benchmark and progress Ktrans calculation as
a biomarker in brain tumors. This study reports results from the OSIPI-DCE challenge
and highlights the high inter-software variability within Ktrans estimation. The OSIPI-DCE
challenge assessed the performance of 10 participating software packages according to their
ability to accurately calculate Ktrans from a set of generated synthetic data, repeatability of
parameter calculation in test–retest scans of eight patients with glioblastoma, and repro-
ducibility of the software from independent re-analysis of the data. QAMPER finished in
the top four software packages out of ten at recapturing Ktrans values from the synthetic
data. QAMPER presented the best repeatability coefficient across the test–retest data among
all packages tested, with RC = 0.56.

3.4.2. DW MRI CCP (QIN, MCW, Prostate)

A collaborative group organized by the NCI coordinated a multi-institutional study
to explore how differences in DW fitting algorithms affect prostate cancer detection and
how varying post-processing parameters differentiate regions of tumors by severity [20].
Results from 14 groups and software were verified against ground truth histological maps
and pathologist-traced MRI annotations. The study aimed to measure the consistency of
values in calculated metrics between sites and evaluate inter-site variability in performing
a diagnostic task. Mono-exponential and kurtosis analyses were the most stable, presenting
a low percent difference and high correlation coefficient, independent of site pairing
permutations. The DW MRI study found that conventional diffusion models consistently
differentiated prostate cancer from benign tissue. The results also indicated that post-
processing decisions on DW MRI data could affect sensitivity and specificity when applied
to radiological–pathological studies in prostate cancer. The parameters K, diffusion kurtosis
(DK), and ADC showed the least percent difference among sites and the highest correlation.
QAMPER’s ability to customize and set lower- and upper-threshold bounds was a feature
that grouped it among the top five out of fourteen tools with the highest area under the
curve (AUC) for prostate cancer detection [20].

3.5. DCE and DW MRI in Clinical Trial (Oropharyngeal Cancer)

At our center, MRI-QAMPER is routinely used to analyze mpMRI data obtained from
oropharyngeal cancer patients enrolled in the dose de-escalation clinical trial (#NCT03323463) [10].
Pretreatment DCE MRI analyses confirmed a difference in perfusion and permeability between
patients with residual disease and those with pathological complete response (pCR). In addition,
in a small pilot study, DW MRI revealed changes in the ADC and relative K that were statistically
significantly correlated with pCR at the time of surgery [10].

4. Discussion

Our in-house MATLAB toolbox was developed for the estimation of robust QIBs
from mpMRI. DCE and DW MRI results obtained from MRI-QAMPER routines have
been featured in numerous peer-reviewed publications [8,17,19,54]. The core software
development has been supported by NIH funding and extended into an easily installable
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MATLAB package with a graphical interface and capability for conversion of DICOM files
and extraction of imaging metadata. MRI-QAMPER’s ability to extract timing information
from DCE MRI and b-values from DW MRI allows it to operate on MR images independent
of the scanner vendor. The bounds for nonlinear fitting parameters can be user-set to be
appropriate on a case-by-case basis, ensuring that results are physiologically relevant. The
analysis routines are organ-independent due to the customizable parameters available in
the MRI-QAMPER software and include several literature-based presets.

In oncological imaging, there is a need for proven quantitative imaging tools and the
development of MRI QIBs for specific clinical endpoints [7,8,12]. Quantitative analysis of
mpMRI data estimates parameters characterizing underlying tumor physiology. All major
MRI vendors have tools for DCE MRI semi-quantitative analysis or Standard Tofts (e.g.,
NordicICE; Nordic Neuro Lab, Bergen, Norway). Currently, a selection of open-source
tools exists for time-course compartmental models or basic Tofts analysis of DCE data
(e.g., Madym [22], MITK-ModelFit [55], FireVoxel (https://firevoxel.org/, accessed on
10 October 2023), DCENET [56]). DW MRI tools for monoexponential ADC modeling are
widely available on all major MRI vendor platforms. Many cutting-edge advanced analysis
routines for bi-exponential or kurtosis imaging from other providers are still closed source,
based on in-house code, limiting wider adoption [25]. Few tools offer a one-stop shop for
multiple modalities. One comparable example is the C++-based Madym software (v4.15.2),
which can analyze DCE, DWI (ADC, IVIM), and relaxometry (T1 and T2 mapping) [22], but
does not have OMM or verification status offered by NCI/QIN Benchmarking. OMM is
provided by the ROCKETSHIP platform [23] for DCE models, but there is no other similar
offering for DW MRI.

