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Abstract
Extensive research has been conducted to gain a deeper understanding of the deregulated metabolic pathways in the devel‑
opment of trisomy 21 (T21) or Down syndrome. This research has shed light on the hypothesis that oxidative stress plays 
a significant role in the manifestation of the T21 phenotype. Although in vivo studies have shown promising results in 
mitigating the detrimental effects of oxidative stress, there is currently a lack of introduced antioxidant treatment options 
targeting cognitive impairments associated with T21. To address this gap, a comprehensive literature review was conducted 
to provide an updated overview of the involvement of oxidative stress in T21. The review aimed to summarize the insights 
into the pathogenesis of the Down syndrome phenotype and present the findings of recent innovative research that focuses 
on improving cognitive function in T21 through various antioxidant interventions. By examining the existing literature, this 
research seeks to provide a holistic understanding of the role oxidative stress plays in the development of T21 and to explore 
novel approaches that target multiple aspects of antioxidant intervention to improve cognitive function in individuals with 
Down syndrome.
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Graphical Abstract
The guides ‑base systematic review process (Hutton et al. 2015).
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Introduction

Trisomy 21 (T21), also known as Down syndrome (DS), 
is the most prevalent genetic disorder affecting fetuses 
(Sherman et al. 2007; de Graaf et al. 2021; de Graaf et al. 
2017; Murthy et al. 2007). T21 occurs at an incidence 
of approximately 1 in 700 to 1 in 1000 births worldwide 
(Irving et al. 2008; Mai et al. 2019). It is characterized by 
the presence of an extra copy of chromosome 21 and can 
result from various genetic abnormalities such as mater‑
nal non‑disjunction, mosaic karyotype, Robertsonian 

translocation, or partial duplication of the critical region 
of chromosome 21(Hoeffer et al. 2007; Antonarakis et al. 
2020; Akhtar and Bokhari 2021). Individuals with T21 
exhibit distinctive features including cognitive impair‑
ment, muscle hypotonia, and dysmorphic characteristics 
(Lana‑Elola et al. 2011; Korenberg et al. 1994; Korbel 
et al. 2009). Proper diagnosis and treatment of neuro‑
logical complications are essential for optimizing the life 
expectancy and well‑being of individuals with DS (Lott 
and Dierssen 2010). Given the multiple impairments asso‑
ciated with the presence of an additional chromosome 
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21, it is crucial to gain novel insights into the disrupted 
metabolic pathways, particularly those related to cogni‑
tive impairment improvement (Narasimhan et al. 2013; 
Jackson et al. 2019; Adelekan et al. 2012; Whooten et al. 
2018; Hartley et al. 2015; Gardiner 2014). Understand‑
ing the functions of genes on chromosome 21 and their 
impact on cognitive impairment is of paramount impor‑
tance (Ishihara and Akiba 2017). Gene mapping stud‑
ies have identified lipid peroxidation, mitochondrial 
dysfunction, and impaired neurogenesis as potential 
factors contributing to the neuronal phenotype and cog‑
nitive impairment in DS. Recent clinical investigations 
have highlighted a connection between oxidative stress 
and cognitive deficits in individuals with T21 (Zis et al., 
n.d.; Lott 2012; Ishihara and Akiba 2017; Zafrilla et al. 
2014). Consequently, there has been discussion regard‑
ing antioxidant interventions aimed at reducing the nega‑
tive consequences of increased oxidative stress, such as 
lipid peroxidation, mitochondrial dysfunction, and dis‑
turbances in neurogenesis factor synthesis (Picca et al. 
2020). Despite these findings, there is currently a lack 
of clinical management strategies or the introduction of 
novel treatment modalities specifically for T21 (Muchová 
et al. 2014). Consequently, multidirectional target analy‑
ses are still being explored, along with subsequent evalu‑
ations of their potential as DS biomarkers and therapeutic 
targets. Further research is needed to better understand 
the underlying mechanisms and to develop effective inter‑
ventions to improve cognitive function and overall out‑
comes in individuals with T21.In this review, we examine 
the available data on the DS phenotype and highlight the 
emerging role of oxidative stress in its pathogenesis. Fur‑
thermore, we compare various antioxidant interventions 
that have been employed to address DS‑related cogni‑
tive impairment, along with subsequent analysis of clin‑
icopathological features. The review aims to shed light 
on the relationship between oxidative stress and the DS 
phenotype by examining relevant studies. It explores how 
oxidative stress may contribute to the cognitive impair‑
ments observed in DS and investigates different antioxi‑
dant strategies that have been utilized to mitigate these 
impairments. Through a comprehensive analysis of the 
literature, we assess the effectiveness of various antioxi‑
dant implementations in improving cognitive function in 
individuals with DS. This includes a consideration of the 
clinical and pathological features associated with these 
interventions, providing insights into their potential ben‑
efits and limitations. By summarizing and comparing the 
existing research, this review seeks to enhance our under‑
standing of the interplay between oxidative stress and the 
DS phenotype, as well as provide valuable information on 
antioxidant approaches for addressing cognitive impair‑
ment in DS.

Materials and Methods

A systematic literature review was performed utilizing the 
PubMed database, adhering to the guidelines set forth by 
the Preferred Reporting Items for Systematic Reviews and 
Meta‑Analyses (PRISMA) and the Enhancing the QUAl‑
ity and Transparency Of health Research (EQUATOR) 
network (Hutton et al. 2015; Schiavo 2019). The review 
was conducted in accordance with a registered protocol 
in the PROSPERO database, with the registration number 
CRD42022302440. By following the PRISMA and EQUA‑
TOR network guidelines, as well as registering the review 
protocol in PROSPERO, this literature review strives to 
ensure a rigorous and transparent approach to synthesiz‑
ing and analyzing the available evidence related to the 
research question or topic of interest.

The literature search was performed in February 2022, 
utilizing specific keywords related to the research topic. 
The keywords included trisomy 21, Down syndrome, 
oxidative stress, antioxidant capacity, lipid peroxida‑
tion, mitochondrial dysfunction, serine/threonine protein 
kinase, neurogenesis, antioxidant treatment, and clinical 
trials. During the review process, manuscripts that exhib‑
ited poor study design, lack of clearly defined eligibility 
criteria, irrelevant definition of exposures, contrasts, and 
outcomes, outdated studies, inconsequential characteristics 
of study participants, inadequate reporting of results, or a 
plurality of the study group were excluded. By applying 
these inclusion and exclusion criteria, the review aimed to 
ensure the inclusion of relevant and high‑quality studies 
that provide valuable insights into the role of oxidative 
stress, antioxidant interventions, and associated clinical 
trials in trisomy 21 or Down syndrome. The rigorous eval‑
uation of the selected manuscripts helps to maintain the 
integrity and validity of the review findings.

Mapping Chromosome 21: Is it an Indication 
for the Oxidative Status Research?

