Ammonia Exchange and Photorespiration in *Chlamydomonas*

Received for publication September 18, 1982 and in revised form December 6, 1982

GILLES PELTIER AND PIERRE THIBAULT

Département de Biologie, Service de Radioagronomie, C. E. N. de Cadarache, B. P. No. 1, F-13115 Saint Paul Lez Durance, France

ABSTRACT

Two hours after the addition of L-methionine-DL-sulfoximine to the cell suspension, glutamine synthetase activity was inhibited by more than 90% in air-grown Chlamydomonas reinhardii. Cells continued to take up NH₃ from the medium provided that the concentration of dissolved CO₂ was high (equilibrated with 4% CO₂ in air). This NH₃ uptake, about 30% of the control, is discussed in terms of glutamate dehydrogenase activity. Without CO₂, or with a low CO₂ level, a NH₃ excretion was observed, the rate of which depended on the actual concentration of the dissolved CO₂. Experiments with ¹⁵NH₃ demonstrated that no NH₃ uptake was masked by this excretion and inversely that no excretion occurred during the uptake in the conditions where it took place. Furthermore, the NH₃ excretion observed in the absence of CO₂ increased when O₂ concentration rose to 15% and was inhibited when 10 millimolar isonicotinic acid hydrazide was supplied to the algal suspension. Thus, NH₃ excretion in the presence of L-methionine-DL-sulfoximine seems to be related to a photorespiratory process inasmuch as it presents the same properties with regard to the O2 and the isonicotinic acid hydrazide effects. These results favor the hypothesis that NH₃ produced in the medium originates from the glycine to serine reaction. On the other hand, partial inhibition (50%) of photosynthesis by L-methionine-DL-sulfoximine was attributed to uncoupling between electron transfer and photophosphorylation due to NH₃ accumulation into the cell.

L-MSO¹ is known to be an irreversible inhibitor of GS (16) without effect on GDH (2, 13). Because of these properties, the use of this compound allowed a distinction between the two pathways capable of NH_3 assimilation (9). Thus, using L-MSO, Stewart and Rhodes on *Lemna minor* (20) and Cullimore and Sims on *Chlamydomonas* (5) concluded that NH_3 assimilation occurred exclusively via the GS-glutamate synthase pathway; GDH would be devoid of any anabolic role.

Furthermore, when a green plant is treated with L-MSO in the presence of air, NH₃ production takes place: this phenomenon has been observed both in higher plants like tobacco (18) or spinach (11) and in the green alga *Chlamydomonas* (4). This NH₃ production was shown to be light-dependent, abolished by DCMU, and absent when algae were bubbled with air supplemented with 3% CO₂ (4). From this, it was concluded that NH₃ originated from photorespiration. This conclusion agrees with the results of Keys *et al.* (8) who showed that reassimilation of NH₃ produced during the glycine to serine conversion was catalyzed by GS. However, Platt and Anthon (11) did not observe a decrease in the rate of NH₃ accumulation in spinach leaves under low O₂ concentration

(2.2%), although in such conditions photorespiration is known to be largely decreased (3). In addition, they showed that L-MSO induced a rapid and complete inhibition of photosynthesis.

In this paper, we study the effect of CO_2 concentration on NH_3 exchange and photosynthesis in air-grown *Chlamydomonas* treated with L-MSO. Furthermore, we report on the effects of O_2 concentration and INH, an inhibitor of photorespiration, on NH_3 excretion which occurs in the presence of L-MSO. We discuss our results in relation to the NH_3 -assimilating pathway and photorespiratory NH_3 -recycling in algae.

MATERIALS AND METHODS

Plant Material. Chlamydomonas reinhardii (wild type 137 c) was kindly supplied by Dr. Pierre Bennoun. It was grown axenically and phototrophically under continuous fluorescent illumination with a quantum flux density of 40 to 50 μ E·m⁻²·s⁻¹ (400-700 nm). An air stream was bubbled through the continuously stirred culture at a rate of about 20 L·h⁻¹. The culture medium contained 7.50 mm NH₄Cl, 0.45 mm CaCl₂, 0.04 mm MgSO₄, 4.12 mM K₂HPO₄, 2.67 mm KH₂PO₄, and 0.023 mm Fe·EDTA. One ml of trace element solution (7) was added to each L of medium. The pH was adjusted to 6.0.

