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ABSTRACT

A treatment of water flow into and through plants to the evaporating
surface of the leaves is presented. The model is driven by evaporation from
the cell wail matrix of the leaves. The adsorptive and pressure components
of the ceDl wail matric potential are analyzed and the continuity between
the pressure component and the lquid tension in the xylem estabUshed.
Continuity of these potential components allows linking of a root transport
function, driven by the tension in the xylem, to the leaf water potential.
The root component of the overal model allows for the solvent-solute
interactions characterstic of a membrane-bound system and discussion of
the interactions of environmental variables such as root temperature and
soil water potentials. A partition function is developed from data in the
literature which describes how water absorbed by the plant might be
divided between transpiration and leaf growth over a range of leaf water
potentials.

Relationships between the overall system conductance and the conduct-
ance coefficients of the various plant parts (roots, xylem, leaf matrix) are
established and the influence of each of these discussed.
The whole plant flow model coupled to the partition function is used to

simulate several possible relationships between leaf water potential and
transpiration rate. The effects of changing some of the partition function
coefficients, as well as the root medium water potential on these simulations
is illustrated.

In addition to the general usefulness of the model and its ability to
describe a wide range of situations, we conclude that the relationships
used, dealing with bulk fluid flow, diffusion, and solute transport, are
adequate to describe the system and that analogically based theoretical
systems, such as the Ohm's law analogy, probably ought to be abandoned
for this purpose.

Frequently the question arises about what type of relationship
one should expect between leaf water potential (4/), transpiration
rate (7), and root medium water potential (4, for either soil or
solution). The most frequently used model is related in some way
to the Ohm's law analogy. The most frequently used interpretation
of this analogy (correct or not) and therefore the answer to the
question raised above is that we should expect a linear relationship
between the soil-leaf potential difference and transpiration which
passes through the origin. In this paper, we will reexamine this
question on an elementary level and show several reasons why
such expectations are not necessarily well founded. It is the
purpose of this paper to present a model of whole plant water

flow, to examine how this model might respond to changes in
various parameters, and to settle on whether our expectations
based on the Ohm's law analogy are reasonable.

THE MODEL

The simplified plant system schematic is shown in Figure 1. It
consists only of a long tube, the xylem, bounded on the left by the
"root membrane" and on the right by the leaf matrix from which
water evaporates, driving flow through the system, assuming there
is a source of water in contact with the root. Obviously, the figure
is neither complete nor accurate. The root membrane is shown as
a single flat surface. It is in reality cylindrical in nature and is
probably made up of several membranes in a series or parallel
arrangement with intervening cytoplasm. The xylem is shown as
a single tube instead of a collection of branched and unbranched
tubes of various sizes and cellular maturities and no adjacent
tissue is indicated. The leafmatrix is, similar to the root membrane,
shown as a single homogeneous phase when the real geometric
complexity must be quite astounding.
A schematic detail of the leaf tissue phase is shown in Figure 2

with arrows indicating the overall direction of flow and possible
exchanges with cell protoplasts. The leaf matrix phase of Figure
1 includes only the cell wall phase of the tissue. The pressure
(turgor) component of the protoplast phase is distinct from the
pressure component of the cell wall matrix phase which will be
discussed shortly.
As previously stated, the whole system is driven by evaporation

from the leaf matrix. Water then moves through the stomata into
the atmosphere. The rate ofthis process is controlled by the energy
gradient from the leaf to the air and the diffusive conductance of
the leaf surface (including stomata). We are not presently con-
cerned about the transpirational forces involved here or for that
matter what causes the stomata to open and close. Our only
interest in the evaporative process is in its rate, however deter-
mined, and with what its effect is on the leaf matrix. At this stage,
it may be instructive to examine the leaf matrix more closely in
terms of the evaporative process and how that generates tension
in the xylem phase.
The matric potential of the cell wall phase in the leaf may be

considered as the sum of two inseparable components, an adsorp-
tive and a pressure term

APm = )/a + 'Pp (1)