QAMPER is currently available through a material transfer agreement (MTA) with
our center. Our group has experience with MR Fingerprinting (MRF) (refs: phantom, brain
metastases [57,58]), which provides simultaneous T1 and T2 relaxometry measures in a
clinically feasible amount of time. We plan to include the MRF reconstruction algorithm
in our next implementation of the QAMPER platform. In the future, we plan to make
MRI-QAMPER available via cloud architecture (Figure 4) [59].
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5. Conclusions

Given the need to develop quantitative tools estimating robust imaging biomarkers for
clinical applications in oncology, MRI-QAMPER (v3.0) is a standardized platform that can
process mpMRI data seamlessly from the brain, head and neck, thyroid, prostate, pancreas,
and bladder. Output of MRI-QAMPER routines has been validated using RSNA QIBA
DROs for both DCE MRI (Barboriak Lab, Duke University) and DW MRI (Chenevert Lab,
University of Michigan).

There are a number of platforms for quantitative MRI with either DCE and/or DW
and/or MR relaxometry. QAMPER stands out due to its extensive features and vetting by
NCI/QIN. In addition, none of the existing platforms have the non-Gaussian IVIM (NG-
IVIM) DW MRI fitting routine in their packages, which was developed and implemented
by our group [25].

ETM has been tested in the OSIPI Task Force DCE challenge (manuscript under review)
to benchmark and progress Ktrans calculation as a diagnostic or prognostic biomarker in
brain metastasis. Other DCE pharmacokinetic models, such as SSM, CTUM, and 2CXM,
need to be validated through DRO and CCPs. DW MRI routines have been thoroughly
vetted through DRO and CCP events, including the multi-b value prostate diffusion
imaging challenge for prostate cancer detection led by Dr. Pete LaViolette at Medical
College Wisconsin (MCW) [20]. The software has been distributed to NCI QIN collaborators
to perform inter-site data validation testing and is available upon request through material
transfer agreements (MTA).
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Appendix A

DCE MRI pharmacokinetic analysis.

Appendix A.1. Precontrast T10 Fitting

A series of gradient-echo images are acquired using the variable flip angle (FA) method
and fixed repetition time (TR) and echo time (TE). The signal intensity for the spoiled
gradient recalled (SPGR) sequence is given by [31]

S(t) =
M0sin (θ)e−TER∗2(t)

(
1− e−TRR1(t)

)
(
1− cos(θ)e−TRR1(t)

) (A1)
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This can be written as follows to estimate pre-contrast longitudinal relaxation time, T1,
and equilibrium magnetization, M0:

S(t)
sin(θ)

= E1
S(t)

tan(θ)
+M0(1− E1) (A2)

where E1 = e−TRR1(t), S(t) is the voxel signal intensity at time t, M0 is the equilibrium
magnetization of the protons, θ is the flip angle. Longitudinal relaxation rate R1(t) (where
R1 = 1/T1) and transverse relaxation rate R∗2(t) (where R∗2 = 1/T∗2 ) are the time courses of
longitudinal and transverse relaxation rates, respectively, here, e−TER∗2(t) ≈ 1.

Appendix A.2. Signal-to-CA Concentration Calculation

The signal intensity in a voxel, measured from an SPGR T1w sequence for a given FA
expressed in Equation (A1) can be expressed for the time course of R1(t) as follows:

R1(t) =
1

TR
ln

1−
(

S(t)cos(θ)
M0sin(θ)

)
1−

(
S(t)

M0sin(θ)

)
 (A3)

In the limit of fast water exchange, the change in water proton relaxation rate, ∆R1,
(i.e., ∆R1(t) = (R 1(t)−R10) [s−1]) due to CA relaxivity, r1 [(mM)−1s−1], is linearly related
to the tissue CA concentration, Ct (mM),

R1(t) = R10+r1Ct(t) → ∆R1(t) = r1Ct(t) (A4)

where R10 is the pre-contrast longitudinal relaxation rate.

Appendix A.3. Compartmental Tissue Uptake Model (CTUM)

This model assumes no back flux of CA from the interstitium to the plasma compart-
ment; thus, ve is not measurable. Three parameters, vp, Fp, and Ktrans= E ×Fp, can be
estimated using:

Ct(t) = Cp ⊗ Fp(t)(e
− t

Tp + E(1− e
− t

Tp )) (A5)

where E is the first extraction fraction, E = PS/((Fp + PS)), and Tp is the mean plasma transit
time, Fp is the blood plasma perfusion, and PS is the capillary permeability surface area
product [5].

Appendix A.4. Two-Compartment Exchange Model (2CXM)

The 2CXM estimates Fp, PS, vp, and ve [5].

Ct(t) = Cp × A⊗ Fp(t) (A6)

where A is given by,
A(t) = e−tB+ + E−

(
e−tB− − e−tB+

)
(A7)

and B± is given by

B± =
1
2

(
T−1

p + T−1
E ±

√(
T−1

p + T−1
E

)2
− 4T−1

E T−1
B

)
(A8)

E− =
B+ − T−1

B
B+ − B−

, (A9)

Tp =
vp

PS + Fp
; TE =

ve

PS
; TB =

vp

Fp
(A10)
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