The T21 is considered a comprehensive and reliable model 
for conducting experimental studies on genotype–pheno‑
type relationships (Salehi et al. 2007). Chromosome 21 
harbors multiple genes that have been associated with 
Down syndrome (DS) phenotypes. These genes include 
Cu/Zn superoxide dismutase (SOD1), amyloid precursor 
protein (APP), Ets‑2 transcription factors, Down Syn‑
drome Critical Region 1 (DSCR1), stress‑inducible factor, 
beta‑secretase 2 (BACE2), and S100 calcium binding pro‑
tein B (S100B) (Coskun and Busciglio 2012; Zewen Liu 
et al. 2017a, b, c)In addition, an aberrant gene expression 
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profile is linked to the mitochondrial phenotype observed 
in DS, characterized by reduced respiratory efficiency, 
changes in mitochondrial morphology, altered oxidative 
metabolism, and impaired mitochondrial biogenesis (Izzo 
et al. 2017; Sobol et al. 2019) (Table 1).

Emerging evidence indicates that gene therapy holds 
promise as a potential approach to modulate enzymatic 
activities and counteract the detrimental effects of oxida‑
tive stress. This therapeutic strategy has shown successful 
outcomes in various neurodegenerative and neurological 
disorders (X. Zhu et al. 2021; Sun and Roy 2021). Mount‑
ing evidence supports the notion that disturbances in neu‑
rogenesis and oxidative stress play a significant role in the 
development of diverse neuronal abnormalities observed in 
individuals with DS (Walton et al. 2012; Nunomura et al. 
2000; Helguera et al. 2013; Pagano and Castello 2012).

Oxidative Stress

A connection has been established between oxidative stress 
and neuronal cell apoptosis in the development of numer‑
ous neurodegenerative disorders (Fujita et al. 2012). The 
accumulation of reactive oxygen species (ROS) disrupts 
cellular signaling pathways and is linked to brain injury and 
the progression of neurodegenerative conditions (T.‑F. Yuan 
et al., n.d.; Nunomura et al. 2000; Iannello et al. 1999). The 

presence of oxidative stress causes the impairment of the 
blood–brain barrier, depolarization of membranes, inhibi‑
tion of membrane enzyme activity, and inadequate protein 
transport (Singh et al. 2019). The reduction in antioxidant 
capacity, along with impaired neurogenesis, has the potential 
to exacerbate nerve damage (Timme‑Laragy et al. 2013).

Consequently, the supplementation of antioxidants in 
individuals with DS has the potential to offer protection 
against the progression of neuronal dysfunction. Promising 
findings have emerged from studies focusing on enhancing 
psychomotor development through the use of antioxidant 
interventions, particularly those based on phytochemi‑
cal compounds derived from plants. These plant‑derived 
alternative antioxidants (AOX) encompass various dietary 
phytochemicals such as polyphenols, quinones, flavonoids, 
catechins, coumarins, and terpenoids, which are considered 
crucial exogenous AOX.

Previous research has already demonstrated the ability 
of AOX administration to impede the advancement of neu‑
rodegenerative diseases. However, the precise mechanism 
of action of AOX has yet to be fully elucidated. Ongoing 
investigations are aimed at further understanding the spe‑
cific ways in which AOX exert their protective effects in DS 
and other related conditions (Kumar and Khanum 2012). 
The existence and characterization of receptors or trans‑
porters for phytochemicals in brain tissues have yet to be 
definitively established, and the outcomes of clinical trials 

Table 1  Genes associated with oxidative stress characteristics in DS

Gene Name Protein significance References

Cause of oxidative status disturbance in DS
DYRK1A Dual Specificity Tyrosine Phosphoryla‑

tion Regulated Kinase 1A
A member of the Dual‑specificity tyrosine 

phosphorylation‑regulated kinase (DYRK) 
family involved in promotion of apoptosis 
in response to oxidative stress

Choi and Chung (2011) and Kimura et al. 
(2006)

NRIP1 Nuclear Receptor Interacting Protein 1 Interaction with the hormone‑dependent 
activation of nuclear receptors (modulation 
of transcriptional activity of the estrogen 
receptor)

Izzo et al. (2014)

SOD1 Superoxide Dismutase Type 1 Mitochondrial protein responsible for destroy‑
ing free superoxide radicals

Netto et al. (2004)

SUMO3 Small Ubiquitin Like Modifier 3 Involved in nuclear transport, DNA replica‑
tion and repair, mitosis, transcriptional 
regulation, and signal transduction

Prandini et al. (2007)

The effect of impaired oxidative status in DS
CBS Cystathionine Beta‑Synthase Involved in mitochondrial dysfunction based 

on impaired oxidative stress detoxification 
by either oxidation catalyzed by aldehyde 
dehydrogenase (ALDH) or by reduction to 
their corresponding alcohols by carbonyl 
reductase (CBR) and/or alcohol dehydroge‑
nase (ADH)

Marechal et al. (2019) and Perluigi and 
Butterfield (2012)

S100B S100 Calcium Binding Protein B Cell cycle regulator Lu et al. (2011), Whitaker‑Azmitia et al. 
(2010)



3947Cellular and Molecular Neurobiology (2023) 43:3943–3963 

1 3

investigating the application of AOX may yield promising 
results for individuals with T21. Consequently, therapeutic 
options that encompass compounds with multiple targets are 
deemed viable for addressing diseases with multifactorial 
causes, such as DS (Baburamani et al. 2019).

In recent years, there has been a substantial body of 
research highlighting the neuroprotective potential of phy‑
tochemicals and antioxidants, as well as their positive impact 
on the prevention of neurodegenerative disorders (Gandhi 
and Abramov 2012; Perrone et al. 2007; Barone et al. 2017; 
Kurabayashi et al. 2019). The assessment of oxidative stress 
in DS facilitates a better comprehension of the underlying 
mechanisms contributing to cognitive impairment, thereby 
driving the exploration of novel and promising molecular 
targets for elucidating and mitigating neurodegeneration, 
starting from early human prenatal development (Yadav 
et al. 2022).