The meaning of Equation 1 is clarified in Figure 3 which shows
a single large vertical pipe of indefinite height which narrows to
capillary dimensions near the top. The system is filled with pure
water to a level indicated by the meniscus in the capillary. By
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FIG. 1. Simplified plant model. Water flow through the system is
driven by evaporation from the leaf matrix. J. is the total volume flux, J.
the total solute flux, 4/ the external water potential, {x the xylem water
potential, and 44 the leaf matrix potential.
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FIG. 2. Schematic representation of leaf tissue showing how absorbed

water (from the source) might be partitioned between cell expansion and
transpiration (evaporation).

following the dashed line vertically through the center of the
system, we can examine the components ofthe potential arbitrarily
referred to some elevation, Z = 0, while the whole system is at
equilibrium. The gravitational potential 4/g is dependent only on
position and varies linearly with elevation (Fig. 3B). Inasmuch as
the system is at equilibrium, the total potential, At, is the same at
all Z along the line, and in this case 4t = 0. To fulfill the
equilibrium requirements, 4g must be equal to and opposite in
sign from the matric potential 4Am. Note that the "gravitational
gradient" of plant physiology, 0.1 bar m-l of plant height, will be
identified with 4.. and not 4g. As we just stated, the components
of Amr, 4p, and 4/a are not physically separable but their relative
magnitudes in the two distinct parts of the system may be dia-
grammed (Fig. 3B). In the region of the profile between the
reference elevation (Z = 0) and Zc, the adsorptive component 4/a
is practically nonexistent in the bulk fluid and the total matric
potential is accounted for by 4/p. At the transition from the bulk
fluid to the capillary part of the system, %P. takes on a nonzero
value because of the proximity of the wall material. In this
example, 4{a decreases stepwise but the transition could easily be
made gradual by tapering the system across C. The overall result
would not change, only the rate of change of 4/a and 4/p in the
transition zone. Because the capillary is uniform, 4a has the same
value at all elevations along the profile between Z, and Zm.
Because At remains constant, 4p must increase at the transition and
then resume its former rate of decrease with elevation so that 4/m
continues to balance 4/g.

Replacing the pure water in the previous example with a
solution of some arbitrary concentration will result in little differ-
ence in the potential profiles except that now the total potential
will be represented by the unlabeled dashed line in Figure 3B
which is also coincidental with the solute potential. The other
potential components remain as they were, neglecting minor
changes due to density differences and changes in adsorptivity
effected by the solute.

C
z u

0 +

FIG. 3. A, Simple system to illustrate the transition region between the
leaf matrix and the xylem. Z0 is some arbitrary reference elevation. B,
Profile of the potential components for the system in A at equilibrium.
The unlabeled vertical dashed line is the total potential in the presence of
solutes. C, Potential profiles for the system ofA under conditions of steady
state flow upwards through the system. 4'm is leaf matric potential; 4p and
4,a are the pressure and adsorptive components of 4/rn; 4t is total potential;
4g is gravitational potential.

Now consider the situation where water moves vertically
through the system. Flow will be driven by evaporation from the
surface of the meniscus. We would now expect the potential
profiles to be modified and appear similar to Figure 3C. Evapo-
ration from the surface tends to decrease the radius of curvature
of the meniscus (see relevant comments in next paragraph), thus
decreasing 4/p and the matric potential. Since 4/g remains un-
changed, the total potential must also shift to the left (more
negative), thus driving water flow. Here again, in the region Z =
0 to Z, it is the amount by which 4p exceeds 4/g in magnitude
which moves water. In this region 4/a is not a factor so that 4/rn is
identical to 4/p. The major points of importance here are that the
4r profile is continuous through the system and that between Z
= 0 and Z, it may be described by 4/p. Having established these
points, we may now define a model system which can be used to
describe some of the relationships between leaf water potential
and volume flux through the roots.
The analogy between the system of Figure 3A and the plant is

quite simple, where the capillary represents the leaf matrix and
the wider part of the tube represents the xylem. Realistically, the
system may be better depicted as a hollow tube topped by a finite
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thickness of some fibrous matrix representing the evaporating
surface (Fig. 4). The strands represent the cell wall microfibrils
which are themselves made up of subunits giving each strand a
somewhat porous texture of its own. The entire mat is covered
with a thin film of water and the capillary menisci are located at
the junctures of adjacent fibrils. Also it is much easier in Figure
4, with its tapered spaces between fibrils, to see how evaporation
from the surface will result in increased curvature of the liquid
surface in the interfibrillar spaces, thus leading to the reduction in
4lp. In such a case, the microscopic view of the potential profile
would have been very complex and difficult to discuss, but the
major points concerning Am, {/a, and 4pp would be unaltered. A,m
would still be continuous throughout the system and the cell wall
matric potential in the leaves would have the same components as
Equation 1.
The concept of matric potential which we are using here has its

origins in the same type of adsorptive forces which are considered
when many plant physiologists discuss the matric potential of
cellular contents. The only difference between these two concepts
is that in the case at hand the adsorptive forces are operating near
a gas-liquid interface and are thus able to affect conditions in the
bulk liquid by affecting the radius of curvature of the interface.

