Measurement of CO₂ Dissolved in Aqueous Solutions Using a Modified Infrared Gas Analyzer System¹

Received for publication September 28, 1982 and in revised form January 4, 1983

THOMAS E. SCHUMACHER AND ALVIN J. M. SMUCKER Department of Crop and Soil Sciences, Michigan State University, East Lansing, Michigan 48824-1114

ABSTRACT

Total dissolved inorganic carbon (ΣCO_2) and aqueous carbon dioxide $(H_2CO_3^*)$ in nutrient solutions may be measured by the injection of small gas or liquid samples (1 microliter to 8 milliliters) into a gas stripping column connected in-line with an infrared gas analyzer. The measurement of ΣCO_2 in solution requires sample acidification, while $H_2CO_3^*$ and gaseous CO_2 are measured without the addition of lactic acid. The standard curve for ΣCO_2 was linear up to 300 nanomoles CO_2 . Maximum sensitivity was approximately 300 picomoles. Measurements of $H_2CO_3^*$ were independent of pH. Consequently, ΣCO_2 and $H_2CO_3^*$ could be used to calculate the pH, HCO_3^- , and $CO_3^{2^-}$ values of nutrient solutions. Injection and complete analyses required from 0.8 to 2 minutes.

The measurement of CO₂ dissolved in aqueous solutions is complicated by the reaction of CO₂ with water to form carbonic acid (H₂CO₃) and the associated protolysis anions, bicarbonate (HCO_3^-) and carbonate (CO_3^{2-}) . This reaction results in the interdependence of the aqueous solute components H₂CO₃* (representing the moieties of CO_2 [aq] and H_2CO_3 where only a small fraction of CO₂ [aq] occurs as H_2CO_3), HCO₃⁻, CO₃²⁻, H⁺, and OH^- at equilibrium. The concentration of $H_2CO_3^*$ is related to the pCO_2 of the gaseous phase in equilibrium with the liquid phase by $[H_2CO_3^*] = \alpha pCO_2$, where α is the solubility coefficient for CO_2 in water at a specific temperature. Consequently, measurements of dissolved CO₂ are a function of the pH, pCO₂ of the equilibrium gas phase, carbonate alkalinity ($[HCO_3^-] +$ $2[CO_3^{2^-}]$, temperature and the ionic strength of the solution (7, 8). Any method used to measure CO_2 dissolved in solution must take into consideration the implications of the reaction of CO₂ with water.

Numerous methods have been developed to measure ΣCO_2^2 (1, 7, 9). Indirect methods are based on the measurement of any two of the following parameters: pCO₂, pH, and carbonate alkalinity. Direct measurements of ΣCO_2 essentially require the acid conversion of bicarbonate and carbonate ions to CO₂, the separation of gas and liquid phases, and the quantitative measurement of the released CO₂ gas. These methods require a considerable amount of time or relatively complex modifications of gas chromatographic equipment. This report describes an inexpensive modification of the technique reported by Clegg (2) which improves on other IRGA methods used to measure dissolved CO₂ (3, 5, 7). A GSC similar to that described by Swinnerton (9) was used to remove CO_2 from solutions.

MATERIALS AND METHODS

A rapid IRGA technique for measuring CO_2 (2) was modified by incorporating an integrating microprocessor and a GSC (Fig. 1). The integrating microprocessor was adjusted to measure the area under the peak and convert the area to μ g or nmol of CO_2 . Flow rate of the N₂ carrier gas was maintained at 0.6 l/min.

Gas Stripping Column. The GSC used to remove dissolved CO_2 from sample solutions (Fig. 1) is similar to other systems reported for the GLC analyses of CO_2 (9). The GSC consisted of a glass chromatographic tube 1 cm in diameter with a coarse glass frit 5 cm from the tip of the tube. A standard removable septum was attached to the chromatographic column at a 45° angle 1 cm above the glass frit. Glass and rubber vacuum tubes connected the GSC to the IRGA sample line. Liquid or gas samples ranging from 1 to 8,000 μ l were injected into the GSC using microsyringes (Hamilton type) or plastic surgical-type syringes. Side injection near the glass frit resulted in an even exposure of the sample liquid to the stripping gas. The sample was removed through the bottom of the GSC by the use of a vacuum trap (Fig. 1).

ΣCO₂ and H₂CO₃* Measurement. Prior to a series of measurements, the IRGA system was calibrated by the injection of standards. Measurement of ΣCO_2 involved an initial injection of 0.5 ml of 0.1 N lactic acid into the GSC. The amount and concentration of the acid could be varied according to the alkalinity and volume of the sample. Generally, multiple measurements could be made using one injection of acid. Sample injection was made after CO₂ dissolved in the lactic acid was removed by the CO₂free N₂ stripping gas flowing at a rate of 0.4 l/min. Sample volume could be varied based on the approximate ΣCO_2 in the sample. The surfactant qualities of lactic acid also improved the efficiency of separating gases from the solution by reducing the size of gas bubbles in the GSC. Total time between injections required from 1 to 2 min and was reduced if reacidification was not required. Standards were prepared from μ l injections of a 1 mM Na₂CO₃ solution (1).