Experimental Procedure. During exponential growth, cells were harvested by centrifugation and resuspended in a culture medium lacking NH₄Cl. NH₃ concentration was kept between 2 and 3 mg NH₃·L⁻¹ and Chl concentration between 3 and 6 μ g Chl·ml⁻¹. Cell suspension (200 ml) was transferred into a test flask and bubbled, depending on the experiment, either with air, CO₂-free air, 4% CO₂ in air, or gas mixtures containing different O₂ concentrations, at a rate of 10 to 20 L·h⁻¹ when not specified otherwise. Illumination was provided by incandescent light with a quantum flux density of 1000 to 1100 μ E·m⁻²·s⁻¹ (400-700 nm). The temperature was 25°C during the assay. L-MSO was added in a final concentration of 0.5 mM at zero time. During the time experiment, we observed no significant change in Chl concentration and pH.

Ammonia Determination in the Medium. At timed intervals, 1.5-ml aliquots were taken. Cells were separated from the medium by filtration and NH₃ was determined colorimetrically as described by Weatherburn (23). The method was calibrated in the presence or in the absence of 0.5 mM L-MSO. When 10 mM INH was present, no coloration occurred. In this case, NH₃ was determined by isotopic dilution using ¹⁵N. A known quantity of ¹⁵NH₄Cl was added to the sample and final ¹⁵N content was measured as described in the following section.

¹⁵N Measurements. NH₃ was expelled by bringing the sample to pH 11 using 0.1 N NaOH, and was trapped on a glass fiber filter impregnated with 0.1 N H₂SO₄. After about 16 h, the filter was placed in one limb of a Rittenberg apparatus and 1 ml of 1 M LiOBr was introduced in the other limb. ¹⁵N content of NH₃ was determined after its conversion into N₂ (15).

Photosynthesis Measurement. Algae (about 50 μ g Chl) were filtered on a Metricel membrane filter GA 4 (0.8 μ m × 42 mm) to

¹ Abbreviations: L-MSO, L-methionine-DL-sulfoximine; GS, glutamine synthetase; GDH, glutamate dehydrogenase; INH, isonicotinic acid hydrazide.

form an artificial leaf. This filter was placed in a photosynthesis chamber containing 4 ml culture medium in order to avoid desiccation of the cells. The chamber was continuously flushed with air. The flow rate was monitored and regulated with a mass flowmeter (Air Liquide, RDS 101). CO₂ exchange was measured with an IR gas analyzer (Hartmann & Braun, URAS 2). The quantum flux density was 900 μ E m⁻²·s⁻¹ (400–700 nm). Under these conditions, photosynthetic capacity was light-saturated and showed no degradation for 3 h. In some experiments, photosynthesis was directly measured in the test tube.

GS Activity Determination. After filtration, cells were permeabilized using liquid N_2 in a two-cycle freeze-thaw treatment. To prevent a penetration of external L-MSO into the permeabilized cells, cells were washed on the filter with 10 ml distilled H₂O prior to permeabilization. Synthetase activity was determined as described by Rhodes *et al.* (14).

Chl Content. After extraction with 90% methanol, Chl content was determined by the method described in Reference 17.

RESULTS

Ammonia Exchange under Different CO₂ Concentrations in L-MSO-Treated Cells. In the presence of CO₂-free air, algae started to excrete NH₃ about 100 min after the addition of L-MSO (Fig. 1A). The excretion rate was 56 ± 3 nmol NH₃·mg⁻¹ Chl·min⁻¹

FIG. 1. A, NH₃ exchange in L-MSO-treated *Chlamydomonas* in different CO₂ concentrations in air, 5.8 μ g Chl·ml⁻¹. (\Box), CO₂-free air; (\bigcirc), air; (\bigcirc), 4% CO₂ in air. NH₄Cl was added at 270 min. B, Control without L-MSO. NH₄Cl was added at 125, 225, and 310 min.