In this paper, we will deal exclusively with steady state systems
in which, for the present, there is no growth of tissues and no
exchange of water between the matrix and the symplasm. We will
consider that the root system may be described as a semipermeable
membrane with the ability to transport solutes against their poten-
tial gradient at the expense of metabolic energy. For simplicity,
we will ignore frictional losses in the xylem, consider that the root
membrane is possessed of ideal semipermeability so that the only
solute transport is via an active mechanism (J? in mol cm-2 S-'),
and that the solutions involved behave ideally. Having established
these ground rules, we can consider the simple model in Figure 1.
The first task is to examine how the volume flux (.4) through the
whole system might vary as a function ofthe difference in potential
between the leaf matrix (41 ) and the root medium (4P). For steady
state flow through the root membrane (R -- X), we may write (5)

, R(q)X_ 4p/) =_R(eA X-s) (2JR - + e ) (2)
where JR is the volume flux density in cm3 cm-2 s-1, LR is the
conductance of the root membrane in cm3 cm-2 s-' MPa'1, Ax is
the total potential in MPa in the middle compartment (xylem),
and 4, is the total potential in MPa in the left hand compartment
(root medium). The subscriptsp and s denote pressure and solute,
respectively. We can now set po = 0 and as long as this is true
drop the subscript from 4°. The van't Hoff relationship for ideal
solutions gives

+8=-RTC (3)
where R is the gas constant, T is the temperature in Kelvins, and

FIG. 4. Diagram ofcell wall-vapor phase interface. As water evaporates
the curvature of the interfacial regions increases, reducing the pressure in
the liquid phase. MF, microfibrils.

C is the solute concentration in mol cm-3. Volume flux through
the leaf matrix from the middle compartment (xylem) to the
evaporating surface may be written

jvL - -LL(4/ _ {pX) = _LL(Ip _ AX_-X) (4)
where LL is the conductance of the matrix. Since there is no
semipermeable barrier involved in this part of the system, 4iX
becomes irrelevant as a component of the driving force and may
be eliminated from consideration. In any case, reabsorption and
dilution of solutes would make any osmotic effects very minor
indeed (9, 10, 14). We may now write

Jv= -LL(4Am- p) (5)
Since we are interested in the flux response to the overall potential
difference, JV = f 4'root medium), we need to solve Equation 5
for the leaf water potential (44,)

Am = -J4/L' + 4, (6)
Since we are neglecting frictional losses in the xylem (see Appen-
dix), we may now solve Equation 2 for ep

X= -J_/LRL - V. + 4°

and substitute this into Equation 6 yielding
JL JR

LL LR- + ,

(7)

(8)

Since Jv = JtR, we will use Jv for the system flux density and from
Equation 3 we get -AXi = RTC. Since the membrane is ideal, Cx
is a function of Jv and J.1 only.

C = J./J" (9)
Combining Jv values and making the substitution for 44 gives us

%P/ (= -i +h)Ju+4,o+ (10)

For the system as a whole, we may replace the conductances with
a system (equivalent) conductance, Ls, and rearrange so that the
overall potential difference is

. -4,0=-J ( l ) + RTJ?