The procedure for $H_2CO_3^*$ measurement involved initial rinsing of the GSC with distilled H_2O to remove residual acidity. Sample manipulation was similar to that described for the ΣCO_2 measurement except there was no acidification. Standards were prepared by equilibrating aqueous solutions with gas from commercially prepared standards of 225, 339, and 635 μ /l pCO₂ (Matheson) at known temperatures. Standard curves were constructed for $H_2CO_3^*$ using the relationship: $H_2CO_3^* = \alpha pCO_2$ where α is the solubility coefficient of CO₂ in distilled H_2O . Solutions of known pCO_2 , pH, and temperature were prepared and analyzed. Calculations were based on the appropriate equations used to calculate the various ΣCO_2 components. Comparisons were made with measurements made by the modified IRGA system.

¹ Supported by USDA/CSRS Special Grants 79-59-2261-02-029-1 and 70-59-2261-1-2-029-2. Michigan Agricultural Experiment Station No. 10378.

² Abbreviations: ΣCO_2 , total inorganic carbon; IRGA, infrared gas analyzer; GSC, gas stripping column.

FIG. 1. Diagramatic representation of the system used to measure CO₂ in gas and liquid samples.

RESULTS AND DISCUSSION

Injection of μ l quantities of Na₂CO₃ for the Σ CO₂ standard curve resulted in a linear response up to 300 nmol CO₂ (Fig. 2). Quantities greater than 300 nmol CO₂ overloaded the IRGA detection system. The minimum limit of detection achieved was 300 pmol CO₂. This sensitivity approximates the detection limits achieved by the GLC-methanation technique (1) and is at least three orders of magnitude more sensitive than the detection limits of thermal conductivity or previous IR analyzer methods for measuring total CO₂ dissolved in solution. The coefficient of variation at 2 nmol of CO₂ was 7.1% (n = 10). Coefficients of variation for larger quantities of CO₂ were generally in the range of 0.5 to 4.0% (n = 6). The coefficients of variation for the CO₂ determinations reported in this paper are comparable to those

The $H_2CO_3^*$ standard curve was similar to the ΣCO_2 standard curve. Chemical equilibrium analysis of the relationship between pCO_2 and $H_2CO_3^*$ indicates that for an open system, the $[H_2CO_3^*]$ should be independent of ΣCO_2 and pH. This was verified by the experiment summarized in Table I in which the pH values of the test solutions were varied. A comparison of IRGA responses from acidified samples (ΣCO_2) and nonacidified samples ($H_2CO_3^*$)

Table I. Effect of Varying the pH on ΣCO_2 and $[H_2CO_3^*]$ under Constant pCO₂. Ionic Strength, and Temperature

 $pCO_2 = 225 \ \mu l/l$, I = 30 mM, T = 23 °C. Values represent the means of six determinations \pm SD.

FIG. 2. CO₂ standard curve based on μ l injections of 1 mM Na₂CO₃. Vertical lines represent the 95% confidence limits for the mean value of six determinations.

FIG. 3. Comparison of acidified and nonacidified sample peaks. All conditions are similar except for the acidification of the sample. a, Sample injection into 0.1 \times lactic acid in the GSC. b, Sample injection into acid-free GSC.

Table II. Comparison of Four Methods for Determining the ΣCO_2 and Carbonate Components of Hoagland
Solution of Known Ionic Strength and Temperature ($I = 30 \text{ mM}$, $T = 20 \pm 0.1^{\circ}$ C) for two pH Levels
Values for measured parameters represent the means of six determinations

Measured Parameters	рН	H ₂ CO ₃ *	HCO₃ [−]	CO3 ²⁻	$\Sigma CO \pm sD$	
		μΜ				
pH, pCO ₂ ª	6.08	24.1	13.9	1×10^{-4}	38.1 ± 1.8	
$H_2CO_3^*, \Sigma CO_2^b$	6.16	23.7	16.7	2×10^{-4}	40.5 ± 0.5	
pH, ΣCO_2	6.08	25.6	14.9	1×10^{-4}	40.5 ± 0.5	
pH, H₂CO₃*	6.08	23.7	13.7	1×10^{-4}	37.5 ± 2.9	
pH, pCO₂	6.82	24.1	79.3	5×10^{-2}	103.6 ± 4.9	
$H_2CO_3^*, \Sigma CO_2$	6.91	22.4	87.0	5×10^{-2}	109.5 ± 1.3	
pH, ΣCO_2	6.82	26.3	83.2	5×10^{-2}	109.5 ± 1.3	
pH, H ₂ CO ₃ *	6.82	22.4	72.7	5×10^{-2}	95.2 ± 11.2	

^a pCO₂-Matheson standard gas mixture (635 μ l/l).