(mean \pm sD, six determinations). In air, NH₃ excretion started 150 min after the addition of the inhibitor. The excretion rate was very variable from one experiment to the other and was found to be 47 \pm 30 nmol NH₃·mg⁻¹ Chl·min⁻¹ (mean \pm sD, 22 determinations). In the presence of 4% CO₂ in air, algae continued to take up NH₃ after the addition of L-MSO at a rate of 124 \pm 17 nmol NH₃·mg⁻¹ Chl·min⁻¹ (mean \pm sD, six determinations). In the control experiments (Fig. 1B), the NH₃ uptake was about 45 nmol NH₃·mg⁻¹ Chl·min⁻¹ under CO₂-free air and increased up to about 200 and 390 nmol NH₃·mg⁻¹ Chl·min⁻¹ under CO₂-free air and increased up to about t 200 and 390 nmol NH₃·mg⁻¹ Chl·min⁻¹ under chl·min⁻¹ under chl·min⁻¹ under air and 4% CO₂ in air, respectively. In every case, we observed a virtually complete inhibition of GS activity 120 min after the addition of the inhibitor (Table I). This L-MSO-insensitive NH₃ uptake could occur at the same time in L-MSO-treated cells.

In order to clear this point, we carried out an experiment using ¹⁵NH₃. Figure 2A shows that in air the ¹⁵NH₃ uptake was completely abolished about 150 min after the addition of L-MSO. NH₃ excretion consisted essentially of ¹⁴NH₃. From this, we concluded that there was no NH₃ uptake during the excretion. In 4% CO₂ in air, uptake occurred with the same constant rate for each isotopic species (Fig. 2B), thus proving that no excretion occurred during NH₃ uptake. Consequently, it appears that the CO₂ concentration affects NH₃ excretion in L-MSO-treated cells. The concentration of dissolved CO₂ is obtained through the equilibrium between the gas-liquid diffusion rate and photosynthetic CO₂ fixation. Thus, when the algal suspension was bubbled with air, the concentration of dissolved CO₂ was determined by the ratio between the air flow rate and the Chl content. To test the influence of the concentration

Table I. Effect of L-MSO on GS Activity under Different CO₂ Concentrations

	GS Activity ^a		
	0 min	120 min	240 min
	nmol γ -glutamyl hydroxamate \cdot mg ⁻¹ Chl \cdot min ⁻¹		
CO ₂ -free air	112	9	3
Air	87	3	2
Air + 4% CO ₂	95	7	5

^a Activity shown at times after L-MSO addition.

FIG. 2. Evolution of 14 NH₃ and 15 NH₃ species in L-MSO-treated *Chlamydomonas*. At zero time, L-MSO and 15 NH₄Cl were added to the algal suspension, 5.6 µg Chl·ml⁻¹. A, air; (**II**), 16 NH₃; (**II**), 14 NH₃. B, 4% CO₂ in air; (**II**), 15 NH₃; (**II**), 16 NH₃; (**II**), 16 NH₃.

of CO₂ on the NH₃ exchange in the presence of L-MSO when cells were bubbled with air, we performed the following experiment. Photosynthesis for a given Chl content was measured as a function of air flow rate (Fig. 3A). In this condition, photosynthesis was only dependent on dissolved CO₂ concentration. Therefore, we selected three flow rates corresponding to different concentrations of dissolved CO₂. After the addition of L-MSO, the NH₃ in the medium was measured. When cells were bubbled at a rate of 10 $L \cdot h^{-1}$, NH₃ excretion occurred at a rate of 40 nmol NH₃·mg⁻¹ $Chl \cdot min^{-1}$ (Fig. 3B). On the other hand, when the air flow rate was 45 $L \cdot h^{-1}$ or 80 $\dot{L} \cdot h^{-1}$, we observed NH₃ uptake at a rate of 70 nmol NH₃·mg⁻¹ Chl·min⁻¹ and 116 nmol NH₃·mg⁻¹ Chl· min⁻¹, respectively. These results show that the NH₃ exchange in the presence of L-MSO is really dependent on the concentration of dissolved CO₂. When the concentration of dissolved CO₂ was low, NH₃ excretion took place; however, when the concentration of CO₂ dissolved was closer to the equilibrium with air, NH₃ uptake occurred.