Equation 11 may be rearranged to

J2 (L) + J(, -4,) - RTJ. = 0

(1 1)

(12)

and solved for Ju by the quadratic formula.
Equation 11 (the absorption function) is nonlinear in Jv for the

same reasons that JR is nonlinear with respect to applied pressure
in excised root systems. The degree of nonlinearity will depend
primarily on the magnitude of J* and the ratio of the two
conductances, LL and LR. In general, the degree and range of the
nonlinearity will increase as J* increases. Also, if LL is large
relative to LR (i.e. the leaf matrix is more conductive than the root
membrane), then the osmotic and pressure force interactions in
the roots will dominate the system and the nonlinearity will be
given full expression.
Under the steady state conditions we have set forth in this

particular instance, it is clear that transpiration rate as well as root
water flux may be expected to behave in a somewhat nonlinear
manner with respect to changes in leaf water potential. This
nonlinearity will of course be confounded by any absorption
through the roots which goes to expansive growth rather than
transpiration. In the case of steady state growth, the root water
flux will be partitioned as Boyer (3) suggested between tissue
expansion and transpiration.
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To illustrate the effects of the water partitioning requires that
we have some relationship between leaf growth and leaf water
potential. Fortunately Boyer (1, 2), for example, has published
data which are convenient for this purpose. Although he dealt
with several species, we will confine ourselves to his data on
Helianthus because these, better than the others, illustrate a clear
maximum expansion rate. From Boyeres data, which fall from a
maximum expansion rate at about -2 bars to a negligible rate at
about -4 bars, we can make an initial estimate of the water-
partitioning function. In this instance, we have arbitrarily chosen
a sigmoid function such that

A-C ~~~~~~(13)1t= + B(-4/)m
+c(3

Here, Wt is the fraction of the absorbed water which goes to
transpiration, obviously between 0 and 1. A, B, C, and m are
fitting coefficients which may or may not bear any quantitative
relationship to physiological parameters. More will be said about
this function and these coefficients in the Appendix. We can now
express the transpiration rate as a function of the flux through the
system and the partition function which is dependent on 41.

T=J.Wt (14)

where T is the transpirational flux density, J, is the flux density of
the water reaching the evaporating site of the leaf matrix (Eq. 12),
and W, is the water partioning function (Eq. 13). Since Wt is also
equal to 1 - Wg where Wg is the fraction of A, going to growth,
Equation 14 is a variant of Boyer's (3) partitioning function.
Now it is possible to calculate the relationship between tran-

spiration rate and leaf water potential. To make comparisons with
existing literature easier, we will express the potentials in bars and
T as g dm2 h' rather than in SI units. Figure 5 is an example of
the kinds of curves we might expect under different conditions or
looking at different parts of the plant. For example, curve A is a
plot of the root water transport only (JR, Eq. 2) as a function of
xylem tension. Curve B, calculated from Equation 12, contains in
addition the resistance of the leaf matrix and is the type of curve
we would expect under steady water transport with no growth and
with 40 = 0 bar. If we now include the sigmoid partitioning
function (Eq. 13), curve D results. Performing the mathematical

TRANSPIRATION RATE (g dm-' hr-')
0 1 2 3 4 5 6 7 8

-1 ~~A
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FIG. 5. Component curves for an intact plant system. A, Root water
transport function (Eq. 1). B, Whole system transport function (Eq. 12). C,
Excised leaf transport function with the growth partition. D, Whole system
transport function with growth partition (Eq. 14). Partition function vari-
ables are the same as Figure 6, curve 1. Conductances are given in the
text. J. = 3.6 x 10- mol dm-2 h-'.

equivalent of leaf excision, that is, removing the root transport
function but supplying water to the leafwhile retaining the growth
partition and the leaf conductance (LL), results in curve C.

Obviously, the choice of conductances and other coefficients
will have significant effects, and discussion of these choices and
some of the salient effects is in order. Having noted the shape of
curve D and how it becomes coincident with curve B at high T,
(i.e. transpiration _ absorption because growth is zero) and noting
also from Equation 11 that T will be dominated by L8 at these
high rates, it is possible to estimate L8 from Boyer's (3; Fig. 2A)
data. A rough estimate of this nature gives L8 _ 1.04 g dm2 h-'
bar-'. If we assume that approximately two-thirds of the system
resistance resides in the roots, we can calculate LL and LR from L8
as 3.12 g dm-2 h-' bar-' and 1.56 g dm-2 h-1 bar-', respectively.
Division by 3.6 x 105 yields, for the latter figure, 4.3 x 10-6 cm3
cm-2 s-' bar-' which compares favorably with the range of values
for root hydraulic conductances determined by Fiscus and Mark-
hart (6). Also, these are the values which resuUted in the curves of
Figure 5. Curves C and D are comparable to Boyer's data from
which the constants were estimated. Bear in mind, however, that
he plotted 4A as a function of absorption and not transpiration.