Human Prenatal Development

Perluigi et al. conducted a study that focused on analyzing 
triplicated chromosome 21, which contains several genes 
associated with oxidative stress. The researchers evaluated 
various oxidative stress markers, including protein carbon‑
ylation, protein‑bound 4‑hydroxy‑2‑nonenal (HNE), levels 
of total and oxidized glutathione (GSH), concentrations of 
heat shock protein (HSP) and thioredoxin (TRX), in amni‑
otic fluid samples. The investigation utilized techniques 
such as slot‑blot analysis, enzymatic assays, and Western 
blot. The study findings demonstrated that oxidative stress 
occurs early in pregnancies affected by trisomy 21 (T21), as 
evidenced by increased protein oxidation, lipid peroxida‑
tion, reduced levels of GSH and TRX, and the induction of 
the HSP response. These processes have been implicated in 
the DS phenotype, providing insights into the role of oxi‑
dative stress in T21 pathogenesis (Perluigi et al. 2011; Zis 
et al., n.d.; Slonim et al. 2009; Marcovecchio et al. 2021; 
Convertini et al. 2016). The oxidative stress markers were 
also assessed following the collection of maternal plasma 
and amniotic fluid samples from confirmed T21 pregnan‑
cies (Barone et al. 2018; Buczyńska et al. 2021; Pietryga 
et al. 2021). The study results revealed a significant increase 
in DNA/RNA oxidative stress damage products in amniotic 
fluid samples from pregnancies affected by T21 compared 
to euploid samples. However, no significant difference was 
observed in plasma measurements between the two groups 
(Buczyńska et al. 2021). In pregnancies affected by T21, the 
concentration of advanced glycation end products (AGE) 
was found to be reduced in both plasma and amniotic fluid 
samples compared to euploid pregnancies. Conversely, 
the antioxidant marker asprosin exhibited significantly 
higher concentrations in both plasma and amniotic fluid 
samples within the T21 group when compared to euploid 

pregnancies. The therapeutic mechanism of asprosin is 
believed to be associated with its beneficial effects on insulin 
resistance, oxidative stress, and neuropathy (M. Wang et al. 
2019; Ozcan et al. 2022). Furthermore, the findings indi‑
cated that the concentrations of alpha‑1‑antitrypsin (A1AT) 
and 25‑hydroxy vitamin D (25‑OH vitamin D) were down‑
regulated in cases of trisomy 21 (T21) aneuploidy. This sug‑
gests that the decreased A1AT concentration, coupled with 
exacerbated inflammatory processes and heightened oxida‑
tive stress observed in T21 pregnancies, may have a negative 
impact on multiple comorbidities, potentially contributing 
to the development of the DS phenotype (Buczyńska et al. 
2021). The findings from this study suggest a hypothesis that 
oxidative stress primarily occurs within the fetus affected by 
T21 rather than in the maternal compartment. Additionally, 
it is proposed that the maternal antioxidant mechanisms may 
be inadequate to compensate for the antioxidant deficien‑
cies induced by the developing T21 fetus (Buczyńska et al. 
2021). It is crucial to emphasize that the impact of oxidative 
stress has already been observed during prenatal develop‑
ment. Therefore, when considering potential medications 
aimed at reducing oxidative stress, it is essential to ensure 
not only their effectiveness but also their safety for the devel‑
oping fetus (Scott et al. 2020; Buczyńska et al. 2021; 2020).

T21 Childhood

In a following study conducted by Zitnanova et al., the con‑
centration of oxidative stress markers was assessed using 
high‑performance liquid chromatography (HPLC). The 
study revealed that the group of children with T21, con‑
sisting of 20 participants, exhibited higher levels of pro‑
tein carbonyls in comparison to the healthy control group, 
which consisted of 18 individuals (Žitňanová et al. 2006). 
Conversely, the study found that the antioxidant capacity 
was comparable between the two groups. The primary focus 
of this investigation was to assess the hypothesis that indi‑
viduals with T21 exhibit an elevated oxidative stress status 
(Žitňanová et al. 2006). Likewise, Kamatsu et al. conducted 
an assessment of the concentration of 8‑hydroxy‑2'‑deox‑
yguanosine, an oxidative stress marker, in saliva samples 
obtained from individuals with T21. The findings of the 
study confirmed the presence of oxidative stress in T21 
patients based on the elevated levels of the oxidative stress 
marker (Komatsu et al. 2013). In their antioxidant evalua‑
tion, He et al. discovered that the total superoxide dismutase 
(SOD) activity was significantly higher in the T21 group 
compared to healthy individuals. However, the activity of 
extracellular glutathione peroxidase (GPx3) was found to 
be reduced in the T21 group. These findings highlight the 
altered antioxidant enzyme activities observed in individu‑
als with T21 compared to those without the condition (He 
et al. 2016). It can be inferred that oxidative stress not only 
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contributes to congenital impairments but also has detrimen‑
tal effects on various biological components (Sharifi‑Rad 
et al. 2020). Due to prolonged exposure to oxidative stress 
during the prenatal period, it is postulated that a decline in 
the compensatory antioxidant capacity of cells may exac‑
erbate oxidative‑related comorbidities, including cognitive 
phenotypes. Subsequent in vivo studies have been conducted 
to investigate and validate these hypotheses.

In Vivo Studies and Potential Therapies

Several DS mouse models have been developed to study 
the neurobiological and cognitive impairment mechanisms 
implicated in T21 (Gupta, Dhanasekaran, and Gardiner 
2016; Meng, Wang, and Ma 2018; Belichenko et al. 2015). 
The Ts65Dn and Ts1Cje mouse models possess an additional 
small region on chromosome 16 that harbors genes ortholo‑
gous to those found on triplicated human chromosome 21 
(D. Hamlett et al. 2015; Marechal et al. 2019; Revilla and 
Martínez‑Cué 2020). In their study, Ishihara et al. utilized 
T21 mouse models (Ts1Cje and Ts2Cje) to investigate oxi‑
dative stress. The results demonstrated an elevation in ROS 
concentration in the brains of mice with DS compared to 
those without the condition. Additionally, the expression of 
oxidatively modified proteins and lipid peroxidation‑derived 
products, such as 13‑hydroperoxy‑9Z,11E‑octadecadienoic 
acid and 4‑hydroxy‑2‑nonenal, was significantly increased in 
the brains of the T21 mouse models. These findings provide 
further evidence of oxidative stress in the context of DS 
(Ishihara et al. 2009). The study examined various in vivo 
protocols aimed at antioxidant therapy. The findings dem‑
onstrated that prenatal treatment had a positive impact on 
brain development. However, it should be noted that despite 
the promising results obtained, these findings have not yet 
been translated into clinical trials (Keck‑Wherley et al. 2011; 
Gardiner 2014; Najas et al. 2015; Revilla and Martínez‑Cué 
2020). Recent data has indicated that the administration of 
the antidepressant fluoxetine via prenatal infusion in Ts65Dn 
mice resulted in improved neuronal development in the brain 
(Kuehn 2016; Fayçal Guedj, Bianchi, and Delabar 2014). 
In this case, fluoxetine supplementation in Ts65Dn mice 
improved the development of brain neurons, where rapamy‑
cin and α‑tocopherol in preclinical studies markedly reduced 
lipid peroxidation and improved cognition in preclinical DS 
mouse models (Duval, Vacano, and Patterson 2018; Shichiri 
et al. 2011). Guedj et al. conducted a study demonstrating 
that the administration of the antioxidant apigenin offers pro‑
tection against elevated oxidative stress and imbalances in 
total antioxidant capacity in fetal cells derived from human 
amniotic fluid with T21 and in the Ts1Cje mouse model 
(Faycal Guedj et al. 2020; Warkad et al. 2021). This study 
suggests that apigenin has a pleiotropic effect, leading to 
the activation of pro‑proliferative and pro‑neurogenic factors 

including Mki67, nestin, Sox2, and Pax6. Additionally, api‑
genin appears to reduce the concentrations of pro‑inflam‑
matory cytokines, such as interferon gamma, interleukin 
1A, and interleukin 12P70, by inhibiting nuclear factor‑κB 
signaling. Furthermore, it increases the concentrations of 
anti‑inflammatory cytokines interleukin 10 and interleu‑
kin 12P40, while also enhancing the expression of angio‑
genic and neurogenesis factors, such as vascular endothelial 
growth factor A and interleukin 7 (Faycal Guedj et al. 2020).