Effect of O_2 Concentration on Ammonia Excretion in the Presence of L-MSO. To determine the influence of O_2 concentration on NH₃ excretion, we carried out two types of experiments. In the first one, we studied the effect of O_2 concentration in the absence of CO₂. Figure 4 shows that there was no NH₃ excretion under 0% O_2 in the gas phase. NH₃ excretion increased as a function of O_2 concentration up to 15% O_2 . A maximum excretion rate of about 65 nmol NH₃·mg⁻¹ Chl·min⁻¹ was obtained under O_2 concentration between 15 and 100% O_2 .

In the second experiment, L-MSO-treated algae were bubbled with a gas mixture containing O₂ (1.5%), CO₂ (300 μ l·l⁻¹), balance N₂. NH₃ uptake decreased and stopped after about 350 min (Fig. 5). Moreover, the NH₃ excretion occurring in air stopped when

FIG. 3. A, Photosynthesis as a function of air flow rate. B, NH₃ exchange in L-MSO-treated *Chlamydomonas* bubbled with different air flow rates. After the addition of L-MSO, the algal suspension, $3.2 \ \mu g$ Chl·ml⁻¹, was subdivided in three test flasks and bubbled with air at different flow rates. (\Box), 80 L·h⁻¹; (\odot), 45 L·h⁻¹; (\oplus), 10 L·h⁻¹.

FIG. 4. Effect of O_2 concentration on NH_3 excretion in L-MSO-treated *Chlamydomonas*. Algae were bubbled with gas mixtures containing different O_2 concentrations, balance N_2 . NH_3 excretion was determined between 3 and 6 h after the addition of L-MSO.

FIG. 5. Effect of INH and low O₂ concentration at CO₂ air level on NH₃ excretion in L-MSO-treated *Chlamydomonas*, 5.2 μ g Chl·ml⁻¹. (D), air; when indicated (a), the culture was subdivided in two parts and INH (10 mM) was added in one of them (\triangle); at time b, air was replaced in the other part by a gas mixture containing 1.5% O₂, 300 μ l·L⁻¹ CO₂, balance N₂. (\bigcirc), 1.5% O₂, 300 μ l·L⁻¹ CO₂, balance N₂. NH₄Cl was added at 475 min.

the algae were bubbled with the same mixture containing low O_2 concentration. Gas flow rates and Chl content were controlled to avoid variations in the concentration of dissolved CO_2 .

Effect of INH on Ammonia Excretion in L-MSO-Treated Algae. INH is known to be an inhibitor of the photorespiratory pathway blocking the conversion of glycine to serine (10, 12). The addition of 10 mM INH stopped the NH₃ excretion observed in air in L-MSO-treated algae (Fig. 5). A complete inhibition of the excretion occurred about 10 min after the addition of INH.

Effects of L-MSO on Photosynthesis. In this experiment, we checked photosynthetic activity of L-MSO-treated algae bubbled with air and 4% CO_2 in air (Fig. 6). Measurements were performed with artificial leaves in the presence of air (see "Materials and Methods"). When algae were bubbled with air, the photosynthetic activity decreased and reached an equilibrium level corresponding to a 50% inhibition of the initial rate. Inhibition of photosynthesis and NH₃ excretion started approximately at the same time. On the other hand, when cells were bubbled with 4% CO_2 in air, NH₃ uptake occurred, and we observed no significant inhibition of photosynthesis.

FIG. 6. A, NH₃ exchanges in L-MSO-treated *Chlamydomonas*, 5.6 μ g Chl·ml⁻¹. (D), Air; (\bullet), 4% CO₂ in air. NH₄Cl was added at 300 min. B, Photosynthesis measured with artificial leaves using algae treated as in A.