Curves in the nature of Figure 5C and D may, under the proper
circumstances, provide estimates of L' and LL. Interpretation
of such data for these purposes should be done with care because
of the several factors which can radically alter their shape and
meaning. We will discuss each of these factors separately starting
with the conductances since they (L8 at least) seem to be the easiest
to estimate from these types ofdata. Under the conditions outlined
for Figure 5, the straight line portion ofthe curve (D) is determined
by LV. However, the slope of this line may be altered other than
by altering L8. Examination of the water partitioning function
(Fig. 6) bears on one of the initial assumptions we made concern-
ing that partition. Considering only that fraction ofwater absorbed
which goes to transpiration, we initially assumed this value to go
from 0 to 1. There is a strong probability that this assumption is
not precisely true and that at maximum growth rates there is still
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FIG. 6. Growth partition functions showing offsets at high and low leaf

water potentials. Curve I has no offset and is calculated from Equation 13
fitted to Boyer's (1) data. For curve 1, A = 100, C = 0, B = 22,471, m =
-10.5. Curves 2 to 5 result from various degrees of offset at high V/. For
example, curve 2 indicates that even during maximum growth 20% of the
absorbed water is being transpired. At the other extreme, curve 10 is offset
from the other direction and indicates that at low potentials (minimal
growth, not zero, for this particular partition) only 20% of the absorbed
water is being transpired. The offsets are produced by changing C and A
in Equation 13. Curve 6 is a horizontal line coincident with the figure
boundary at 1.0.
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a small fraction of the water being transpired through the cuticle.
The result of such cuticular transpiration would be to keep the
fraction ofthe absorbed water going to transpiration from reaching
zero at high water potentials (-2 to 0 bar). In the future, we will
refer to this as the partition function "offset" at high water
potentials or maximum growth rates (Fig. 6, curves 1-6). The
effect of this offset is illustrated in Figure 7 where we see that the
slope of the linear portion of the curve is unaffected by an offset
at high growth rates. The major effect is to move the curves away
from the ordinate at low T and to reduce the nonlinearity. If, for
some reason, a situation develops where less than 100%1o of the
absorbed water is transpired at any water potential, the partition
functions will then be referred to as offset at low water potentials
or minimum growth rates (Fig. 6, curves 7-10). In this case, one
of the effects is still to reduce the nonlinearity but the slope of the
linear portion ofthe curve is changed dramatically. It is, of course,
possible for the partition functions to be offset at both ends of the
potential scale, ranging, for example, from 20o to 80o of the
absorbed water being transpired. Figure 8 shows the effects of
such symmetrical offsets at both ends of the partition function.

Discussion of the effects of other parameters will proceed with
the original 0 to 1 partition function since this seems to fit Boyer's
data (3) better.

Determination of LL could be somewhat difficult using excised
leaf data (3; Fig. 2B) because the system is dominated by the
partition function (Fig. 5, curve C). Examination of Figure 9 will
illustrate the meaning of this statement. Figure 9 is a simulation
of the excised leaf situation, as in Figure 5, curve C, where LL is
varied between 0.5 and 10 g dm-2 h bar-'. The salient feature of
this figure is that the linear portion of the curve, that part from
which LL is estimated, becomes less and less obvious as LL gets
closer to reasonable values. By reasonable values we mean those
which approximate Boyer's data (3; Fig. 2B) for excised leaves
and which were estimated earlier, about 1.5 to 3.5 g dm-2 h'1
bar-'. Because of the very high transpiration rates necessary to
define this part of the curve for reasonable values of LL, such an
experimental determination could prove difficult.