^b H₂CO₃^{*} and Σ CO₂ measured by the modified IRGA-GSC system.

indicated a symmetrical peak for the acidified sample (Fig. 3). The asymmetric tailing of the nonacidified sample indicated that a slower conversion of HCO₃⁻ to CO₂ occurred at near neutral pH values (5, 6). Nutrient solution concentrations had essentially no affect on the measurement of ΣCO_2 and $H_2 CO_3^*$ concentrations in Hoagland solutions for concentrations of 15, 30, and 60 mм (one-quarter, one-half, and full-strength modified Hoagland solutions, respectively). The ΣCO_2 measured by our modified IRGA system correlated well with ΣCO_2 values calculated from aqueous solutions of known pH, temperature, and pCO₂ at constant ionic strength (Table II). In addition, relative standard deviations (s) calculated according to Wäser (10) were lower when measuring the ΣCO_2 by our modified IRGA system (s = 0.45) than were the calculated values for ΣCO_2 based on measured values for pH, temperature, and reported pCO_2 values (s = 1.14).

The CO₂-carbonate system is described at equilibrium by a series of equations based on concentrations of the appropriate solute components balanced for electroneutrality and on equilibrium constants for specific temperatures and ionic strengths (7, 8). The appropriate equations may be solved for equilibrium concentrations of all components by utilizing two or more of the four measurable concentration parameters (pH, carbonate alkalinity, pCO₂, and Σ CO₂) with appropriate equilibrium constants. Table II compares four systems of measurements used to calculate the concentration of all CO₂-carbonate solute components from Hoagland nutrient solutions having two pH levels. These results indicate the interchangeability of pH, $H_2CO_3^*$, and ΣCO_2 for use in determining carbonate solute components. An analysis of relative errors using the present techniques for CO₂ and pH measurement indicate that the smallest s value for all component calculationwould be from the pH and ΣCO_2 combination. The H₂CO₃* and ΣCO_2 combination could be used to calculate pH values in situations where this might be difficult as in samples of low volume.

Jensen (4) outlines the advantages of using closed systems for measuring root respiration. These systems reduce the requirements for constant conditions of pH and temperature needed for gas equilibrium in open systems. The described IRGA method allows the rapid measurement of changes in CO₂ dissolved in closed systems in which root systems are surrounded by circulating nutrient solution. The method is nondestructive and additional gases removed by the stripping system could be analyzed by connecting other analytical systems to the IRGA. The system also permits the trapping of labeled ¹⁴CO₂ to determine the specific activity of root respiration. The IRGA-GSC approach is routinely used in our carbon transport studies of plant responses to stress environments.

LITERATURE CITED

- 1. BIRMINGHAM BC, B COLMAN 1979 Measurement of carbon dioxide compensation DIMINGHAM BC, B COLMAN 1977 MCBSHTelliett VI Cal OVI GUALDE COMPUTATION points of freshwater algae. Plant Physiol 64: 892–895
 CLEGG MD, CY SULLIVAN, JD EASTIN 1978 A sensitive technique for the rapid
- measurement of carbon dioxide concentrations. Plant Physiol 62: 924-926
- GIBBS CF 1976 A continuously recording polarographic respirometer and its use in oil biodegradation studies. Water Res 10: 443-451
- JENSEN G 1957 Application of the tonometer principle for root respiration measurements. Physiol Plant 10: 967-983
 KASCHUBE K, W REUTER 1978 Quantitative determination of free carbon dioxide
- in water. Dtsch Gewaesserkd Mitt 22: 30-31
- KERN DM 1960 The hydration of carbon dioxide. J Chem Educ 37: 14-22
- PARK PK 1969 Oceanic CO₂ system: an evaluation of ten methods of investigation. Limnol Oceanogr 14: 179-186
- 8. STUMM W, JJ MORGAN 1970 Dissolved carbon dioxide. In Aquatic chemistry: an introduction emphasizing chemical equilibria in natural waters. John Wiley and Sons, New York, pp 118-159 9. SWINNERTON JW, VJ LINNEBOM, CH CHEEK 1962 Determination of dissolved
- gases in aqueous solutions by gas chromatography. Anal Chem 34: 483–485 10. WÄSER J 1964 Quantitative Chemistry—a Laboratory Text. WA Benjamin, Inc,
- New York, pp 361-381