Ammonia Exchange under Air in the Absence of L-MSO. In this experiment, we attempted to determine whether NH_3 excretion observed in the presence of L-MSO also occurred in untreated cells. ¹⁵NH₄Cl was added to the algal suspension and the evolution of ¹⁴NH₃ and ¹⁵NH₃ was followed under the condition where the algal suspension was bubbled with air. Under such conditions, L-MSO induced ¹⁴NH₃ excretion. Each isotopic species disappeared with the same constant rate (data not shown), leading to the conclusion that no ¹⁴NH₃ excretion occurred, in agreement with earlier studies (4).

DISCUSSION

Our results show that, under certain conditions, the assimilation of NH₃ by Chlamydomonas can occur via another way than the GS-glutamate synthase pathway. When GS activity was virtually completely abolished by L-MSO (Table I), a CO₂-dependent NH₃ uptake was observed (Fig. 1). At present, it is generally accepted that NH₃ assimilation by higher plants occurs exclusively via the GS-glutamate synthase pathway (9). However, it was suggested that GDH could play an anabolic role in green algae, inasmuch as these algae contain a GDH with a low K_m for NH₃ (9). Our experiments using ¹⁵NH₃ (Fig. 2) show that under conditions where CO₂ limited photosynthesis, GS deactivation by L-MSO was followed by an abolition of NH₃ uptake. On the other hand, when photosynthesis was CO₂-saturated, a condition which was obtained when algae were bubbled with 4% CO₂ in air and which was approximated when algae were bubbled with a sufficiently strong air stream, GDH might have been responsible for this L-MSO-insensitive NH₃ uptake. If we assume that the NH₃ uptake observed in the presence of L-MSO is a measure of GDH contribution to NH₃ assimilation, GDH could cause about 30% of the total assimilation when photosynthesis is saturated with CO₂. The two pathways capable of NH₃ assimilation, the glutamate synthase cycle and the GDH pathway, have different energy requirements: the first way costs 1 ATP/NH₃ assimilated more than the second one. Thus, using the phosphorylating power to fix CO₂, algae will probably use the more economical pathway to fix NH₃. However, in order to obtain information on the possible anabolic role of GDH, it will be necessary to follow up ¹⁵N incorporation into the first labeled amino acids under conditions where L-MSO does not completely inhibit NH₃ uptake.

Under some conditions, following GS deactivation, L-MSO induces an excretion of NH₃. Earlier studies showed that this excretion was light-dependent and absent in the presence of air supplemented with CO_2 (4). For these reasons, it was concluded that NH₃ originated from the photorespiratory pathway, which is known to produce NH₃ during the mitochondrial conversion of glycine to serine (8).

The NH₃ uptake observed in L-MSO-treated algae bubbled with 4% CO₂ in air might result from an excretion superimposed on an increased uptake. The use of ¹⁵NH₃ showed that no ¹⁴NH₃ excretion occurred under these conditions (Fig. 2B). However, it appears possible that ¹⁴NH₃ was produced and refixed inside the cell with no ¹⁴NH₃ excreted. This hypothesis seems to be substantiated by our experiment performed in the absence of L-MSO. Indeed, if we assume that the ¹⁴NH₃ excreted is produced during the glycine to serine conversion, NH3 production is not induced by L-MSO. However, we did not observe any significant ¹⁴NH₃ release in the absence of L-MSO. This result can be explained by a rapid reassimilation of the ¹⁴NH₃ produced. Consequently, the transition between a NH₃ excretion and an uptake, observed when the concentration of dissolved CO₂ increased (Fig. 3), could result from the efficiency of such a NH₃-recycling. Therefore, the variability observed in the excretion rates when algae were bubbled with air was probably the consequence of this CO₂-sensitive NH₃recycling, because Chl and air flow rates were not closely controlled during these experiments.