Another major factor which could alter the shapes of the 4':T
curves is the water potential ofthe soil or solution (4) surrounding
the roots. The effect of lowering 4P is shown in Figure 10. The
system conductance (L8) in this case is not changed, but the shapes
of the curves would be altered as the partition function, which

TRANSPIRATION RATE (g dm-' hr-1)
0 1 2 3 4 5 6 7 8
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FIG. 7. Effect of growth partition offsets (Fig. 6) on the form of the
T:4/ curve. Numbers on the curves correspond to the numbers on the
partition functions of Figure 6. Curve 6 is the case where there is no
growth partition (ie. a 100% offset in Fig. 6). Plant parameters are the
same as curve D, Figure 5.

i

TRANSPIRATION RATE (g dm-' hr-')
2 3 4 5 6

FIG. 8. Effect of symmetrical offsets of the partition function at high
and low potentials. For example, curve 20 results from a growth partition
function where 20% of the absorbed water is transpired at high potentials
and only 80%o is transpired at low potentials. Plant parameters are the
same as curve D, Figure 5.

TRANSPIRATION RATE (g dm-' hr-')
0 1 2 3 4 5 6 7

O- . . .

FIG. 9. Effect of LL on the excised leaf T:4/ relationship showing the
problems of determining LL from data of this type for "reasonable" values
of LL. Numbers on curves are LL in g dm-2 h-' bar-'.

dominates at high 4P, is gradually swamped out by the inhibitory
effects of lowered 4,. That is, growth is slowed and successively
smaller portions of the curve are influenced by growth. In this
particular instance for 4, at around -4 to -5 bars, the curves
become identical with those which would result if there were no
partition function (absorption = transpiration). One would also
expect this same effect if the effective external potential were
lower than indicated by measurement of the bulk soil or solution
due to buildup of solutes at the root surface or complications from
an intermediate root compartment (5) or localized soil drying at
the root surface. Soil conductivity decreases associated with drying
soils can also be expected to exaggerate these effects and to shift
the curves toward steeper slopes.
Another phenomenon which may cause the linear portions of

the slope to steepen is breakage of the water columns in the xylem
under conditions of a high energy load on the leaves or drying
soil or both. If the breakage is extensive enough, it may result in
a reduction of L8. Clearly, reductions in LV along with a drying
soil would make quantitative interpretations of the data more
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TRANSPIRATION RATE (g dmi-a hr-')
2 3 4 5

FIG. 10. Effect of root medium water potential on the T:4/ relation-
ships. Numbers on curves are -4P; all other parameters are the same as

for Figure 5. Note that curve 5 is identical to that resulting from no growth
partition.

difficult. For example, we can assume that the xylem cavitates
sufficiently to reduce L8 at = -6 bars. We could then expect all
of the curves in Figure 10 to break again (steepen vertically) at
around -6 bars. More likely, cavitation would proceed over a

range of potential values and the curves would reflect the gradual
reduction in L' so that we may never see a linear portion for the
curves of interest.

In general, the plateau (most nearly horizontal) portions of the
curves, particularly for the excised leaves, are dominated by the
partition function, especially the steepness of the transition be-
tween maximum growth and no growth. If this transition is very
sharp, then the plateau may approach the horizontal and accurate
determinations of the slope would require very precise determi-
nations of leaf and soil water potentials, a matter that can present
substantial experimental difficulties. Obviously, the water poten-
tial at which growth begins to decline will influence the position
of the plateau region on the ordinate.

Leaf expansion generally will not proceed at a steady rate
indefinitely. Therefore, the partition function may vary with time
depending upon cell wall extensibility and osmotic adjustment
phenomena. Because of this, it should be possible to obtain
experimental data, on the same leaf, resembling curves B or D of
Figure 5 or any intermediate depending upon the particular timing
of the experiment. This shift in the growth-related partition func-
tion may have some bearing on the interpretation of the data of
Bunce (4) who observed shifting relationships between and T
depending on how long he waited to make his measurements after
achieving steady state transpiration.
Longer term changes in the partition function will also cause

shifts in the T:4/ relationships. Such changes should be observable
in individual leaves as they undergo growth, maturation, and
senescence. Seasonal changes in perennial as well as annual plants
may also be expected to alter the water partition function, thus,
the T:4, relationships.

In addition, the 4,': Tcurves compiled by Hailey et al. (7) and by
Kaufmann (8) might be explained according to differing growth
partition functions, conductances (L8), 4,, and the portion of the
curve where the data were obtained.
The horizontal portions of the curves for herbaceous plants are

not difficult to explain conceptually but would require a very
sharp cutoff of growth. Judging from Boyer's data for corn and
soybean (2), however, this situation may not be at all unusual,
particularly for plants grown under growth chamber conditions.