Strengths and Limitations of Clinical Trial

Although there is substantial evidence supporting the occur‑
rence of oxidative stress in individuals with T21 through‑
out various stages of development, clinical trials conducted 
thus far have not yielded significant advancements in clini‑
cal management for this condition (S. E. Lee et al. 2020). 
A hypothesis can be put forward that prenatal antioxidant 
intervention may have a positive effect in mitigating cogni‑
tive impairment. This hypothesis suggests that by identify‑
ing deregulated metabolic pathways, new diagnostic targets 
can be identified, allowing for the implementation of opti‑
mized treatments, including during fetal life, with the aim 
of providing protective effects for the brain development of 
individuals with T21 (Fayçal Guedj, Bianchi, and Delabar 
2014). Prospective clinical studies involving large cohorts 
of children with T21 in the future may provide valuable 
insights into the impact of antioxidant therapies and diet on 
the clinical manifestations of this syndrome. Additionally, 
the potential of antioxidant interventions to slow down the 
progression of dementia and other neurodegenerative dis‑
eases in individuals with T21 warrants further investigation. 
Consequently, there is a demand for the development of new 
antioxidants with diverse intervention strategies. Further‑
more, the intricacies of oxidative remodeling in metabolic 
components and pathways in individuals with T21 remain 
incompletely understood and require further exploration 
(Gardiner 2014; Lott 2012; Fayçal Guedj, Bianchi, and Dela‑
bar 2014). The utilization of a redox‑modulating strategy 
to mitigate cognitive impairment holds promise as a novel 
therapeutic approach. However, a comprehensive compre‑
hension of ROS‑mediated signaling in trisomy is essential to 
facilitate the development of innovative therapeutic interven‑
tions (Bourgonje et al. 2020).

However, oxidative stress is just one of the pathways 
associated with congenital disabilities in Down syndrome 
DS. The absence of a comprehensive DS mouse model 
hinders the translation of treatments to DS patients. Conse‑
quently, predicting the dose–response relationship, potential 
side effects, and assessing cognitive function improvement 
between mouse and human models remains challenging. 
Overcoming these challenges through rigorous experimen‑
tal design and interpretation of results in both mouse and 
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human studies could potentially minimize the risk of clini‑
cal trial failures and contribute to the effective reduction of 
cognitive defects in DS treatment.

Lipid Peroxidation

Lipid peroxidation is a cascading chain reaction wherein 
by‑products, such as radicals derived from fatty acids, inter‑
act with other free fatty acids, resulting in the formation of 
lipid peroxides (LPOs) (Einor et al. 2016; Nishizawa et al. 
2021; Gasparovic et al. 2013; Gago‑Dominguez and Caste‑
lao 2008). Moreover, the presence of LPOs enhances the 
reactivity of non‑radical compounds by facilitating their 
interaction with singlet oxygen or oxyradicals. This height‑
ened reactivity of non‑radical compounds plays a significant 
role in modulating the redox potential (Barone et al. 2017; 
Ramana et al. 2017; Juan et al. 2021; Marnett 2002). The 
quantification of oxidized low‑density lipoprotein (o‑LDL), 
lipid peroxide (LPO), 4‑hydroxynonenal (HNE), and malon‑
dialdehyde (MDA) serves as reliable indicators of lipid per‑
oxidation, functioning as independent biomarkers (J et al. 
2020; Zhihua Liu et al. 2017a, b, c; Yuan et al. 2019). Lipids 
play a crucial role in the structural and functional integrity 
of the central nervous system, accounting for approximately 
60% of the constituents found in brain cells (Barón‑Mendoza 
and González‑Arenas 2022). Existing literature suggests that 
lipid peroxidation plays a significant role in the develop‑
ment of neurodegenerative diseases. It can modulate various 
aspects, including the physical properties of cell membranes, 
secondary messenger activity, and gene expression regula‑
tion. These implications are also relevant in the context of 
analyzing T21 (Strydom et al. 2018). Lipid peroxidation 
plays a crucial role in the development of cognitive impair‑
ment, and it can act as a signal integrator that translates 
various signals into metabolic responses. Additionally, it has 
the potential to impact cellular physiology and behavior on 
multiple levels, thereby disrupting neurogenesis processes 
(Müller et al. 2009).

Prenatal Development

Perluigi et al. identified proteins that are critically relevant 
in T21 pathogenesis and are involved in iron homeostasis 
(ceruloplasmin and transferrin), lipid metabolism (zinc‑
a2‑glycoprotein, retinol‑binding protein 4, and apolipo‑
protein A1), and inflammation (complement C9,a‑1B‑gly‑
coprotein, collagen alpha‑1 V chain) (Perluigi et al. 2011). 
Western blotting was performed to investigate amniotic fluid 
samples collected from 10 individuals with T21 pregnancy 
and 10 individuals with a healthy fetus, serving as a control 
group (Perluigi et al. 2011). The comparison of maternal 
plasma metabolic fingerprints between euploid and T21 

pregnancies revealed lower levels of five metabolites in the 
T21 group. Among these metabolites, linoleamide and pip‑
erine concentrations demonstrated the highest clinical sig‑
nificance (Parfieniuk et al. 2018). Linoleamide, also known 
as linoleic acid amide, participates in the lipid metabolism 
and specifically contributes to lipid peroxidation processes 
(Parfieniuk et al. 2018; Ioannou et al. 2019; Taha 2020). 
The reduced concentration of piperine, known for its anti‑
inflammatory, antioxidant, and lipid peroxidation‑protective 
properties, has been linked to the ineffective neuroprotective 
characteristics observed in individuals with T21 (Parfieniuk 
et al. 2018; Yang et al. 2015; Azam et al. 2022; Manap et al. 
2019).