The effects of O₂ concentration and INH on the NH₃ excretion occurring in L-MSO-treated algae indicate that NH₃ excretion and photorespiration are closely linked. Under low O₂ concentration, at the CO_2 air level, conditions where photorespiration is largely decreased (3), no NH₃ excretion occurred (Fig. 5). Platt and Anthon (11) did not observe any significant effect of a decrease in O2 concentration on NH3 accumulation rates when spinach leaves were supplied with L-MSO. NH₃ production in the presence of L-MSO could result from different mechanisms in algae and in higher plants. It is generally accepted that dark respiration in leaves saturates at about 2% O₂, while photorespiration is not yet saturated at 100% O₂ (3). Our results show that NH₃ excretion in the absence of CO₂ was half-saturated when the O₂ concentration in the gas phase was about 10% O2. This suggests that a photorespiratory process, rather than a respiratory process, is involved in the metabolic pathway leading to the excretion of NH₃. Furthermore, we observed that INH, an inhibitor of the glycine to serine conversion both in algae (12) and in higher plants (10), stopped NH₃ excretion (Fig. 5). Consequently, it seems probable that the reaction 2 glycine \rightarrow serine + CO₂ + NH₃ belonging to the photorespiratory pathway would be responsible for NH₃ excretion in L-MSO-treated Chlamydomonas.

It seems likely that the major process for CO₂ loss during photorespiration in higher plants occurs during this reaction (19, 22). If it is the same in algae, the activity of photorespiration could be determined in measuring NH₃ excretion in the presence of L-MSO. Thus, photorespiration would not occur in air-grown Chlamydomonas when the concentration of dissolved CO_2 is close to the equilibrium with air. This is suggested by the fact that the uptakes observed when L-MSO-treated algae were bubbled either with air at a sufficient flow rate or with 4% CO₂ in air were not significantly different; if NH₃ really originates from photorespiration, no NH₃ should be produced under 4% CO₂ in air as under saturating air flow rates. Photorespiration would only occur at low concentrations of dissolved CO_2 . This is in agreement with recent studies showing that an O₂-sensitive CO₂ release occurred at subsaturating dissolved inorganic carbon levels (1). The formation of glycolate is generally assumed to be the consequence of the ribulose-1,5-bisphosphate oxygenase activity (22). In higher plants, the in vitro K_m (O₂) of this activity has been reported to be 33% (6), and the K_m (O₂) for glycolate formation by intact chloroplasts to be 23% (21). However, we observed in Chlamydomonas that saturation of NH₃ excretion occurred when the O₂ concentration was higher than $15\% O_2$ and half-saturation for 10% O_2 (Fig. 4). This deviation can be due either to the fact that the K_m (O₂) values for algae and higher plants are quite different or, if not, to the fact that one step of the photorespiratory pathway limits the utilization of glycolate and therefore causes its excretion by algae.

Measurements of NH₃ excretion rates were obtained when the photosynthetic capacity was partially inhibited (Fig. 6). Photorespiration and photosynthesis are very closely related, so we attempted to find out how L-MSO inhibited photosynthesis. It was suggested (11) that the inhibition of photosynthesis by L-MSO could result from either a direct action on CO₂ uptake or an uncoupling of phosphorylation following NH₃ accumulation. Our results clearly show that the effect of L-MSO on photosynthesis is indirect because it occurred only when algae excreted NH₃ (Fig. 6). Thus, the uncoupling effect is probably responsible for the inhibition observed.

In conclusion, L-MSO appears to be a useful tool to study the NH₃ production associated with photorespiration in vivo. However, in our experimental conditions, photosynthesis was partially inhibited, due to the uncoupling effect induced by NH₃ accumulation into the cell. By following directly in short time experiments the NH₃ production into the cell, the uncoupling effect should be overcome. We are presently performing such experiments.

Acknowledgments-The authors thank Arlette Le Mouellic for skillful technical assistance and Professor G. H. Schmid for critically reading the manuscript.