His data indicate a nearly vertical transition of 4' between maxi-
mum and minimum growth rate over a large part of the range of
growth rates. The length of the horizontal part of the curve will
depend upon over what portion of the growth range the vertical
transition extends. In addition, lowering 40 can eliminate the
plateau region entirely (Fig. 10) as can lowering the conductance
(Fig. 9).
The relationships between 4 and Tofwoody plants also appears

to be explained readily by the proposed model. A marked differ-
ence between woody and herbaceous plants is that leaf water
potentials in woody plants are rarely less negative than -3 or -4
bars, while herbaceous plants frequently have potentials much
closer to zero (8). To our knowledge, no reports exist for woody
plants of the response type shown in curve B, Figure 5, where
water potentials of zero are shown which are the result of root
pressure phenomena. Root pressure activity in trees is much less
common than in herbaceous plants (11) and reports of root
pressure activity in conifers are less common still (12, 15-17, 19).
Even so, it has been perplexing that potentials closer to zero have
not been observed even with plants enclosed in a dark, humid
chamber (8).
Woody plants frequently have 4': Trelationships similar to curve

D, Figure 5, at the lower transpiration rates (8). While leafgrowth
may not be occurring, it is entirely possible that growth of other
tissues (i.e. cambial activity or root growth) has existed during
most of the studies reported. Perhaps growth of these tissues
results in decreased leaf water potentials at zero transpiration as
a direct consequence of water partitioning. There appears to be
no reason that the growth sink for water must be located very
close to the evaporating sites in the leaf.

Interpretation of the leaf matrix conductance LL is not clear.
Our development has assumed this to include the petiole resist-
ance, if not completely negligible, as well as any other structures
over, between, or through which water must pass to reach the
evaporating surface of the leaf tissues. Therefore, readers' inter-
pretation will depend upon the precise pathway they particularly
favor. It does seem clear, however, that water evaporates from the
wall matrix of those cells suitably situated and that the potential
of this matrix is the major factor controlling water flux into the
leaf during transpiration. The potential of this matrix is presented
to the protoplasts, and it is this potential which is measured (at
least attempted) with vapor equilibrium (psychometric) techniques
whether in situ or in excised samples.
There are several conditions under which the absorption func-

tion (Eq. 1 1) will interact with or dominate the partition function
and so control the shape of the 4/:T relationship. In the first case,
where growth is slowed considerably or stopped entirely, the
absorption function will define the shape of the curve. The second
case occurs when 40 becomes significant relative to the leaf water
potential where expansive growth begins to slow. Throughout this
paper, except for Figure 10, we have set 4P= 0 so that this should
not have been a growth-inhibiting factor. However, some of
Boyer's (2) data for corn and soybean indicate that growth inhi-
bition may begin at potentials as high as -1 bar. Third, decreases
in L' as, for example, brought about by lowering the root temper-
ature leading to decreased LR will allow the absorption function
to dominate the system. Estimates of changes in root conductance
from the data of Markhart et al. (13) indicate that lowering the
root temperature will reduce LR in soybeans at 15°C to about one-
third of its value at 25°C. In growing plants, the range of 4' over
which growth occurs will be traversed over a much narrower range
of transpiration rates. For comparison, the curves labeled 1 and
0.5 in Figure 9 will give an indication of the effect of reducing LR
by half (less than a 10°C decrease). In nongrowing plants, the
salient effects will be to steepen the slope of the line and reduce
the intercept (Fig. 5, curve B).
So far in this paper, we have made no attempt to deal with the
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limitations imposed on the system by stomatal closure and have
dealt with water transport within the plant as though it were
transpiring at its potential rate under any set of circumstances.
Since most of the simulations and data cited in this paper cover a
narrow range of high water potentials, it is unlikely in these
circumstances that stomatal responses would impose serious limi-
tations on the system. However, it is easy to see that the effect of
stomatal closure might be to cut off the portion of the curve below
potentials which close the stomata. Because stomatal responses to
4/ can be sluggish, it is more likely that a loop of some sort would
be set up on the curve near the operating point of the stomata.
Over greater portions of the curve, nonsteady state changes in the
water content of larger plants, due to movement into and out of
the xylem, may alter the supply of water available for evaporation
and introduce a major hysteresis loop into the 4':T relationship.
One obvious conclusion to be drawn from this paper is that the