Childhood

Research conducted on T21 children has demonstrated 
elevated levels of oxidative stress and lipid peroxidation. 
In a study conducted by He et al., it was observed that T21 
children exhibited higher concentrations of MDA compared 
to individuals without the trisomy 21 condition (He et al. 
2016). A similar finding was reported in the study con‑
ducted by Manna et al. The assessment of plasma lipid per‑
oxidation markers, including F2‑isoprostanes, F2‑dihomo‑
isoprostanes, and F4‑neuroprostanes, revealed increased 
levels of lipid peroxidation in the T21 group (Manna et al. 
2016). These disruptions are believed to be implicated in 
neurodegeneration and cognitive deterioration. Barone et al. 
provided evidence of the involvement of beta‑amyloid (Aβ) 
and tau hyperphosphorylation in T21 neuropathy. Addition‑
ally, the accumulation of HNE was observed in the brain of 
individuals with T21 compared to the control tissue (Barone 
et al. 2017). The accumulation of HNE is thought to have a 
significant impact on the disruption of metabolic pathways, 
leading to abnormalities in glucose metabolism, neuronal 
trafficking, and antioxidant responses (Barone et al. 2017).

Potential Treatment

Highlighting the significance of oxidative stress and lipid 
peroxidation, a study conducted by Ordonez et al. proposed 
that regular exercise could potentially reduce oxidative stress 
and subsequent lipid peroxidation in individuals with T21. 
In this particular study, a 12‑week training program consist‑
ing of three sessions per week was administered to thirty‑
one male adolescents with T21. The findings demonstrated 
a notable reduction in the concentration of MDA, indicating 
a decrease in lipoperoxidation (Javier Ordonez and Rosety‑
Rodriguez 2007). Pharmacological investigations have 
been conducted utilizing the Ts65Dn mouse model of DS. 
One study involved administering α‑tocopherol to pregnant 
Ts65Dn female mice starting from the day of conception 
throughout pregnancy, which resulted in a reduction in 
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cognitive impairment. Furthermore, young mice were sup‑
plemented with α‑tocopherol from birth until the comple‑
tion of the behavioral testing period. The findings of this 
study indicated that α‑tocopherol supplementation led to a 
mitigated cognitive impairment, accompanied by decreased 
lipid peroxidation levels when compared to the control 
group (Shichiri et al. 2011). In addition, supplementation 
with rapamycin, an inhibitor of the mammalian target of 
rapamycin complex 1, in Ts65Dn mice has been shown to 
decrease lipoxidation‑mediated protein damage. This sug‑
gests that rapamycin could serve as a potential therapeutic 
approach to reduce the risk of developing Alzheimer's dis‑
ease (AD) in individuals with DS (Curtis et al. 2020; Di 
Domenico et al. 2019).

Future Perspectives

Certain lipid metabolic pathways directly influence neu‑
ronal maturation and differentiation (Knobloch and Jess‑
berger 2017). Hence, the prevention of lipid peroxidation 
may potentially lead to a decrease in cognitive impair‑
ment. However, further studies are required to assess the 
impact of such interventions. Currently, no clinical trials 
have been conducted specifically targeting the reduction of 
lipid peroxidation through appropriate supplementation. It 
could be hypothesized that substances like α‑tocopherol or 
herbal supplements such as berberine might be considered 
as treatment options for prenatal or adult individuals with 
T21, based on promising results that could be obtained from 
well‑controlled clinical trials (Hasanein et al. 2017).

Mitochondrial Dysfunctions

Recent research has revealed that oxidative stress‑induced 
mitochondrial dysfunction plays a significant role in both 
neurodevelopment and neurodegenerative disorders (Zana 
et al. 2007; Emiliano Zamponi et al. 2018; Ma 2013; Kura 
et al. 2019).

In Vivo Studies

Gimeno et al. conducted a study that provided evidence of 
accumulated damage in mitochondria of T21 fibroblasts, 
which was found to be associated with an elevated oxida‑
tive stress status (Antonaros et al. 2021; Liu et al. 2017a, 
b, c; Gimeno et al. 2014). Subsequent studies investigat‑
ing mitochondrial alterations in individuals with T21 have 
revealed several findings. These studies have shown that 
T21 is associated with reduced mitochondrial structure and 
vascularization, as well as decreased connectivity within 
the mitochondrial network, when compared to normal 
mitochondria (Zamponi and Helguera 2019; Pallardó et al. 

2010; Izzo et al. 2017; Perluigi and Butterfield 2012). Simi‑
lar structural and functional mitochondrial defects have been 
observed in other neurodegenerative diseases (Buneeva et al. 
2020; Bose and Beal 2016; Guo et al. 2013; Singh et al. 
2019). The abnormal redox potential observed in individu‑
als with T21 is not solely attributed to the overproduction of 
ROS, but also to the insufficient protection provided by his‑
tones. Consequently, this imbalance contributes to a higher 
mutation rate in mitochondrial DNA (mtDNA) (Coskun 
and Busciglio 2012; Hahn and Zuryn 2019). Mitochon‑
dria are recognized as essential defenders against oxidative 
stress, and when there is an increased damage to mtDNA, 
it compromises their ability to adequately counteract the 
detrimental effects of ROS. As a result, the reduction of 
negative consequences caused by ROS becomes insufficient 
(Ježek et al. 2018; Picca et al. 2020; Alexeyev et al. 2013). 
Recently, the molecular mechanisms responsible for mito‑
chondrial damage and energy deficits were identified and 
characterized in several T21‑derived human cells and ani‑
mal models (Picca et al. 2020). Helguera et al. conducted 
studies on human T21 astrocytes and neuronal cultures and 
observed a decrease in mitochondrial redox balance, cou‑
pled with impaired membrane potential excitability. These 
disturbances were found to be responsible for the adaptive 
downregulation of mitochondrial functions. This downregu‑
lation serves as a protective mechanism, preventing exces‑
sive oxidative damage and preserving essential cellular func‑
tions (Helguera et al. 2013). Kim et al. conducted a study 
that demonstrated decreased protein levels of mitochondrial 
complexes I, III, and V in T21 brain tissue. This reduction 
in mitochondrial complex proteins was associated with an 
increased percentage of neuronal cell apoptosis (Kim et al. 
2001). Accordingly, the study performed by Coskun et al. 
showed that mtDNA mutations were also found in T21 brain 
tissues (Coskun and Busciglio 2012). Neurons rely heav‑
ily on optimal mitochondrial function as mitochondria are 
responsible for generating cellular adenosine triphosphate 
(ATP) through oxidative phosphorylation. ATP production 
is crucial for supporting high‑energy metabolism in neurons 
(Ullah et al. 2021). In a study conducted by Valenti et al., 
using the Ts65Dn mouse model, it was demonstrated that 
administering the polyphenol 7,8‑dihydroxyflavone (7,8‑
DHF) to neonatal mice at a dose of 5 mg/kg/day led to a 
complete restoration of brain bioenergetic dysfunction and 
a reduction in the levels of oxygen radicals. These findings 
suggest that 7,8‑DHF improves mitochondrial bioenerget‑
ics and mitigates mitochondria‑related neurodevelopmental 
abnormalities in individuals with DS (Valenti et al. 2021).