LITERATURE CITED

- 1. BIRMINGHAM BC, JR COLEMAN, B COLMAN 1982 Measurement of photorespiration in algae. Plant Physiol 69: 259-262
- 2. BRENCHLEY JE 1973 Effect of methionine sulfoximine and methionine sulfone on glutamate synthesis in Klebsiella aerogenes. J Bacteriol 114: 666-673
- 3. CHOLLET R, WL OGREN 1975 Regulation of photorespiration in C_3 and C_4 species. Bot Rev 41: 137-179

- 4. CULLIMORE JV, AP SIMS 1980 An association between photorespiration and protein catabolism: studies with Chlamydomonas. Planta 150: 392-396
- CULLIMORE JV, AP SIMS 1981 Pathway of ammonia assimilation in illuminated and darkened Chlamydomonas reinhardii. Phytochemistry 20: 933-940
- 6. FARQUHAR GD, S CAEMMERER, JA BERRY 1980 A biochemical model of photosynthetic CO₂ assimilation in leaves of C₃ species. Planta 149: 78-90
- 7. HUTNER SH, L PROVASOLI, A SHATZ, CP HASKINS 1950 Some approaches to the study of the role of metal in the metabolism of microorganisms. Proc Am Phil Soc 94: 152-170
- 8. KEYS AJ, JF BIRD, MJ CORNELIUS, PJ LEA, RM WALLSGROVE, BJ MIFLIN 1978 Photorespiratory nitrogen cycle. Nature 275: 741-743
- 9. MIFLIN BJ, PJ LEA 1980 Ammonia assimilation. In PK Stumpf, EE Conn, eds, The Biochemistry of Plants, Vol 5. Academic Press, New York, pp 169-202
- 10. MIFLIN BJ, AFH MARKER, CP WHITTINGHAM 1966 The metabolism of glycine and glycollate by pea leaves in relation to photosynthesis. Biochim Biophys Acta 120: 266-273
- 11. PLATT SG, GE ANTHON 1981 Ammonia accumulation and inhibition of photosynthesis in methionine sulfoximine-treated spinach. Plant Physiol 67: 509-513
- 12. PRITCHARD GG, CP WHITTINGHAM, WJ GRIFFIN 1963 The effect of isonicotinyl hydrazide on the photosynthetic incorporation of radioactive carbon dioxide into ethanol-soluble compounds of Chlorella. J Exp Bot 14: 281-289
- 13. PROBYN TA, OAM LEWIS 1979 The route of nitrate-nitrogen assimilation in the root of *Datura stramonium* L. J Exp Bot 30: 299–305 14. RHODES D, GA RENDON, GR STEWART 1975 The control of glutamine synthetase
- level in Lemna minor L. Planta 125: 201-211
- RITTENBERG D 1946 The preparation of gas samples for mass spectrographic isotopic analysis. In DW Wilson, AO Nier, SP Reiman, eds, Preparation and Measurement of Isotopic Tracers. JW Edwards, Ann Arbor, MI, pp 31-42
- 16. RONZIO RA, WB ROWE, A MEISTER 1969 Studies on the mechanism of inhibition of glutamine synthetase by methionine sulfoximine. Biochemistry 8: 1066-1075
- 17. SCHMID GH 1971 Origin and properties of mutant plants: yellow tobacco. Methods Enzymol 23: 171–194
- 18. SINDEN SL, RD DURBIN 1968 Glutamine synthetase inhibition: possible mode of action of wildfire toxin from Pseudomonas tabaci. Nature 219: 379-380
- 19. SOMERVILLE CR, WL OGREN 1981 Photorespiration-deficient mutants of Arabidopsis thaliana lacking mitochondrial serine transhydroxymethylase activity. Plant Physiol 67: 666-671
- 20. STEWART GR, D RHODES 1976 Evidence for the assimilation of ammonia via the
- glutamine pathway in nitrate-grown Lemna minor L. FEBS Lett 64: 296–299 AKABE T, T AKAZAWA 1981 Mechanism of glycolate transport in spinach leaf 21. 1 chloroplasts. Plant Physiol 68: 1093-1097
- 22. TOLBERT NE 1980 Photorespiration. In PK Stumpf, EE Conn, eds, The Biochemistry of Plants, Vol 2. Academic Press, New York, pp 487-523
- 23. WEATHERBURN MW 1967 Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39: 971-974