circumstances under which we should expect a truly linear rela-
tionship, passing through the origin, between 41 and T, are really
much more rare than would be the opposite expectation. The
primary reasons for the overall nonlinearities are the nonlinearity
in the root absorption function (5) and the partitioning of the
absorbed water between growth and transpiration (3). The relative
importance of these two in determining the shape of the 4/:Tcurve
depends mostly on the system conductance, the root medium
water potential, and the shape of the partition function.
Another philosophical point to be made, from an instructive

point of view, is that the relationships dealing with bulk fluid
flow, diffusion, and solute transport are as adequate for describing
the system as are any analogically based equations. Therefore,
perhaps we should abandon the Ohm's law analogy as a means of
both instructing students and expressing our research data, if for
no other reason than the level of expectation of linearity which is
inherent in many physiological interpretations of Ohm's law.

This paper suggests fairly direct means for determining L8 from
the linear portions of the curve, provides some insight into the
growth partitioning function, and points out various circumstances
which must prevail for the proper interpretation of the data. It
appears that a relatively simple model of water flow accounts for
the major features of water transport in both herbaceous and
woody plants.
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APPENDIX

Root Area/Leaf Area. The development of the arguments in
this paper assumes that the leaf and root areas are the same so
that the flux density to the evaporating surface of the leaves is the
same as the flux density through the roots. For other root:leaf area
ratios the mass balance requirement is that the total fluxes through
the root system and to the evaporating surface of the leaves be
equal. If QR and QL are the total root flux and total leaf flux
respectively in cm3 S-1, then the relationships between the Q and
Ju values are

QR = ARJu and QL = ALJL (15)

where AR and AL are root and leaf areas, respectively. At the
steady state, QR = QL = Q. Following the development (Eqs. 2-
11) in the same fashion as before leads to

(16)X/m- = -Q L+ ARLR) + A

which is similar in form and purpose to Equation 11 except that
differences in the relevant surface areas are accounted. In addition,
Equation 14 now becomes

T= (QIAL) Wt (17)

Xylem Transport. In situations where the xylem resistance for
one reason or another cannot be considered negligible, the pres-
sure losses in the xylem may be treated by the Poiseuille equation
or whatever other form the reader finds most satisfactory. First,
the pressure (or tension) loss in the xylem may be written as

4pXL _ #XR 8_Q8x
ftlr (18)
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where 71 is the viscosity of the fluid, Ax the length of the xylem,
and r the radius of the individual xylem elements and Q is the
flow rate (17). The superscripts XL and XR refer to the xylem at
the leaf and root ends, respectively.
The leaf water potential is now written as

Q L
AL (19)

Similar to Equation 7, the xylem tension at the root end may be
written

(20)

Solving Equation 18 for XL and substituting in Equation 19, and
substituting Equation 20 in that result, yields at the steady state

*'4,-1JJ° =-Q + ARLR + >Ax) + ARRT
Q(ALL+A'L+1 Q

(21)

Again, Equation 17 describes the transpiration rate.
It should be noted here that the effect of adding the xylem

resistance term to the system would have the same effect on the
leaf potential/transpiration curve as decreasing either the root,
leaf, or system conductances (see Fig. 9).

Partition Function. Equation 13 describes the way the absorbed
water is divided between growth and transpiration. Reference to
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Figure 6 will help to clarify the influence ofthe various coefficients
in Equation 13. Interaction between the coefficients B and m is
complex, but together they act to fix the position ofthe transitional
(vertical) part of the curve and the steepness of the transition.
Initial estimates of B and m may be obtained by regression of the
linear transform given in Spain (18). The various offsets discussed
in the text are produced by manipulating A and C. Coefficients A
and C set the partition limits (offsets) for high and low values,

respectively, of the independent variable (-4/). For example, for
curve 1 in Figure 6, A = 1 and C = 0; for curve 2, A = 1 and C
= 0.2; and for curve 7, A = 0.8 and C = 0. Combinations of offsets
other than those shown may be produced by setting A and C to
whatever values are desired. Mathematically, it is not even nec-
essary that A > C, so it is possible to produce a curve ranging
from 1 to 0, with increasing absolute value of 4, simply by setting
A =OandC= 1.
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