Future Perspectives

To gain a comprehensive understanding of mitochondrial 
dysfunction observed during the development of T21, 
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further exploration of fundamental mitochondrial biology 
is necessary. This includes investigating the mechanisms 
responsible for maintaining mitochondrial dynamics, elimi‑
nating defective organelles, and safeguarding the integrity of 
mitochondrial DNA (mtDNA) during maternal inheritance 
and cell division. By delving into these aspects, research‑
ers can shed light on the underlying mechanisms contrib‑
uting to mitochondrial dysfunction in T21 and potentially 
identify targets for therapeutic interventions (Marcovecchio 
et al. 2021). Preserving the connectivity of the mitochondrial 
network is vital as it represents a significant contributing 
factor to proper cellular function in individuals with T21. 
The integrity of the mitochondrial network plays a critical 
role in various cellular processes, including energy produc‑
tion, calcium homeostasis, and apoptotic signaling. Disrup‑
tions or impairments in mitochondrial network connectivity 
can lead to detrimental effects on cellular physiology and 
contribute to the pathogenesis of T21. Therefore, ensuring 
the protection and maintenance of a well‑connected mito‑
chondrial network is essential for mitigating the impact 
of mitochondrial dysfunction in T21(Picca et al. 2020; E. 
Zamponi and Helguera 2019; Valenti et al. 2018; Izzo et al. 
2018). Therefore, the implementation of combined thera‑
peutic strategies that target both mitochondrial function and 
antioxidative processes holds significant potential for the 
development of new treatment approaches in the manage‑
ment of conditions associated with mitochondrial dysfunc‑
tion and oxidative stress, such as T21. By addressing these 
intertwined factors simultaneously, it may be possible to 
synergistically enhance cellular resilience, improve mito‑
chondrial bioenergetics, and counteract the harmful effects 
of oxidative stress. Such combined approaches could involve 
the use of mitochondrial‑targeted therapies, antioxidants, 
and interventions aimed at promoting cellular antioxidant 
defense mechanisms. The integration of these strategies has 
the potential to provide more comprehensive and effective 
treatment options for individuals with T21 and related condi‑
tions (Valenti et al. 2018).

DS Cognitive Features

Recent study evaluating the human DS brain transcriptome 
showed the deregulation of genes involved in neuronal dif‑
ferentiation (Olmos‑Serrano et al. 2016). The specific gene 
expression alterations have been associated with axonal 
myelination and altered psychomotor development in DS 
individuals (Ponroy Bally and Murai 2021; Olmos‑Serrano 
et al. 2016) Table 2 substantiates these findings (Table 2).

While many cells are able to overcome increased oxi‑
dative stress, neurons in the brain are especially vulner‑
able to oxidative imbalance (Wang and Michaelis 2010). 
The postmortem study conducted by Annus et al. revealed 

several characteristic features of the DS brain. These features 
include reduced brain weight, a lower number and depth 
of cerebral sulci (the grooves on the surface of the brain), 
enlarged ventricles (cavities within the brain), and hypo‑
plasia (underdevelopment) of the brainstem, cerebellum, 
frontal lobes, and temporal lobes. These structural abnor‑
malities are commonly observed in individuals with DS and 
contribute to the cognitive and neurological impairments 
associated with the condition. Understanding the specific 
brain alterations in DS can provide valuable insights into the 
underlying pathology and guide further research and poten‑
tial interventions aimed at improving the quality of life for 
individuals with DS (Annus et al. 2017). Psychopathology 
in T21 differs from the abnormalities of other intellectual 
disability syndromes (Onnivello et al. 2022). Among DS 
individuals, increased risk of AD, as well as low‑intensity 
behavioral and emotional disorders have been observed 
when compared to euploid subjects (Silverman 2007).

Accordingly, Annus et al. observed that adults with DS 
are able to tolerate significant cortical atrophy in the pres‑
ence of amyloid without experiencing detrimental effects on 
their cognitive function. In this study, the brains of 46 adults 
with DS and 30 healthy controls underwent structural and 
amyloid imaging. The findings suggest that the relationship 
between brain structure, amyloid deposition, and cognitive 
function may differ in individuals with DS compared to the 
general population (Annus et al. 2017). This study revealed 
a distinct neurodevelopmental phenotype in the DS brain, 
characterized by a thicker cortical ribbon, particularly in 
the frontal and occipital lobes, and a thinner motor cortex. 
Additionally, compared to the general population, individu‑
als with DS exhibited disproportionately larger putamina 
and smaller hippocampi, which likely result from abnormal 
brain development and maturation. The findings underscore 
the complexity of cognitive impairment formation and the 
influence of increased oxidative stress in exacerbating these 
disorders. In an effort to identify T21 brain regions most 
susceptible to oxidative stress, a study conducted by Head 
et al. demonstrated that T21 newborns face higher levels of 
oxidative stress compared to euploid individuals. Interest‑
ingly, this process promotes the survival of cellular phe‑
notypes that are more resistant to ROS. These results shed 
light on the interplay between oxidative stress and cognitive 
outcomes in DS and provide valuable insights into potential 
targets for therapeutic interventions (Head et al. 2016). The 
study conducted by Cenini et al. established a link between 
oxidative damage in the frontal cortex and the presence 
of Aβ plaques associated with DS. The frontal cortex was 
examined in 70 autopsied brains, including 29 euploid sub‑
jects and 41 DS patients. The findings demonstrated an ele‑
vated concentration of soluble and insoluble Aβ peptides, as 
well as an accumulation of oligomers, in the frontal cortex 
of DS patients. This directly contributes to the development 
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of AD. Importantly, the study also revealed a correlation 
between protein carbonyls, which are formed through oxi‑
dative modification induced by ROS, and amyloid levels. 
These results highlight the connection between oxidative 
stress, amyloid pathology, and cognitive decline in individu‑
als with DS, providing valuable insights for understanding 
the underlying mechanisms and potential targets for thera‑
peutic interventions (Cenini et al. 2012).

T21‑Related Neuronal Phenotype: A Bridge Toward 
Alzheimer Disease

T21 is characterized by brain hypotrophy and intellectual 
disability starting from the early life stages (Martinez et al. 
2021; Takano et al. 2017; X. Lu, Yang, and Xiang 2022). 
This defect is caused by reduced acquisition of a neuronal 
phenotype and an increase in the acquisition of an astrocytic 
phenotype by neural progenitor cells (J. Lu, Sheen, and Shee 
2013; Busciglio and Yankner 1995). In patients with T21, 
the development of dendrites with widespread branches was 
not observed, even at the time of fetal life (Becker et al. 
1986; Iqbal and Eftekharpour 2017). Additionally, the 
upregulation of the amyloid precursor protein, located on 
chromosome 21, leads to the accumulation of Aβ plaques, 
which is associated with the development of AD and, in 
many instances, cerebral amyloid angiopathy (Nunomura 
et al. 2000). The neuropathology of DS is multifaceted and 
exhibits significant variability. The distinctive features of 
the neurodegenerative process include dysregulated free 
radical metabolism and impaired mitochondrial function, 
both of which contribute to the onset of AD in individuals 
with DS by middle age (Lott and Head 2001). Interestingly, 
elevated levels of oxidative stress could also be caused by 
increased release of amyloid beta‑peptide (Perluigi and But‑
terfield 2012). Numerous studies have observed that indi‑
viduals with T21 exhibit elevated concentrations of Aβ in 
both plasma and brain tissues, and this increase has been 
found to be negatively correlated with patient age (Schupf 
et al. 2010; “Down Syndrome and Beta‑Amyloid Deposi‑
tion: Current Opinion in Neurology” 2004). Furthermore, 
in the study conducted by Anandatheerthavarada et al., it 
was found that Aβ specifically targeted the mitochondria of 
cortical neuronal cells and certain regions of the brain, lead‑
ing to neuronal changes associated with AD (Anandatheer‑
thavarada et al. 2003; Busciglio et al. 2007). Furthermore, 
considering the genetic similarities between DS and AD, as 
the genes responsible for AD are encoded by chromosome 
21, it offers an intriguing area of research for understand‑
ing many unresolved issues. Given the shared neuropathol‑
ogy, clinical presentation, and risk factors between DS and 
AD, their cognitive profiles also exhibit similarities. In a 
study conducted by Dick et al., it was discovered that the 

neuropsychological profiles of participants with DS and AD 
were remarkably similar (Dick et al. 2016).

Improving T21‑Related Cognitive 
Impairments

In Vitro Studies

Currently, only a limited number of therapeutics and nutra‑
ceuticals have been examined using the Ts65Dn mouse 
model, which represents DS, with the objective of enhancing 
learning and memory functions (Galati et al. 2018; Choong 
et al. 2015; Faycal Guedj et al. 2020). Nevertheless, these 
studies are characterized by many limitations (Das and 
Reeves 2011; Rueda et al. 2012). First of all, orthologs of 
chromosome 21 genes map to segments of three mouse 
chromosomes, Mmu16, Mmu17, and Mmu10 (Gupta et al. 
2016). Furthermore, it is challenging to identify dosage‑sen‑
sitive genes linked to DS‑related phenotypes using mouse 
models. As a result, DS phenotypes may be attributed to the 
dysregulated expression of extensive chromosomal domains 
across the entire genome (Antonarakis et al. 2020). Nonethe‑
less, mouse models that encompass a broader representation 
of the genetic basis for DS can be valuable in enhancing our 
understanding of the molecular mechanisms underlying the 
diverse clinical characteristics of DS and ultimately leading 
to advancements in brain function (Das and Reeves 2011).

In a study conducted by Zhu et al., the pharmacologi‑
cal suppression of the integrated stress response (ISR) gene 
resulted in a reduction in congenital impairments. The 
research aimed to inhibit the ISR‑inducing double‑stranded 
RNA‑activated protein kinase by enhancing the function 
of the eukaryotic translation initiation factor 2‑eukaryotic 
translation initiation factor 2B complex (eIF2‑eIF2B). This 
intervention facilitated proper translation and synaptic trans‑
mission, leading to increased synaptic activity. By silencing 
the ISR, significant improvements were observed in the for‑
mation of long‑term memories in mice with DS (Zhu et al. 
2019). Building upon the previously published studies that 
focused on the selective suppression of mitochondrial com‑
plex proteins and the reduction of oxidative stress through 
ISR silencing, additional research holds the potential to inte‑
grate multiple disrupted pathways. This would contribute 
to a comprehensive understanding of the biological effects 
of gene inhibition in DS, potentially paving the way for the 
development of gene therapy interventions (Zhang et al. 
2021). It can be hypothesized that by comprehending the 
neuroanatomical features of the DS brain and implementing 
tailored therapeutic approaches, it may be possible to miti‑
gate cognitive impairment and enhance cognitive functions.

Furthermore, various studies have explored strategies 
to enhance neurological functions in T21 mice through the 
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promotion of neurogenesis. In a study conducted by Xu 
et al., the effectiveness of hyperbaric oxygen (HBO) ther‑
apy was evaluated using rat middle cerebral artery occlu‑
sion. The results demonstrated neuroprotective effects and 
improvements in neuronal function (Xu et al. 2016). HBO 
treatment was found to stimulate neurogenesis and enhance 
neurofunctional recovery at day 42. These beneficial effects 
were attributed to a reduction in ROS synthesis, and when 
ROS levels were decreased, the observed improvements 
were reversed (Ahmadi and Khalatbary 2021). Profiling 
additional neurogenesis factors could facilitate the advance‑
ment of medical treatments for T21. It is possible to hypoth‑
esize that inhibiting ROS in T21 pregnancies could lead to 
improved fetal brain development (S. E. Lee et al. 2020; 
Revilla and Martínez‑Cué 2020). Additional research and 
clinical trials are needed to validate this therapeutic strategy 
in humans, which could initiate T21 prenatal therapy.

In vivo studies

In vitro studies provide a basis for future clinical trials in 
humans. Subsequent studies on children with DS, in which 
α‑tocopherol was supplemented at a dose of 400 IU/day, 
showed a significant decrease in urinary 8‑hydroxy‑2'‑de‑
oxyguanosine (8OHdG) concentrations. This suggests that 
α‑tocopherol supplementation in the diets of children with 
DS may alleviate oxidative stress at the DNA level (Mustafa 
Nachvak et al. 2014). Table 3 summarizes the most crucial 
reports of cognitive impairment improvement and the avail‑
able data from completed clinical trials (Table 3).

Future therapeutic testing should investigate whether 
a single‑target therapy or combination therapy targeting 
oxidative stress is sufficient to overcome T21 cognitive 
impairment.

Future Perspectives

DYRK1A: Is the Molecular Signature of DS 
Phenotype Revealed?

In light of the challenges in drug development, genetic vali‑
dation of drug targets has gained popularity, particularly in 
the management of complex trisomy disorders. Among the 
candidate genes associated with the characteristic phenotype 
of individuals with T21, DYRK1A, located on DSCR1, has 
emerged as the most promising target.

DYRK1A Inhibition—In Vitro Studies

To date, the inhibition of DYRK1A has shown the most 
promising results; however, several limitations still exist 
(Hibaoui et al. 2014). Garcia‑Cero et al. demonstrated in a 
Ts65Dn model that increased expression of the DYRK1A 
gene plays a crucial role in various neurodegenerative pro‑
cesses observed in DS (García‑Cerro et al. 2017; W et al. 
2014). The overexpression of DYRK1A in T21 brains may 
contribute directly to early‑onset neurofibrillary degen‑
eration through tau hyperphosphorylation and indirectly 
through the phosphorylation of alternative splicing factors 
(Wegiel et al. 2011). Another recent study revealed the mod‑
ulatory effects of natural polyphenols found in green tea on 
the DYRK1A kinase (Muchová, Žitňanová, and Ďuračková 
2014). Consequently, DYRK1A inhibition has shown ben‑
eficial effects in mouse models of DS, including improve‑
ments in cognitive behavior. Pharmacological inhibition of 
DYRK1A has been achieved through treatment with epigal‑
locatechin gallate (EGCG), yielding positive results in terms 
of alleviating cognitive impairment in transgenic mice over‑
expressing Dyrk1a and Ts65Dn mice (Hibaoui et al. 2014; J 
et al. 2020; Souchet et al. 2015; Stagni et al. 2016).

Clinical Trials of DYRK1A Inhibitor

In the first clinical study, DS patients (n = 31; aged 
14–29 years) were enrolled and supplemented with EGCG 
(oral dose of 9 mg/kg/day) or placebo over a 3‑month period. 

Table 3  The clinical trials among DS individuals

Study type Participants Type of intervention Outcomes References

Clinical Trials—Children Study Group—57
Placebo Group—56

Selenium 10 μg, zinc 5 mg, vitamin 
A 0.9 mg, vitamin E 100 mg, and 
vitamin C 50 mg, folinic acid 
0.1 mg

No improvement in the psychomotor 
and language development

Ellis (2008)

Clinical Trials—Adults Tudy Group—26
Placebo Group—27

900 IU of α‑tocopherol, 200 mg of 
ascorbic acid and 600 mg of alpha‑
lipoic acid

Improvement in cognitive function‑
ing

Lott et al. (2011)
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The intervention with EGCG showed improvements in vis‑
ual recognition memory, working memory performance, 
psychomotor speed, and social functioning in individuals 
with T21(De la Torre et al. 2014). In the second clinical 
study, DS patients (n = 84; aged 16–34 years) were included, 
and the impact of cognitive training combined with EGCG 
supplementation (oral dose of 600 mg/day for participants 
weighing 50–75 kg or 800 mg/day for participants weighing 
75–100 kg) was evaluated over a 12‑month period. The com‑
bination of EGCG treatment and cognitive training resulted 
in improvements in visual recognition memory, inhibitory 
control, and adaptive behavior in the study group. Neuroim‑
aging analysis also demonstrated enhancements in functional 
connectivity and cortical excitability (de la Torre et al. 2016; 
Feki and Hibaoui 2018). There is strong evidence supporting 
the involvement of DYRK1A not only in cognitive deficits 
associated with T21 but also in Alzheimer's disease (AD). 
Similar factors related to neuroinflammation and oxidative 
damage have been studied in both DS and AD individuals, 
leading to the early onset of dementia observed between the 
ages of 30 and 39(Becker et al. 1986; Hempel et al. 2015; 
Galceran et al. 2003). DYRK1A clearly plays a significant 
role as a common neurodegenerative factor, and therefore, 
studying the pathogenesis of DS will also contribute to the 
understanding of the pathogenesis of other neurodegenera‑
tive diseases.

Clinical Trials of DYRK1A Inhibitor Limitation

Despite the promising results obtained during in vivo stud‑
ies, further DS treatment protocols aiming to inhibit the 
DYRK1A expression have been not proposed or recom‑
mended (Fayçal Guedj, Bianchi, and Delabar 2014; Faycal 
Guedj et al. 2020). Accordingly, due to limited data, it is 
still challenging to draw definitive conclusions about the 
effectiveness of pharmacological interventions for cognitive 
decline in individuals with DS. However, it is not possible 
to selectively inhibit DYRK1A expression. Therefore, EGCG 
acts as a mimic of multiple kinase inhibitors simultaneously 
(Bain et al. 2007). Moreover, the EGCG used in clinical 
trials is typically supplemented as green tea extracts, which 
contain EGCG along with various other compounds, includ‑
ing other catechins. Additionally, in the review conducted 
by Long et al., concerns regarding potential side effects and 
the lack of effectiveness, particularly due to flawed research 
planning, have been discussed (Long et al. 2019).

Discussion

Neuropharmaceutics represents the most promising ave‑
nue for addressing cognitive impairments among DS 
patients, making it the largest potential growth sector in the 

pharmaceutical industry (Pardridge 2007; Capsoni and Cat‑
taneo 2022). Due to the brain's effective protection by the 
blood–brain barrier (BBB), the administration of pharma‑
cological agents with intracerebral biological activity poses 
a challenge. In this regard, intranasal delivery emerges as 
a viable solution in neuropharmaceutics. This approach 
enables the direct delivery of medications to the brain, 
bypassing systemic effects and potential barriers associ‑
ated with the BBB (Stagni et al. 2015). Interesting findings 
have emerged from studies conducted by Capsoni et al. and 
Rosenbloom et al., highlighting the potential of intranasal 
delivery as a therapeutic approach for DS patients. In Cap‑
soni et al.'s study, intranasal administration of human nerve 
growth factor painless (hNGFp) was performed in Ts65Dn 
mice at an early stage, before the accumulation of amyloid 
precursor protein (APP) leading to neurodegeneration. This 
treatment effectively reduced astrogliosis, dystrophic micro‑
glia, and promoted neurogenesis, demonstrating a potent 
neuroprotective effect on early DS phenotypic deficits and 
dementia (Capsoni and Cattaneo 2022). In the study con‑
ducted by Rosenbloom et al., the effects of intranasal insulin 
application were evaluated in DS patients aged 35 years and 
above. The findings of this study indicated that the treat‑
ment was safe and well‑tolerated among DS patients, and 
it showed potential for cognitive improvement and mem‑
ory retention. However, further research with larger study 
cohorts is still necessary to establish the effectiveness of this 
approach (Rosenbloom et al. 2020).

Conclusions

Studies investigating the impact of oxidative stress on the 
occurrence of congenital fetal impairments in T21 patients 
have revealed a complex interplay of multiple metabolic 
pathways. Despite extensive research, it has not been pos‑
sible to determine the potential of antioxidant supplementa‑
tion in reducing cognitive impairment in T21 individuals. 
However, the integration of various oxidative stress‑related 
pathways holds promise for the discovery of novel thera‑
pies in the future. In the coming decades, the challenges in 
the field of T21 will involve not only identifying effective 
therapies to mitigate cognitive defects but also understand‑
ing the molecular and cellular mechanisms underlying the 
characteristic phenotype resulting from genetic triplication. 
Exploring multitargeted antioxidant interventions in DS 
individuals will provide insights into the molecular and cel‑
lular mechanisms governing their nervous system function, 
leading to the discovery of potential therapies to overcome 
cognitive impairment. Among the clinical trials conducted 
to date, the inhibition of DYRK1A combined with cognitive 
training has shown significant improvements in visual rec‑
ognition memory, inhibitory control, and adaptive behavior 
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in adults with T21. Moreover, novel techniques such as 
intranasal delivery have been evaluated to improve cogni‑
tive impairments in DS individuals, with promising results. 
However, further studies in this field are still required.
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